航空发动机喷嘴是影响燃烧性能的关键部件,其组件众多、结构复杂,尤其内部流道加工困难,导致制造周期长、成本高。然而,作为非主承力件的喷嘴非常适用于激光选区熔化制造技术(SLM),这得益于激光选区熔化加工精度高,自由成形能力强,材料组织致密度高。基于SLM 可实现自由制造的技术优势,首先对喷嘴的壳体组件进行了一体化设计,并进行了受力分析和拓扑优化,然后采用SLM打印了成形件,经过测量,可获得13.5%的轻量化效果,打印误差小于0.2mm,满足局部精加工的余量要求,随炉试件力学性能达到传统铸锻件水平。SLM 简化了喷嘴的加工工序,缩短了制造周期,流道成形精度高,达到了减轻重量和改善性能的目的。
为了提高电火花成形机床的运行寿命和维修效率,降低航空、航天、能源等领域对难加工材料、复杂结构零部件使用电火花成形机床加工的工艺难度,提高加工工艺服务的共享性与便利性,开展了电火花成形机床云端服务平台建设关键技术研究,包括平台的系统架构方案设计、软硬件设计实现;基于该平台开展了电火花成形机床的云 端运行监控及航空发动机关键零部件涡轮盘的电火花加工远程工艺服务试验,验证了该平台建设的有效性。
冷等离子体射流中微细电火花加工在一定程度上获得了比纯气体介质中更好的加工性能。然而由于放电脉冲能量小,造成放电间隙小,使得电蚀产物排出困难,短路、拉弧等不正常放电现象仍然频繁发生,严重影响了加工的质量和稳定性。为此,提出在工件上施加超声振动的方法以改善冷等离子体射流中微细电火花加工过程的稳定性,并探究其加工特性。针对电火花加工的击穿距离、材料去除率、表面粗糙度以及工具电极相对损耗率等工艺指标,进行了工艺试验。试验结果表明:工件施加超声振动以后,熔融的电蚀产物更容易从工件表面剥离;当以冷等离子体和压缩空气混合射流为加工介质时,超声辅助等离子体中微细电火花加工性能得以明显改善,材料去除率提高13%,表面粗糙度降低19%,电极相对损耗率降低13%。
首先介绍了一种实现电弧与铣削组合的加工方法及装备。其次,为验证电弧加工在航空部件生产方面的能力及其对后续精加工工艺的友好性,利用自研的高速电弧放电与机械铣削组合加工专用机床,以具有复杂曲面特征的三元流叶轮样件为例进行五轴电弧铣削与机械铣削组合加工试验研究。结果表明,合理安排电弧加工工序,可以在实现材料高效去除的同时,取得较优的表面质量,电弧铣削中最大材料去除率达14500mm3/min,小能量电弧加工完成后的样件表面粗糙度Ra为12.5μm,硬度为69.4HRB,较基体硬度未有明显变化,可以很好地适应切削加工要求。后续机械铣削加工过程中,刀具磨损小、加工状态稳定,最终获得粗糙度Ra1.2μm 的加工表面,且由于切削余量小,有效抑制了加工变形,样件加工结果达到设计要求,充分展现了该组合加工工艺应用于具有复杂形貌特征的航空发动机零部件制造方面的可行性。
为解决氙灯钨阳极表面密集环形微槽加工的技术问题,提出了采用RC 电源,在超低电导率下电解电火花加工纯钨表面微沟槽的方法。研究在RC 电源下,不同电解液类型下的电解电火花加工特性。首先,通过电化学工作站测量纯钨材料在不同电解液类型下的极化曲线,分析不同电解液类型的初腐蚀电位。为研究加工过程形成的气泡对加工的影响规律,通过高速摄像仪对不同工艺条件下加工区域的气泡形成与分布进行观察。最后,采用自主研制的试验装置开展了纯钨棒材表面环形微沟槽电解电火花加工工艺试验,分析工作液成分、电导率、转速和电压不同参数对加工特性的影响规律。在极间电压60V,转速500r/min,电导率为50μS/cm 的NaOH 电解液下加工了槽 宽为50.97μm,槽深为17.31μm 的微沟槽结构。
为研究镁基碳纤维增强复合材料(Cf/Mg)的切削力与已加工表面质量,开展了硬质合金铣刀与硬质合金钻头超声辅助切削试验研究。通过正交试验得到,超声辅助铣削Cf/Mg复合材料时铣削力随每齿进给量及铣削深度的增加而明显增大,随主轴转速的增加而减小;试验中,在超声辅助铣削时每齿进给量0.025mm、铣削深度0.2mm、转速6000r/min加工参数下铣削力最小,每齿进给量0.025mm、铣削深度0.2mm、转速4000r/min 加工参数下表面质量较好;采用硬质合金钻头进行单因素钻削试验时,轴向钻削力随主轴转速的升高而减小;与传统钻削相比,超声辅助钻削能减小轴向钻削力,在机床转速6000r/min、机床进给速度100mm/min加工参数下超声辅助钻削相比传统钻削可减小约36% 的轴向钻削力;超声辅助钻削相比传统钻削能改善钻孔出口的毛刺、分层等缺陷。
