网格化处理对碳纳米管薄膜电热温度分布影响的研究

基金项目

航空科学基金项目(202200360Q3002);基础研究项目(5140xx–xx–1)。

中图分类号:

V25O242.21

文献标识码:

A

通信作者

赵志勇,副教授,研究方向为碳纳米材料制备及功能化复合材料。

编辑

责编 :向阳

引文格式

颜若彬, 毛鑫婕, 彭冲, 等. 网格化处理对碳纳米管薄膜电热温度分布影响的研究[J]. 航空制造技术, 2025, 68(21): 114–121.

Study on Effect of Meshing Treatment on Electrothermal Temperature Distribution of Carbon Nanotube Films

Citations

YAN Ruobin, MAO Xinjie, PENG Chong, et al. Study on effect of meshing treatment on electrothermal temperature distribution of carbon nanotube films[J]. Aeronautical Manufacturing Technology, 2025, 68(21): 114–121.

航空制造技术    第68卷    第21期    114-121
Aeronautical Manufacturing Techinology    Vol.68    No.21 : 114-121
DOI: 10.16080/j.issn1671-833x.2025.21.114
研究论文(RESEARCH)

网格化处理对碳纳米管薄膜电热温度分布影响的研究

  • 颜若彬 1
  • 毛鑫婕 1
  • 彭冲 1
  • 崔海超 2
  • 赵志勇 1
1.山东大学机电与信息工程学院威海 264209
2.中国航空制造技术研究院复合材料技术中心北京 100024

通信作者

赵志勇,副教授,研究方向为碳纳米材料制备及功能化复合材料。

基金项目

航空科学基金项目(202200360Q3002);基础研究项目(5140xx–xx–1)。

中图分类号:

V25O242.21

文献标识码:

A

引文格式

颜若彬, 毛鑫婕, 彭冲, 等. 网格化处理对碳纳米管薄膜电热温度分布影响的研究[J]. 航空制造技术, 2025, 68(21): 114–121.

摘要

采用仿真模拟与试验验证相结合的方法,探讨了网格化处理对碳纳米管薄膜(CNT–film)电热性能的影响。首先,通过有限元分析,研究不同网格形状、取向方向、网格间距和圆角半径对电热元件温度分布及均匀性的影响;结果表明,CNT–film电热元件采用正方形网格、电流方向垂直取向方向、网格间距d=5 mm、圆角半径r=1 mm的参数进行设计时,温度分布均匀性效果最好。在仿真优化的基础上,开展试验以验证仿真结果的可靠性,试验结果与仿真结果一致,表明网格化设计方案可以显著提高CNT–film电热元件的温度均匀性和电阻值,避免传统CNT–film电热元件因表面电性能不均匀而导致的温度分布不均、局部温度过高等问题。优化方案不仅扩展了CNT–film在面状电热领域的潜在应用,还为局部开孔电热元件的设计提供了新思路和方法。

关键词

碳纳米管薄膜;网格化;电热性能;有限元分析;温度分布;

Study on Effect of Meshing Treatment on Electrothermal Temperature Distribution of Carbon Nanotube Films

  • YAN Ruobin 1
  • MAO Xinjie 1
  • PENG Chong 1
  • CUI Haichao 2
  • ZHAO Zhiyong 1
1.School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai 264209, China
2.Composites Technology Center, AVIC Manufacturing Technology Institute, Beijing 100024, China

Citations

YAN Ruobin, MAO Xinjie, PENG Chong, et al. Study on effect of meshing treatment on electrothermal temperature distribution of carbon nanotube films[J]. Aeronautical Manufacturing Technology, 2025, 68(21): 114–121.

