1.School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai201620, China
2.Zhiyuan Advanced Manufacturing Research Center, Chengdu610511, China
3.Sichuan Research Institute, Shanghai Jiao Tong University, Chengdu610041, China
Citations
YUE Qiwang, SHEN Qin, LIU Gang, et al. Force-induced deformation and failure analysis of bolt-connected structure of 7050–T7451 aluminum alloy lug[J]. Aeronautical Manufacturing Technology, 2025, 68(21): 178–185.
Abstract
The bolt-connected structure of lug, widely used in aviation industry, is prone to fracture under frequent loading, making the analysis of its tensile and fatigue performance crucial. In this paper, the tensile test parameters of lug-connected structure were designed based on theoretical calculations, and the low-cycle fatigue test was designed by the tensile displacement–load curve. The static-load failure and low-cycle fatigue failure of 7050–T7451 aluminum alloy lug-connected structure were investigated using experiments and finite element simulations. The results demonstrated that the double lug structure completely fractured after 7686 cycles, and the crack propagation a–N curve was close to that of the fatigue life simulation results. The results provide a reliable theoretical basis for evaluating the safety of lug-connected structure and selection of lug-connected part.
耳片螺栓连接结构具有便于传递集中载荷、连接形式简单及易装配拆卸等优点,被广泛应用于航空工业领域,如方向舵、起落架接头、飞机副翼、发动机吊挂及后机身与后梁连接的转轴接头等[ 郑光. 某飞机机翼吊挂连接接头破坏试验设计[D]. 南京: 南京航空航天大学, 2013.ZHENG Guang. Destruction test design of the joints connecting the wing and pylon of XXX aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013. 孟妍. 耳片结构裂纹萌生寿命及扩展仿真与实验研究[D]. 南京: 南京航空航天大学, 2021.MENG Yan. Simulation and experimental study on crack initiation life and propagation of lug[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021. 李益萱, 王龙. 飞机某典型螺栓连接件的振动疲劳试验研究[J]. 机械科学与技术, 2019, 38(9): 1401–1405.LI Yixuan, WANG Long. Study on vibration fatigue testing of aircraft typical bolt connector[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(9): 1401–1405. 1-3]。目前应用最广泛的材料是7050–T7451铝合金,具有热系数高、切削性能良好、化学磨损小、强度高、断裂韧度大、抗应力腐蚀性能好的特性[ 陈翔宇, 何辉波, 李华英, 等. 7050–T7451铝合金铣削参数多指标优化研究[J]. 工具技术, 2024, 58(2): 33–40.CHEN Xiangyu, HE Huibo, LI Huaying, et al. Research on multi-indexes optimization of milling parameters for 7050–T7451 aluminum alloy[J]. Tool Engineering, 2024, 58(2): 33–40. 4]。耳片螺栓连接结构承受大载荷时,在耳孔周围产生应力集中,极易发生断裂破坏,同时频繁承载也会导致结构的疲劳破坏。因此,分析耳片螺栓连接结构的拉伸性能和抗疲劳性能对飞机的稳定性和服役安全至关重要[ 王中霆. 典型开孔结构及其螺栓连接结构力学性能分析[D]. 哈尔滨: 哈尔滨工业大学, 2013.WANG Zhongting. Mechanical properties analysis of typical perforated structure and its bolted connection structure[D]. Harbin: Harbin Institute of Technology, 2013. 鞠明明. 大型飞机翼下吊架结构方案设计与优化[D]. 南京: 南京航空航天大学, 2018.JU Mingming. Structure scheme design and optimization of large aircraft under wing hanger[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. 5-6]。
