柔性传感器在复合材料结构健康监测中的应用:进展、挑战与展望

中图分类号:

V2

文献标识码:

A

编辑

责编 :晓月

引文格式

邢飞, 李皓鹏, 李文倩, 等. 柔性传感器在复合材料结构健康监测中的应用:进展、挑战与展望[J]. 航空制造技术, 2025, 68(21): 62–75.

Flexible Sensors for Structural Health Monitoring of Composites: Advances, Challenges, and Perspectives

Citations

XING Fei, LI Haopeng, LI Wenqian, et al. Flexible sensors for structural health monitoring of composites: advances, challenges, and perspectives[J]. Aeronautical Manufacturing Technology, 2025, 68(21): 62–75.

航空制造技术    第68卷    第21期    62-75
Aeronautical Manufacturing Techinology    Vol.68    No.21 : 62-75
DOI: 10.16080/j.issn1671-833x.2025.21.062
论坛 >> 航空航天结构健康监测(FORUM >> Aerospace Structural Health Monitoring)

柔性传感器在复合材料结构健康监测中的应用:进展、挑战与展望

  • 邢飞 1
  • 李皓鹏 1
  • 李文倩 1
  • 许丽丽 1
  • 邱泉水 1
  • 张浩鹏 2
1.北京空间机电研究所北京 100076
2.北京航天合众科技发展有限公司北京 102600

中图分类号:

V2

文献标识码:

A

引文格式

邢飞, 李皓鹏, 李文倩, 等. 柔性传感器在复合材料结构健康监测中的应用:进展、挑战与展望[J]. 航空制造技术, 2025, 68(21): 62–75.

摘要

树脂基复合材料在航空航天等领域的众多典型承力结构、非承力结构中广泛应用,在结构功能一体化背景下,传统离线监测手段已无法满足复合材料智能化的需求。随着复合材料的结构健康监测(Structural health monitoring,SHM)不断发展,以碳纳米管、石墨烯和MXene等导电粒子为传感单元的柔性传感器为复合材料的损伤早期识别、服役状态预警和智能诊断开辟了新思路。本文主要针对柔性传感器的结构健康监测技术进行系统综述,重点介绍柔性传感器的设计思路、关键技术、机理机制和应用进展,并对其未来在航空航天领域的应用进行了展望。

关键词

柔性传感器;结构健康监测;碳纳米管;石墨烯;MXene;

Flexible Sensors for Structural Health Monitoring of Composites: Advances, Challenges, and Perspectives

  • XING Fei 1
  • LI Haopeng 1
  • LI Wenqian 1
  • XU Lili 1
  • QIU Quanshui 1
  • ZHANG Haopeng 2
1.Beijing Institute of Space Mechanics and Electricity, Beijing 100076, China
2.Beijing Aerospace Hezhong Science and Technology Co. Ltd., Beijing 102600, China

Citations

XING Fei, LI Haopeng, LI Wenqian, et al. Flexible sensors for structural health monitoring of composites: advances, challenges, and perspectives[J]. Aeronautical Manufacturing Technology, 2025, 68(21): 62–75.

Abstract

Resin matrix composites are widely utilized in a variety of typical load-bearing and non-load-bearing constructions in fields such as aeronautics and aerospace. With structural and functional integration, traditional off-line monitoring approaches can no longer match composites’ sophisticated expectations. With the ongoing development of structural health monitoring (SHM) of composite materials, flexible sensors primarily composed of conductive particles such as carbon nanotubes, graphene, and MXene have opened up new possibilities for early damage detection, early warning of service status, and intelligent diagnosis of composite materials. This paper primarily undertakes a systematic evaluation of the structural health monitoring technology of flexible sensors, focusing on introducing the design ideas, essential technologies, mechanism mechanisms, and application advancements of flexible sensors, and looking ahead to their future applications.

Keywords

Flexible sensors; Structural health monitoring (SHM); Carbon nanotubes; Graphene; MXene;