Abstract

The electrothermal properties of meshed carbon nanotube film (CNT–film) were investigated by means of simulation and experimental verification. Firstly, the influence of different mesh shape, orientation, mesh spacing and fillet radius on the temperature distribution and uniformity of electric heating element was studied by finite element analysis. The results demonstrate that the temperature distribution uniformity of CNT–film heating element is the best when the parameters of square grid, vertical current direction, mesh spacing d of 5 mm and fillet radius r of 1 mm were adopted. Then, on the basis of simulation optimization, experiments are carried out to verify the reliability of simulation results. The experimental results are consistent with the simulation results, indicating that the meshing scheme can significantly improve temperature uniformity and resistance value of CNT–film electric heating elements, avoiding the problems of uneven temperature distribution and high local temperature caused by uneven surface electrical properties of traditional CNT–film electric heating elements. The optimization scheme not only expands the potential use of CNT–film in surface heating area, but also provides a new idea and method for designing heating elements with local opened pore.

Keywords

Carbon nanotube film; Meshing; Electrothermal property; Finite element analysis; Temperature distribution;



电致加热技术在工业领域的应用极为广泛,包括电动汽车电池加热与保温[   KHAN A, YAQUB S, ALI M, et al. A state-of-the-art review on heating and cooling of lithium-ion batteries for electric vehicles[J]. Journal of Energy Storage, 2024, 76: 109852.
1
]
、飞机前缘与后缘防/除冰[   ZHANG Y N, WEI J, LIU C, et al. Reduced graphene oxide modified Ti/CFRP structure-function integrated laminates for surface Joule heating and deicing[J]. Composites Part A: Applied Science and Manufacturing, 2023, 166: 107377.
2
]
、寒冷地区电子元器件的温控保护[   BELL L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems[J]. Science, 2008, 321(5895): 1457–1461.
3
]
等。这项技术主要依赖焦耳热效应,通过电阻元件将电能转化为热能[   SHI L, GE R Q, TAN N C, et al. Non-contact heating methods of carbon fiber thermoplastic composites based on Joule thermal properties: Optimization and validation[J]. Carbon, 2024, 219: 118830.
4
]
。目前常用的电热材料有金属基电阻丝、陶瓷基硅碳棒、硅钼棒及新型碳基薄膜和石墨烯[   HONG S, LEE H, LEE J, et al. Highly stretchable and transparent metal nanowire heater for wearable electronics applications[J]. Advanced Materials, 2015, 27(32): 4744–4751.
  JANUSZKIEWICZ K T. Numerical model of the heating-up system with heating rods[J]. Advances in Engineering Software, 1999, 30(2): 141–145.
  ZHU Z, LU H, ZHAO W J, et al. Materials, performances and applications of electric heating films[J]. Renewable and Sustainable Energy Reviews, 2023, 184: 113540.
5-7
]
。传统的金属和陶瓷基加热材料多为丝状或棒状,电热转换效率较低,且难以满足面内均匀加热的要求。因此,各领域对以碳纳米管薄膜、石墨烯为加热体的面状均匀加热技术的关注度越来越高[   LI R Y, ZHANG L B, SHI L, et al. MXene Ti3C2: An effective 2D light-to-heat conversion material[J]. ACS Nano, 2017, 11(4): 3752–3759.
8
]