研究人员针对耳片螺栓连接结构的强度与承载能力问题做了一些研究工作。李辉等[ 李辉, 陈蓬, 姚泽坤, 等. 钛合金耳片的静载失效分析与结构优化研究[J]. 航空制造技术, 2017, 60(5): 96–99, 104.LI Hui, CHEN Peng, YAO Zekun, et al. Failure analysis and structure optimization of titanium alloy lug[J]. Aeronautical Manufacturing Technology, 2017, 60(5): 96–99, 104. 7]通过试验方法获得了不同尺寸钛合金耳片的拉伸极限,揭示了钛合金耳片几何尺寸与加载角度对破坏载荷的影响规律,并对典型断口进行了形貌观察,探讨了钛合金耳片在室温静载荷作用下的破坏机制。周忠义等[ 周忠义, 徐武, 陆冠, 等. 300M钢耳片拉伸强度与破坏机制[J]. 机械设计与研究, 2022, 38(5): 225–231, 237.ZHOU Zhongyi, XU Wu, LU Guan, et al. Tensile strength and failure mechanism of 300M steel lugs[J]. Machine Design & Research, 2022, 38(5): 225–231, 237. 8]通过对不同形式和几何尺寸的耳片开展不同加载角度的拉伸破坏静力试验,获得了耳片拉伸极限载荷和破坏模式,并给出了300M钢耳片拉伸强度效率系数的计算公式,在此基础上建立了300M钢耳片拉伸极限载荷分析的弹塑性有限元方法,并结合试验进行了验证。
数值分析方法可以通过结合材料的力学性能、本构模型及失效判据来分析耳片的失效。王钧仡等[ 王钧仡, 秦锋英, 李波, 等. 高强钛合金典型耳片准静态拉伸断裂数值模拟[J]. 塑性工程学报, 2023, 30(10): 151–159.WANG Junyi, QIN Fengying, LI Bo, et al. Numerical simulation of quasi-static tensile fracture of high strength titanium alloy typical lugs[J]. Journal of Plasticity Engineering, 2023, 30(10): 151–159. 9]结合数值模拟与试验的方法,在准静态拉伸试验中,研究了不同结构参数对钛合金飞机耳片接头断裂载荷的影响,通过材料延性断裂的本构模型分别对4种不同结构的耳片接头进行了拉伸断裂模拟。杨景明[ 杨景明. 基于损伤力学的铆接试件疲劳裂纹萌生寿命研究[J]. 四川建筑, 2021, 41(3): 175–177, 180.YANG Jingming. Study on fatigue crack initiation life of riveted specimens based on damage mechanics[J]. Sichuan Architecture, 2021, 41(3): 175–177, 180. 10]通过损伤场与应力应变场的全耦合分析,对铆接钢结构桥梁典型疲劳试验件的疲劳裂纹萌生阶段进行研究。以往的研究主要集中于在静态拉伸试验或疲劳试验中单独分析耳片连接结构的强度,而结合静态拉伸受力变形与疲劳失效分析的研究较少。
根据试验结果绘制如图11所示的双耳结构疲劳裂纹扩展a–N曲线。裂纹由1 mm深的预制裂纹开始扩展,在7686次疲劳循环后扩展至超过4 mm,耳片结构彻底断裂,曲线变化过程符合裂纹扩展规律[ SURESH S. Fatigue of Materials[M]. Cambridge: Cambridge University Press, 1998. 14]。疲劳断裂分为裂纹萌生、裂纹扩展及断裂3个阶段[ 孟妍. 耳片结构裂纹萌生寿命及扩展仿真与实验研究[D]. 南京: 南京航空航天大学, 2021.MENG Yan. Simulation and experimental study on crack initiation life and propagation of lug[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021. 2],为了更好地记录裂纹扩展的整个过程,对裂纹萌生前及裂纹扩展的3个阶段进行了照片记录:将试验开展前的预制裂纹记录为Ⅰ阶段,Ⅱ~Ⅳ分别对应裂纹扩展的3个阶段。由图11可知,在Ⅱ阶段,裂纹处于初步扩展阶段(裂纹萌生阶段),微裂纹沿滑移面扩展,裂纹尺寸较小,与预制裂纹阶段的尺寸相差不大;Ⅲ为裂纹扩展阶段,裂纹沿着与拉应力垂直的方向扩展,此时可明显观察到尺寸较大的裂纹;Ⅳ为裂纹失稳扩展阶段,裂纹扩展速度加快,几乎扩展至穿过整个表面,耳片结构即将完全断裂。
图11 双耳结构疲劳裂纹扩展的a–N曲线
Fig.11a–N curve of fatigue crack propagation of deuble lug structure
疲劳试验中双耳结构存在偏置,侧耳片首先发生断裂,初始裂纹位置在耳片内孔右上侧,断裂裂纹如图12所示,裂纹整体趋势与仿真结果较为接近,疲劳失效过程分为小裂纹扩展和长裂纹扩展两个阶段。分析裂纹扩展机理为:裂纹萌生阶段裂纹沿着滑移面扩展,此阶段裂纹大约为十几μm,肉眼不可见;随后裂纹逐渐扩展至产生宏观裂纹,扩展方向与拉应力方向垂直,此时裂纹尺寸大于0.1 mm;最后阶段裂纹发生失稳扩展,结构很快断裂。对比双耳结构仿真与疲劳试验得到的a–N曲线,如图13所示。可以看出,仿真模型中,耳片结构有更长的疲劳寿命(在达到相同裂纹长度(1.5 mm)时,试验须经过3253次疲劳循环,仿真模型则须经过5426次疲劳循环),且小裂纹扩展阶段更加平缓。这可能是因为在试验加载过程中,单耳偏置导致一侧耳片承受的疲劳载荷更大,从而加快了开裂侧裂纹的扩展速度,缩短了耳片的疲劳寿命周期。在仿真模型中,单耳始终置于双耳中间位置,双耳结构两侧的耳片受力均匀,能够达到理想最大疲劳寿命周期。除了由于单耳偏置的影响,试验与仿真得到的耳片疲劳周期和裂纹扩展曲线的趋势基本一致,验证了模型的合理性。观察疲劳裂纹曲线发现,前期小裂纹扩展阶段所需疲劳循环次数约占总循环周期的一半,而该阶段裂纹扩展长度相对于长裂纹扩展阶段的长度较小。Wang等[ WANG B W, XIE L Y, SONG J X, et al. Failure behavior of aerial bomb lifting lug under variable amplitude loading: Failure analysis and life prediction[J]. Engineering Failure Analysis, 2021, 120: 105000. 15]在对铸造航空炸弹吊耳的失效分析与寿命预测中也发现了小裂纹阶段在疲劳全寿命周期中的占比较高,对疲劳寿命的影响较大。