近年来,复合材料因其质轻高强及可设计性强等优势,在航空、航天、航海、船舶等领域实现革命性应用突破,例如,波音787和空客A350的碳纤维复合材料用量超过50%;国产大飞机C919复合材料占比达12%。然而,复合材料内部存在复杂的非线性和分散性因素,其损伤部位隐蔽且情况复杂,使预测失效模式变得困难同时会减少使用寿命,导致传统无损检测技术难以满足在轨实时监测需求[   IRFAN M S, KHAN T, HUSSAIN T, et al. Carbon coated piezoresistive fiber sensors: From process monitoring to structural health monitoring of composites–A review[J]. Composites Part A: Applied Science and Manufacturing, 2021, 141: 106236.
1
]
。只有实时监测结构响应、收集状态信息、评估运行情况、判断损伤和剩余寿命,才可以确保飞行器等结构的安全稳定运行。结构健康监测(Structural health monitoring,SHM)技术通过嵌入传感网络,为复合材料结构的损伤诊断与寿命预测提供创新方案[   蒋孝伟, 章文瑾, 刘玲. 复合材料结构健康监测中机器学习方法研究进展[J]. 航空制造技术, 2024, 67(13): 30–40.JIANG Xiaowei, ZHANG Wenjin, LIU Ling. Research progress on machine learning methods in structural health monitoring of composite materials[J]. Aeronautical Manufacturing Technology, 2024, 67(13): 30–40.
  田童, 李建乐, 邓德双, 等. 飞行器结构健康监测技术研究进展[J]. 航空制造技术, 2024, 67(13): 41–67, 98.TIAN Tong, LI Jianle, DENG Deshuang, et al. Research progress of structural health monitoring technology for aircraft[J]. Aeronautical Manufacturing Technology, 2024, 67(13): 41–67, 98.
2-3
]
,为下一代空天装备的高可靠服役奠定理论基础与技术储备。