相较于传统电阻丝加热,面状加热具有更大的法向散热面积,发热效率和热利用效率较丝状或棒状加热体明显提高[   ZHONG Y D, TANG W, ZHANG C, et al. Programmable thermochromic soft actuators with “two dimensional” bilayer architectures for soft robotics[J]. Nano Energy, 2022, 102: 107741.
  KOSTARAS C, PAVLOU C, KOUTROUMANIS N, et al. Rapid resistive heating in graphene/carbon nanotube hybrid films for de-icing applications[J]. ACS Applied Nano Materials, 2023, 6(7): 5155–5167.
  CHENG X, CAI J, LIU P, et al. Multifunctional flexible MXene/AgNW composite thin film with ultrahigh conductivity enabled by a sandwich-structured assembly strategy[J]. Small, 2024, 20(3): 2304327.
9-11
]
。例如,Hu等[   HU P Y, LYU J, FU C, et al. Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films[J]. ACS Nano, 2020, 14(1): 688–697.
12
]
制备了由碳纳米管、芳纶纳米纤维和氟碳树脂组成的复合膜,在10 V下可达到113.5 ℃的饱和温度。Jia等[   JIA P F, ZHU Y L, LU J Y, et al. Multifunctional fireproof electromagnetic shielding polyurethane films with thermal management performance[J]. Chemical Engineering Journal, 2022, 439: 135673.
13
]
通过微胶囊化技术将导电MXene包裹的聚磷酸铵加入到聚氨酯薄膜中,制备了厚度为1.0 mm的MXene/聚氨酯复合膜,在6 V下表面温度可达68.1 ℃。Li等[   LI D Q, TANG B, LU X, et al. Hierarchically carbonized silk/ceramic composites for electro-thermal conversion[J]. Composites Part A: Applied Science and Manufacturing, 2021, 141: 106237.
14
]
将蚕丝织物和蚕茧作为碳质前驱体,制备了碳化纤维/陶瓷复合材料,在施加15 V电压时,其表面温度可达178.0 ℃。Abolhasani等[   ABOLHASANI A, PACHENARI A, MOHAMMAD RAZAVIAN S, et al. Towards new generation of electrode-free conductive cement composites utilizing nano carbon black[J]. Construction and Building Materials, 2022, 323: 126576.
15
]
采用纳米炭黑制得纳米炭黑/水泥复合材料,在60 V下的表面温度高达55.0 ℃。杨阔等[   杨阔, 潘宝宇, 李小龙, 等. CNT薄膜电热原位共固化复合材料板的温度均匀性研究[J]. 固体火箭技术, 2024, 47(2): 237–245.YANG Kuo, PAN Baoyu, LI Xiaolong, et al. Temperature uniformity study of electrothermal in situ co-curing of composite plate with CNT film[J]. Journal of Solid Rocket Technology, 2024, 47(2): 237–245.
16
]
使用碳纳米管薄膜作为内源加热材料,所得薄膜在15 V下的表面温度可达180 ℃,并保持稳定。以上研究均表明,面状加热在实际生产中是一种高效的加热方式。

近年来,碳纳米管(CNT)等碳基电热材料获得了广泛关注,并在柔性可穿戴加热、理疗加热、地暖和墙暖等领域得到了应用[   ZHU Z, LU H, ZHAO W J, et al. Materials, performances and applications of electric heating films[J]. Renewable and Sustainable Energy Reviews, 2023, 184: 113540.
7
  XIAO Z, SHENG C J, XIA Y, et al. Electrical heating behavior of flexible thermoplastic polyurethane/Super-P nanoparticle composite films for advanced wearable heaters[J]. Journal of Industrial and Engineering Chemistry, 2019, 71: 293–300.
17
]
。碳纳米管薄膜(CNT–film)是由nm级CNT通过长程有序排列组成的二维网络结构,具有优良的导电性和导热性,以及良好的拉伸强度和柔韧性,是一种理想的面状电热材料[   WU K J, NIU Y T, ZHANG Y Y, et al. Continuous growth of carbon nanotube films: From controllable synthesis to real applications[J]. Composites Part A: Applied Science and Manufacturing, 2021, 144: 106359.
18
]
,其纯碳成分和自支撑结构使得该材料具备优越的耐高低温和耐酸碱环境特性。CNT–film的优异功能和微观多孔结构使之成为电热复合材料的理想选择,广泛应用于航天器局部加热、飞机电热除冰、仪表盘加热等领域[   LU W B, ZU M, BYUN J H, et al. State of the art of carbon nanotube fibers: Opportunities and challenges[J]. Advanced Materials, 2012, 24(14): 1805–1833.
19
]
。然而,在实际应用中,由于铆钉连接、仪表按键等功能要求,包括CNT–film在内的面状加热体内部常出现孔洞,单一孔洞可能对整体面状加热均匀性造成负面影响,导致局部过热,从而影响整体加热效果,甚至导致树脂基复合材料的局部失效[   CAMINERO M A, LOPEZ-PEDROSA M, PINNA C, et al. Damage monitoring and analysis of composite laminates with an open hole and adhesively bonded repairs using digital image correlation[J]. Composites Part B: Engineering, 2013, 53: 76–91.
20
]
。此外,现有商业化CNT–film常采用浮动催化剂化学气相沉积(FCCVD)法进行制备,方阻通常小于10 Ω/□,且由于收集碳纳米管时的明显随机性,导致产物出现明显的各向异性,其电阻可控范围有限,不利于加热元件的设计[   HUANG Y F, YANG K, GAO J, et al. Study on the law and mechanism of anisotropic conductivity of carbon nanotubes film prepared by floating catalytic chemical vapor deposition method[J]. Journal of Materials Research and Technology, 2023, 26: 3571–3585.
21
]