增材制造技术被美国科学基金会、国家自然科学基金委员会认为是20 世纪制造技术的一项重大创新,并受到世界科技强国和新兴国家的高度重视,正在成为工程、制造、材料、生物医学等学科的研究热点。增材制造技术还给空间任务执行和资源保障模式带来了突破性改变,可以满足应急维修保障、试验支持及有效载荷制造等在轨需 求。智能增材制造技术与系统重庆市重点实验室自2013 年开始建设以来,依托于中国科学院重庆绿色智能技术研究院,在激光制造、空间制造与增材制造交叉领域取得了重要突破。
根据所研制的一种典型结构的非共振椭圆振动切削(Elliptical Vibration Cutting,EVC)装置,考虑压电叠堆在非共振EVC 装置表现出来的动态迟滞特点,对静态PI 迟滞模型进行分段动态化权值处理,构建动态PI 迟滞模型描述非共振EVC 装置各轴向输入电压与输出位移的关系。通过对迟滞模型的求逆建立非共振EVC 装置的前馈控制器,为进一步提高控制系统的精度与稳定性,引入PID 反馈环节,用前馈逆控制器加PID 反馈的复合控制方法控制非共振EVC 装置各轴向输出指定频率、幅值的正弦位移,进而使其合成的椭圆振动轨迹运动频率、轴长和倾角满足需求,实现对非共振EVC 装置的控制。试验结果表明,非共振EVC 装置在复合控制下能够在频率100Hz 以下输出振幅、倾角可调,且运动误差低于3.5% 的椭圆振动轨迹。
从分区扫描可以有效降低激光沉积成形大尺寸结构残余应力的工程经验出发,采用热弹塑性有限元理论,建立可以模拟成形过程温度场与应力场的有限元模型,研究不同分区扫描方式对激光沉积成形钛合金T型接头温度/应力演变过程、监测点热循环曲线以及残余应力的影响。结果表明:热应力与残余应力最大值均出现在T型接头上缘条与基板接触的4个外角点上,与分区扫描方式无关;分区扫描对T型接头外角点与短边外面中点影响较小,对于内部节点、内角点与长边外面中点的热循环曲线及热应力曲线有一定的影响;分区扫描对残余应力分布影响较大,尤其是对沿指定截面残余应力分布规律与最大残余应力幅值有显著的影响。
为提高航空类发动机叶片的自动化磨抛精度,减小复杂曲面叶片加工轨迹控制误差,采用基于六维力传感器的机器人力/ 位混合控制策略,实现机器人磨抛轨迹的在线修正。搭建以Staubli 机器人和ATI 六维力传感器为核心部件的叶片磨抛验证平台,通过C++ 开发上位机,采集磨抛过程中六维力传感器信息并进行Kalman 滤波。通过示教确定机器人运动轨迹,对机器人运动轨迹与力传感器信息进行采集分析,确定基于力/ 位混合控制可以实现机器人运动轨迹的在线修正,为复杂曲面的叶片磨抛轨迹控制提供一种解决方案。
针对国产某型飞机机翼翼盒典型连接区结构,设计试验件进行疲劳试验,对比分析高锁螺栓不同装配工艺对其疲劳性能的影响。结果表明:对高锁螺栓施加一次拧紧工艺后,再施加适当的二次拧紧力矩,能够有效改善连接结构的疲劳性能。其次,建立连接结构的三维有限元模型,基于正交试验法分别研究螺栓拧紧力矩、板间摩擦系数和螺栓材料弹性模量对基板孔边应力集中系数的影响。研究发现,该3种因素均对孔边应力集中系数有较大影响,其中螺栓拧紧力矩的影响最为显著,表明了适宜的二次定力工艺是提高连接结构疲劳性能的一种有效手段。
针对RX1E复合材料轻型飞机一体成型、胶结连接为主的工艺特性,进行了工艺方案的总体设计,包括装配顺序的确定和装配工装基准的选择等。其次,进行了一体化工装的结构设计,细化了制件模具的成型方案和结构零件的定位夹紧形式。最后,重新进行了尾翼、阻力板等较小部件制造,对一体化工装的实际使用进行了验证,类比分析了工装模具一体化的方案在复合材料结构轻型飞机机身上的技术可行性和先进性。研究成果可为复合材料飞机工装提供设计思路和参考。