结构健康监测技术体系中,光纤传感器[   田童, 李建乐, 邓德双, 等. 飞行器结构健康监测技术研究进展[J]. 航空制造技术, 2024, 67(13): 41–67, 98.TIAN Tong, LI Jianle, DENG Deshuang, et al. Research progress of structural health monitoring technology for aircraft[J]. Aeronautical Manufacturing Technology, 2024, 67(13): 41–67, 98.
  冯振辉, 王哲, 曾捷, 等. 复合材料层板光纤冲击判位与载荷历程重构方法[J]. 复合材料科学与工程, 2024(9): 52–56, 112.FENG Zhenhui, WANG Zhe, ZENG Jie, et al. A method for optical fiber impact localization and load history reconstruction of composite laminates[J]. Composites Science and Engineering, 2024(9): 52–56, 112.
3-4
]
、超声波检测[   ZANG X L, XU Z D, LU H F, et al. Ultrasonic guided wave techniques and applications in pipeline defect detection: A review[J]. International Journal of Pressure Vessels and Piping, 2023, 206: 105033.
5
]
、声发射监测[   李银波, 杨建, 邢保英, 等. 基于声发射的铝合金薄板自冲铆成形过程分析[J]. 塑性工程学报, 2025, 32(5): 52–59.LI Yinbo, YANG Jian, XING Baoying, et al. Analysis of self-piercing riveting forming process for aluminum alloy sheets based on acoustic emission[J]. Journal of Plasticity Engineering, 2025, 32(5): 52–59.
6
]
及柔性传感器[   汪玉, 邱雷, 黄永安. 面向飞行器结构健康监测智能蒙皮的柔性传感器网络综述[J]. 航空制造技术, 2020, 63(15): 60–69, 80.WANG Yu, QIU Lei, HUANG Yongan. Review of flexible sensor networks for structural health monitoring of aircraft smart skin[J]. Aeronautical Manufacturing Technology, 2020, 63(15): 60–69, 80.
  刘志文, 崔旭, 徐礼胜, 等. 聚合物基石墨烯复合材料在柔性传感器领域的研究进展[J]. 航空制造技术, 2019, 62(15): 78–87, 92.LIU Zhiwen, CUI Xu, XU Lisheng, et al. Progress in application of graphene conductive composites in flexible sensors[J]. Aeronautical Manufacturing Technology, 2019, 62(15): 78–87, 92.
7-8
]
为当前主流技术。4类技术因作用机理差异被应用在不同的场景中,柔性传感器依托纳米材料的电阻/电容/压电效应,通过物理信号转化电信号变化感知材料形变或裂纹;光纤传感技术依赖光栅反射波长实现对应变/温度扰动的响应;超声波技术通过发射/接收高频声波捕获材料内部缺陷的反射/透射信号;声发射技术则通过捕捉材料损伤时释放的高频弹性波实现动态监测[   杜厚义, 赫玉欣, 黄烈然, 等. 具有结构健康监测功能的纤维增强聚合物基复合材料的研究现状[J]. 化工新型材料, 2025, 53(1): 9–14.DU Houyi, HE Yuxin, HUANG Lieran, et al. Research status of fiber-reinforced polymer-based composites with structural health monitoring function[J]. New Chemical Materials, 2025, 53(1): 9–14.
  王国珍, 黄克瑶, 朱妍焘. 结构健康监测技术研究及其在航空航天领域中的应用[J]. 科技资讯, 2022, 20(14): 56–58.WANG Guozhen, HUANG Keyao, ZHU Yantao. Research on structural health monitoring technology and its application in aerospace field[J]. Science & Technology Information, 2022, 20(14): 56–58.
  刘青旭, 陈海峰, ANTON B, 等. 航天复合材料结构健康监测技术应用进展[J]. 复合材料学报, 2024, 41(9): 4563–4588.LIU Qingxu, CHEN Haifeng, ANTON B, et al. Progress in application on health monitoring technology for aerospace composite structures[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4563–4588.
9-11
]
。如表1所示[   田童, 李建乐, 邓德双, 等. 飞行器结构健康监测技术研究进展[J]. 航空制造技术, 2024, 67(13): 41–67, 98.TIAN Tong, LI Jianle, DENG Deshuang, et al. Research progress of structural health monitoring technology for aircraft[J]. Aeronautical Manufacturing Technology, 2024, 67(13): 41–67, 98.
  冯振辉, 王哲, 曾捷, 等. 复合材料层板光纤冲击判位与载荷历程重构方法[J]. 复合材料科学与工程, 2024(9): 52–56, 112.FENG Zhenhui, WANG Zhe, ZENG Jie, et al. A method for optical fiber impact localization and load history reconstruction of composite laminates[J]. Composites Science and Engineering, 2024(9): 52–56, 112.
  ZANG X L, XU Z D, LU H F, et al. Ultrasonic guided wave techniques and applications in pipeline defect detection: A review[J]. International Journal of Pressure Vessels and Piping, 2023, 206: 105033.
  李银波, 杨建, 邢保英, 等. 基于声发射的铝合金薄板自冲铆成形过程分析[J]. 塑性工程学报, 2025, 32(5): 52–59.LI Yinbo, YANG Jian, XING Baoying, et al. Analysis of self-piercing riveting forming process for aluminum alloy sheets based on acoustic emission[J]. Journal of Plasticity Engineering, 2025, 32(5): 52–59.
  汪玉, 邱雷, 黄永安. 面向飞行器结构健康监测智能蒙皮的柔性传感器网络综述[J]. 航空制造技术, 2020, 63(15): 60–69, 80.WANG Yu, QIU Lei, HUANG Yongan. Review of flexible sensor networks for structural health monitoring of aircraft smart skin[J]. Aeronautical Manufacturing Technology, 2020, 63(15): 60–69, 80.
  刘志文, 崔旭, 徐礼胜, 等. 聚合物基石墨烯复合材料在柔性传感器领域的研究进展[J]. 航空制造技术, 2019, 62(15): 78–87, 92.LIU Zhiwen, CUI Xu, XU Lisheng, et al. Progress in application of graphene conductive composites in flexible sensors[J]. Aeronautical Manufacturing Technology, 2019, 62(15): 78–87, 92.
  杜厚义, 赫玉欣, 黄烈然, 等. 具有结构健康监测功能的纤维增强聚合物基复合材料的研究现状[J]. 化工新型材料, 2025, 53(1): 9–14.DU Houyi, HE Yuxin, HUANG Lieran, et al. Research status of fiber-reinforced polymer-based composites with structural health monitoring function[J]. New Chemical Materials, 2025, 53(1): 9–14.
  王国珍, 黄克瑶, 朱妍焘. 结构健康监测技术研究及其在航空航天领域中的应用[J]. 科技资讯, 2022, 20(14): 56–58.WANG Guozhen, HUANG Keyao, ZHU Yantao. Research on structural health monitoring technology and its application in aerospace field[J]. Science & Technology Information, 2022, 20(14): 56–58.
  刘青旭, 陈海峰, ANTON B, 等. 航天复合材料结构健康监测技术应用进展[J]. 复合材料学报, 2024, 41(9): 4563–4588.LIU Qingxu, CHEN Haifeng, ANTON B, et al. Progress in application on health monitoring technology for aerospace composite structures[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4563–4588.
3-11
]
,柔性传感器在灵敏度、形态适配性及监测范围方面较传统技术具有突出优势,其高柔顺特性和高可设计性可满足复杂曲面结构和大面积监测需求,相关技术研究成果近年呈现显著增长趋势。