基于CNT–film在电致加热领域面临的上述问题,本文通过对CNT–film进行网格化处理,利用仿真模拟系统分析了网格形状、电流与CNT–film取向方向关系、网格间距和圆角半径对电热元件温度分布的影响。基于仿真结果,选择了具有最佳温度均匀性的参数组合,通过试验验证了网格化方案的准确性和可行性。

1     仿真与试验过程

1.1     网格化CNT–film电热仿真方案设计

选取CNT–film为研究对象,通过SolidWorks建立三维模型,利用COMSOL Multiphysics 6.1进行有限元分析。在三维仿真模型中,CNT–film模型的长度和宽度分别为290 m和205 mm,厚度为0.005 mm,将CNT–film模型与左右两端电极构成联合体,电极材料选择铜。表1列出了有限元分析的材料属性,其中CNT–film的属性参数均为试验样品的实际测试值。

表1     有限元仿真材料属性设置
Table 1     Settings of material properties in finite element simulation
材料 密度ρ/(kg/m3 相对介电常数εr 电导率σ/(S/m) 恒压热容Cp/(J/(kg·K)) 热导率λ/(W/(m·K))
8960 1 5.98×107 385 400
CNT–film 575 3 6×104(取向方向) 850 87(长度方向)
4×104(垂直取向方向) 87(宽度方向)
104(厚度方向) 2(厚度方向)

在有限元分析中,采用“电–磁–热”多物理场,通过电热耦合进行分析。设置左右两端电压为25 V,环境温度为25 ℃。热通量类型为对流热通量,传热方式为水平平板上侧外部自然对流,流体介质为空气,外部气压为1.0133×105 Pa,仿真特征长度计算式如下。

l=SC
(1)

式中,l为特征长度;S为模型表面积;C为模型周长。

完成参数设置后进行稳态有限元仿真,获得电热元件模型的电流密度及达到稳态时的温度分布,通过结果的对比分析,讨论各变量对网格化CNT–film电热温度均匀性的影响规律。

1.2     网格化CNT–film电热效果试验验证方案

基于仿真结果,采用优化的网格切割方案,以验证CNT–film的电热效果。试验所用CNT–film由北京碳垣新材料科技有限公司提供,采用FCCVD法制得,形貌如图1所示[   HUANG Y F, YANG K, GAO J, et al. Study on the law and mechanism of anisotropic conductivity of carbon nanotubes film prepared by floating catalytic chemical vapor deposition method[J]. Journal of Materials Research and Technology, 2023, 26: 3571–3585.
21
]

图1     CNT–film的形貌[   HUANG Y F, YANG K, GAO J, et al. Study on the law and mechanism of anisotropic conductivity of carbon nanotubes film prepared by floating catalytic chemical vapor deposition method[J]. Journal of Materials Research and Technology, 2023, 26: 3571–3585.
21
]
Fig.1     Morphology of CNT–film[   HUANG Y F, YANG K, GAO J, et al. Study on the law and mechanism of anisotropic conductivity of carbon nanotubes film prepared by floating catalytic chemical vapor deposition method[J]. Journal of Materials Research and Technology, 2023, 26: 3571–3585.
21
]