图12 裂纹扩展过程及机理
Fig.12 Propagation process and mechanism of crack
图13 仿真与试验a–N曲线的对比
Fig.13 Comparison of a–N curves between simulation and experiment
郑光. 某飞机机翼吊挂连接接头破坏试验设计[D]. 南京: 南京航空航天大学, 2013. ZHENGGuang. Destruction test design of the joints connecting the wing and pylon of XXX aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013.
[2]
孟妍. 耳片结构裂纹萌生寿命及扩展仿真与实验研究[D]. 南京: 南京航空航天大学, 2021. MENGYan. Simulation and experimental study on crack initiation life and propagation of lug[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021.
[3]
李益萱, 王龙. 飞机某典型螺栓连接件的振动疲劳试验研究[J]. 机械科学与技术, 2019, 38(9): 1401–1405. LIYixuan, WANGLong. Study on vibration fatigue testing of aircraft typical bolt connector[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(9): 1401–1405.
[4]
陈翔宇, 何辉波, 李华英, 等. 7050–T7451铝合金铣削参数多指标优化研究[J]. 工具技术, 2024, 58(2): 33–40. CHENXiangyu, HEHuibo, LIHuaying, et al. Research on multi-indexes optimization of milling parameters for 7050–T7451 aluminum alloy[J]. Tool Engineering, 2024, 58(2): 33–40.
[5]
王中霆. 典型开孔结构及其螺栓连接结构力学性能分析[D]. 哈尔滨: 哈尔滨工业大学, 2013. WANGZhongting. Mechanical properties analysis of typical perforated structure and its bolted connection structure[D]. Harbin: Harbin Institute of Technology, 2013.
[6]
鞠明明. 大型飞机翼下吊架结构方案设计与优化[D]. 南京: 南京航空航天大学, 2018. JUMingming. Structure scheme design and optimization of large aircraft under wing hanger[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
王钧仡, 秦锋英, 李波, 等. 高强钛合金典型耳片准静态拉伸断裂数值模拟[J]. 塑性工程学报, 2023, 30(10): 151–159. WANGJunyi, QINFengying, LIBo, et al. Numerical simulation of quasi-static tensile fracture of high strength titanium alloy typical lugs[J]. Journal of Plasticity Engineering, 2023, 30(10): 151–159.
[10]
杨景明. 基于损伤力学的铆接试件疲劳裂纹萌生寿命研究[J]. 四川建筑, 2021, 41(3): 175–177, 180. YANGJingming. Study on fatigue crack initiation life of riveted specimens based on damage mechanics[J]. Sichuan Architecture, 2021, 41(3): 175–177, 180.
[11]
《飞机设计手册》总编委会. 飞机设计手册第9册: 载荷、强度和刚度[M]. 第1版. 北京: 航空工业出版社, 2001: 653–661. Editorial Committee of the Aircraft Design Manual. Aircraft design manual volume 9: Loads, strength, and stiffness[M]. Beijing: Aviation Industry Press, 2001: 653–661.
[12]
LIANY W, ZHAOR, YUK P, et al. P–S–N surfaces of lifting lug structure based on extremely small samples[J]. Engineering Failure Analysis, 2024, 162: 108457.
SURESHS. Fatigue of Materials[M]. Cambridge: Cambridge University Press, 1998.
[15]
WANGB W, XIEL Y, SONGJ X, et al. Failure behavior of aerial bomb lifting lug under variable amplitude loading: Failure analysis and life prediction[J]. Engineering Failure Analysis, 2021, 120: 105000.