试验验证步骤如图2所示。首先,通过激光切割技术加工CNT–film预设网格结构;随后,利用导电银漆将铜箔电极黏附于网格化CNT–film的两端,减少铜箔与薄膜之间的接触电阻;最后,将两端铜箔电极与可调直流(DC)电源的正负极连接,调节至设定电压,利用远红外热成像仪(FLIR E54)监测并记录CNT–film的温度分布情况,记录同一通路单元的4个顶点区域及交叉中心位置的五点温度。

图2     网格状CNT–film的制备和电热试验流程图
Fig.2     Flowchart of preparation and electrothermal experiment of meshed CNT–film

2     仿真结果及分析

2.1     网格形状对CNT–film温度分布的影响

图3分别展示了正六边形、正方形和菱形网格CNT–film的电热仿真结果。图3(a)为正六边形网格结构,网格呈行间交错分布;网格斜向通路的电流密度较低,而水平通路电流密度较高(图3(b)),这种差异主要归因于电流的宏观流动趋势,由于左右存在电势差,相邻斜向通路电流会汇聚到水平通路,导致水平通路电流密度较大;图3(c)表明,温度与电流密度之间为正相关关系,水平通路温度高于斜向通路。

注:温度单位为℃,电流密度单位为A/m2图579同此。
图3     网格形状对CNT–film电热温度分布的影响
Fig.3     Influence of mesh shape on distribution of electrothermal temperature of CNT–film

正方形网格上下顶点区域的电流密度较大(图3(e)),产生该现象的原因是电流的尖端效应,而尖端效应的本质源于导体尖端的几何形态[   WANG C P, YU X, ZHANG Y J, et al. Tip effect of a micro-needle in a diamond-coating external field[J]. Surface and Coatings Technology, 2019, 359: 239–246.
  CHEN Y J, DAI H C, WANG W, et al. Needleless electrospinning method based on tip effect of conductor[J]. Chemical Journal of Chinese Universities, 2017, 38(6): 975–981.
22-23
]
。根据电场分布规律,电场强度E与导体表面曲率半径r′成反比。导体尖端越尖锐,曲率半径越小,电荷越集中,电场强度越大。电流轨迹曲率在接近上下顶点区域时逐渐增大,因此该区域电流密度偏大;斜向通路的电流轨迹平缓,曲率较小,电流密度相对均匀。从图3(f)可以看出,正方形网格结构的整体温度分布较为均匀,区域温差较小。

图3(h)可以看出,菱形网格上下顶点区域的电流轨迹曲率较大,尖端效应更加明显,该区域电场强度高于左右顶点区域。因此上下顶点区域的电流密度较高,通路单元局部温差大,如图3(i)所示。

分别选择网格交叉区域4个顶点和中心点温度,如图3(c)、(f)和(i)的局部放大图所示,根据式(2)计算不同形状网格通路单元的温度方差σ2,即

σ2=15i=15(TiT¯)2
(2)

式中,Ti为各点温度;T¯为温度平均值。

计算结果如图4所示,可以看出,正方形网格模型的温度方差最小,表明该网格模型的温度分布更均匀。因此选用正方形网格为基础进行进一步优化,以提升整体结构的温度分布均匀性。

图4     不同网格模型的温度分布方差
Fig.4     Variances of temperature distributions of different meshing models

2.2     取向方向对CNT–film温度分布的影响

使用FCCVD法制备的CNT–film具有明显的取向性,取向方向的电导率高于垂直取向方向的电导率[   CHEN J H, LEKAWA-RAUS A, TREVARTHEN J, et al. Carbon nanotube films spun from a gas phase reactor for manufacturing carbon nanotube film/carbon fibre epoxy hybrid composites for electrical applications[J]. Carbon, 2020, 158: 282–290.
24
]
。本文所用CNT–film取向方向和垂直取向方向的电导率分别为6×104 S/m和4×104 S/m(表1)。因此,分别针对电流沿取向方向和垂直取向方向的CNT–film进行电热仿真,探究电流方向对CNT–film电热温度分布均匀性的影响,结果如图5所示。

图5     电流方向对CNT–film电热温度分布的影响
Fig.5     Influence of current direction on distribution of electrothermal temperature of CNT–film

当CNT–film的电流方向与取向方向相同(图5(a))时,由于CNT–film在取向方向上具有更高的电导率,电流通过斜向通路后沿最短路径向右流动,大量电荷在上下顶点区域汇聚,导致该区域电流密度较大,而交叉区域电流密度相对较低,如图5(b)所示。表明取向性显著影响CNT–film中的电流分布,促使电流沿更优通路流动,在通路单元内产生电流密度和温度差异。

当CNT–film的电流方向垂直于取向方向时,电流密度整体更均匀。由于取向方向的电导率高,电流在交叉区域沿取向方向的流动性得到增强,电荷在上下顶点区域的汇聚效果减弱,从而使整体电流密度和温度分布更加均匀,如图5(e)图5(f)所示。

基于图5(c)和(f)局部放大图中所示的五点温度,通过式(2)计算不同取向方向的温度分布方差σ2,结果如图6所示。可以看出,电流方向沿垂直取向方向的CNT–film温度分布方差更小,即温度分布的均匀性更好。

图6     不同电流方向的温度分布方差
Fig.6     Variances of temperature distributions in different current directions

2.3     网格间距对CNT–film温度分布的影响

网格间距d是影响温度分布均匀性的关键因素。本研究选择的正方形网格边长为10 mm,当d>10 mm时,相邻两行网格之间将形成贯穿左右的直线路径,此时电流主要沿直线路径流动而不通过斜向通路,因此温度分布均匀性差;而当d<5 mm时,网格加工难度会因CNT–film的本征柔性而提升。因此,本研究兼顾实用性和结构合理性,选择d=5/7.5/10 mm的网格结构进行仿真分析,结果如图7所示。

图7     网格间距对CNT–film电热温度分布的影响
Fig.7     Influence of mesh spacing on distribution of electrothermal temperature of CNT–film

图7(d)、(g)和(j)可以看出,电流流动轨迹曲率自上下顶点位置处由内向外逐渐减小。随着d的增大,通路单元的电流流动轨迹曲率变化明显,电流密度分布差异更大,导致整体温差较大,如图7(e)、(h)和(k)所示,可以看出,网格间距d=5 mm时,CNT–film的温度分布均匀性较好。

基于图7所示的五点温度及式(2)计算不同网格间距下的温度方差,结果如图8所示。可以看出,网格间距越大,通路单元的温度方差越大。因此,本研究选定网格间距d=5 mm。

图8     不同网格间距温度分布方差
Fig.8     Variances of temperature distributions at different mesh spacings

2.4     网格圆角半径对CNT–film温度分布的影响

网格圆角半径r也会对CNT–film的温度均匀性产生影响,设置的网格圆角能够减少因电场强度过高而在网格顶点区域产生的尖端效应,改善CNT–film的电子传输特性,并能够避免CNT–film在网格顶点区域产生的局部过热损伤。本研究选择边长为10 mm的正方形网格,间距d=5 mm,分别取r=0.5/1/2/3 mm的网格结构进行仿真分析,图9为CNT–film网格圆角设计及其仿真结果。

图9     网格圆角半径对CNT–film电热温度分布的影响
Fig.9     Influence of mesh fillet radius on electrothermal temperature distribution of CNT–film

图9可以看出,当r<1 mm时,上下顶点区域的电流密度较大。这是由于较小的圆角半径使网格相邻两边夹角近似直角,导致电流流动轨迹的曲率较大,产生明显的尖端效应,上下顶点区域电场强度较大,电流在该区域聚集(图9(b)),因此上下顶点与交叉区域的温差也较大(图9(c))。当r>1 mm,上下顶点区域会形成近似长度方向的局部直线通路,改变薄膜的局部电流流向,进而影响温度分布。这种设计导致上下顶点与交叉区域之间的温差在r>1 mm时随r的增大而增大,如图9(i)和(l)所示。综合而言,r=1 mm时的网格结构温度分布均匀性最优,温度分布方差计算结果(图10)也进一步证实了这一结论。

图10     不同网格圆角半径温度分布方差
Fig.10     Variances of temperature distributions at different mesh fillet radii

3     CNT–film电热试验验证

根据各影响因素的仿真结果可知,网格形状正方形、电流方向垂直于取向方向、r=1 mm和d=5 mm的CNT–film结构表现出最佳的温度分布效果。在上述优化参数下进行CNT–film电热试验,实际测试环境如图11(a)所示,在网格化处理后的CNT–film两端粘接铜电极,放置于绝缘云母板表面,试验过程中云母板处于悬空状态,使用三脚架将热成像仪固定于加热元件上方,通电后利用热成像仪检测加热元件的温度变化。制备的实际网格化CNT–film样件如图11(b)所示,其热成像结果如图11(c)所示。可以看出,优化参数条件下的CNT–film网格结构表现出非常好的温度分布均匀性,与图9(f)中的仿真结果基本一致。与之相比,原始状态(未进行网格化处理)CNT–film的温度分布均匀性较差(图11(d)),存在局部温度过高的现象,这与FCCVD法制备的CNT–film面内导电性能的差异性有关,面内性能均匀性差是目前CNT–film材料面临的一个主要问题。此外,试验中选择的CNT–film在进行网格化处理前的电阻为3.1 Ω,处理后电阻增至10.3 Ω,提高了232.3%,证实网格化处理可为CNT–film加热元件的设计提供更大的拓展空间。

图11     电热试验验证及结果
Fig.11     Electrothermal experimental verification and results

4     结论

本研究通过系统仿真,探究了网格化处理对碳纳米管薄膜(CNT–film)电热性能,尤其是温度分布均匀性的影响规律。综合对比了网格形状、电流与CNT–film取向方向关系、网格间距、网格圆角半径对CNT–film电热元件温度分布的影响。结果表明,在网格形状为边长l=10 mm正方形,电流方向为垂直于取向方向,网格间距d=5 mm和网格圆角半径r=1 mm的条件下,CNT–film表现出最佳的温度分布效果。该工艺参数条件下的试验结果与仿真结果几乎一致,验证了仿真优化参数的有效性;同时,与未经网格化处理的原始CNT–film电热元件对比,网格化处理后其电致加热温度分布均匀性显著提升。

总体而言,网格化处理一方面能够改善CNT–film因表面电性能均匀性不足而导致的电热效果差、局部温度过高的实际问题,另一方面,网格化处理能够提高CNT–film电热元件的整体电阻,解决传统CNT–film表面电阻低、可设计性差、适用性不足的技术问题,有望为电动汽车电池热管理、飞机局部防/除冰、航天器热保护等方面的应用提供一种新的解决方案。

参考文献

[1]

KHAN A, YAQUB S, ALI M, et al. A state-of-the-art review on heating and cooling of lithium-ion batteries for electric vehicles[J]. Journal of Energy Storage, 2024, 76: 109852.

[2]

ZHANG Y N, WEI J, LIU C, et al. Reduced graphene oxide modified Ti/CFRP structure-function integrated laminates for surface Joule heating and deicing[J]. Composites Part A: Applied Science and Manufacturing, 2023, 166: 107377.

[3]

BELL L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems[J]. Science, 2008, 321(5895): 14571461.

[4]

SHI L, GE R Q, TAN N C, et al. Non-contact heating methods of carbon fiber thermoplastic composites based on Joule thermal properties: Optimization and validation[J]. Carbon, 2024, 219: 118830.

[5]

HONG S, LEE H, LEE J, et al. Highly stretchable and transparent metal nanowire heater for wearable electronics applications[J]. Advanced Materials, 2015, 27(32): 47444751.

[6]

JANUSZKIEWICZ K T. Numerical model of the heating-up system with heating rods[J]. Advances in Engineering Software, 1999, 30(2): 141145.

[7]

ZHU Z, LU H, ZHAO W J, et al. Materials, performances and applications of electric heating films[J]. Renewable and Sustainable Energy Reviews, 2023, 184: 113540.

[8]

LI R Y, ZHANG L B, SHI L, et al. MXene Ti3C2: An effective 2D light-to-heat conversion material[J]. ACS Nano, 2017, 11(4): 37523759.

[9]

ZHONG Y D, TANG W, ZHANG C, et al. Programmable thermochromic soft actuators with “two dimensional” bilayer architectures for soft robotics[J]. Nano Energy, 2022, 102: 107741.

[10]

KOSTARAS C, PAVLOU C, KOUTROUMANIS N, et al. Rapid resistive heating in graphene/carbon nanotube hybrid films for de-icing applications[J]. ACS Applied Nano Materials, 2023, 6(7): 51555167.

[11]

CHENG X, CAI J, LIU P, et al. Multifunctional flexible MXene/AgNW composite thin film with ultrahigh conductivity enabled by a sandwich-structured assembly strategy[J]. Small, 2024, 20(3): 2304327.

[12]

HU P Y, LYU J, FU C, et al. Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films[J]. ACS Nano, 2020, 14(1): 688697.

[13]

JIA P F, ZHU Y L, LU J Y, et al. Multifunctional fireproof electromagnetic shielding polyurethane films with thermal management performance[J]. Chemical Engineering Journal, 2022, 439: 135673.

[14]

LI D Q, TANG B, LU X, et al. Hierarchically carbonized silk/ceramic composites for electro-thermal conversion[J]. Composites Part A: Applied Science and Manufacturing, 2021, 141: 106237.

[15]

ABOLHASANI A, PACHENARI A, MOHAMMAD RAZAVIAN S, et al. Towards new generation of electrode-free conductive cement composites utilizing nano carbon black[J]. Construction and Building Materials, 2022, 323: 126576.

[16]

杨阔, 潘宝宇, 李小龙, . CNT薄膜电热原位共固化复合材料板的温度均匀性研究[J]. 固体火箭技术, 2024, 47(2): 237245.
YANG Kuo, PAN Baoyu, LI Xiaolong, et al. Temperature uniformity study of electrothermal in situ co-curing of composite plate with CNT film[J]. Journal of Solid Rocket Technology, 2024, 47(2): 237245.

[17]

XIAO Z, SHENG C J, XIA Y, et al. Electrical heating behavior of flexible thermoplastic polyurethane/Super-P nanoparticle composite films for advanced wearable heaters[J]. Journal of Industrial and Engineering Chemistry, 2019, 71: 293300.

[18]

WU K J, NIU Y T, ZHANG Y Y, et al. Continuous growth of carbon nanotube films: From controllable synthesis to real applications[J]. Composites Part A: Applied Science and Manufacturing, 2021, 144: 106359.

[19]

LU W B, ZU M, BYUN J H, et al. State of the art of carbon nanotube fibers: Opportunities and challenges[J]. Advanced Materials, 2012, 24(14): 18051833.

[20]

CAMINERO M A, LOPEZ-PEDROSA M, PINNA C, et al. Damage monitoring and analysis of composite laminates with an open hole and adhesively bonded repairs using digital image correlation[J]. Composites Part B: Engineering, 2013, 53: 7691.

[21]

HUANG Y F, YANG K, GAO J, et al. Study on the law and mechanism of anisotropic conductivity of carbon nanotubes film prepared by floating catalytic chemical vapor deposition method[J]. Journal of Materials Research and Technology, 2023, 26: 35713585.

[22]

WANG C P, YU X, ZHANG Y J, et al. Tip effect of a micro-needle in a diamond-coating external field[J]. Surface and Coatings Technology, 2019, 359: 239246.

[23]

CHEN Y J, DAI H C, WANG W, et al. Needleless electrospinning method based on tip effect of conductor[J]. Chemical Journal of Chinese Universities, 2017, 38(6): 975981.

[24]

CHEN J H, LEKAWA-RAUS A, TREVARTHEN J, et al. Carbon nanotube films spun from a gas phase reactor for manufacturing carbon nanotube film/carbon fibre epoxy hybrid composites for electrical applications[J]. Carbon, 2020, 158: 282290.

目录