表1     结构健康监测技术对比[   田童, 李建乐, 邓德双, 等. 飞行器结构健康监测技术研究进展[J]. 航空制造技术, 2024, 67(13): 41–67, 98.TIAN Tong, LI Jianle, DENG Deshuang, et al. Research progress of structural health monitoring technology for aircraft[J]. Aeronautical Manufacturing Technology, 2024, 67(13): 41–67, 98.
  冯振辉, 王哲, 曾捷, 等. 复合材料层板光纤冲击判位与载荷历程重构方法[J]. 复合材料科学与工程, 2024(9): 52–56, 112.FENG Zhenhui, WANG Zhe, ZENG Jie, et al. A method for optical fiber impact localization and load history reconstruction of composite laminates[J]. Composites Science and Engineering, 2024(9): 52–56, 112.
  ZANG X L, XU Z D, LU H F, et al. Ultrasonic guided wave techniques and applications in pipeline defect detection: A review[J]. International Journal of Pressure Vessels and Piping, 2023, 206: 105033.
  李银波, 杨建, 邢保英, 等. 基于声发射的铝合金薄板自冲铆成形过程分析[J]. 塑性工程学报, 2025, 32(5): 52–59.LI Yinbo, YANG Jian, XING Baoying, et al. Analysis of self-piercing riveting forming process for aluminum alloy sheets based on acoustic emission[J]. Journal of Plasticity Engineering, 2025, 32(5): 52–59.
  汪玉, 邱雷, 黄永安. 面向飞行器结构健康监测智能蒙皮的柔性传感器网络综述[J]. 航空制造技术, 2020, 63(15): 60–69, 80.WANG Yu, QIU Lei, HUANG Yongan. Review of flexible sensor networks for structural health monitoring of aircraft smart skin[J]. Aeronautical Manufacturing Technology, 2020, 63(15): 60–69, 80.
  刘志文, 崔旭, 徐礼胜, 等. 聚合物基石墨烯复合材料在柔性传感器领域的研究进展[J]. 航空制造技术, 2019, 62(15): 78–87, 92.LIU Zhiwen, CUI Xu, XU Lisheng, et al. Progress in application of graphene conductive composites in flexible sensors[J]. Aeronautical Manufacturing Technology, 2019, 62(15): 78–87, 92.
  杜厚义, 赫玉欣, 黄烈然, 等. 具有结构健康监测功能的纤维增强聚合物基复合材料的研究现状[J]. 化工新型材料, 2025, 53(1): 9–14.DU Houyi, HE Yuxin, HUANG Lieran, et al. Research status of fiber-reinforced polymer-based composites with structural health monitoring function[J]. New Chemical Materials, 2025, 53(1): 9–14.
  王国珍, 黄克瑶, 朱妍焘. 结构健康监测技术研究及其在航空航天领域中的应用[J]. 科技资讯, 2022, 20(14): 56–58.WANG Guozhen, HUANG Keyao, ZHU Yantao. Research on structural health monitoring technology and its application in aerospace field[J]. Science & Technology Information, 2022, 20(14): 56–58.
  刘青旭, 陈海峰, ANTON B, 等. 航天复合材料结构健康监测技术应用进展[J]. 复合材料学报, 2024, 41(9): 4563–4588.LIU Qingxu, CHEN Haifeng, ANTON B, et al. Progress in application on health monitoring technology for aerospace composite structures[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4563–4588.
3-11
]
Table 1     Comparison of structural health monitoring technologies[   田童, 李建乐, 邓德双, 等. 飞行器结构健康监测技术研究进展[J]. 航空制造技术, 2024, 67(13): 41–67, 98.TIAN Tong, LI Jianle, DENG Deshuang, et al. Research progress of structural health monitoring technology for aircraft[J]. Aeronautical Manufacturing Technology, 2024, 67(13): 41–67, 98.
  冯振辉, 王哲, 曾捷, 等. 复合材料层板光纤冲击判位与载荷历程重构方法[J]. 复合材料科学与工程, 2024(9): 52–56, 112.FENG Zhenhui, WANG Zhe, ZENG Jie, et al. A method for optical fiber impact localization and load history reconstruction of composite laminates[J]. Composites Science and Engineering, 2024(9): 52–56, 112.
  ZANG X L, XU Z D, LU H F, et al. Ultrasonic guided wave techniques and applications in pipeline defect detection: A review[J]. International Journal of Pressure Vessels and Piping, 2023, 206: 105033.
  李银波, 杨建, 邢保英, 等. 基于声发射的铝合金薄板自冲铆成形过程分析[J]. 塑性工程学报, 2025, 32(5): 52–59.LI Yinbo, YANG Jian, XING Baoying, et al. Analysis of self-piercing riveting forming process for aluminum alloy sheets based on acoustic emission[J]. Journal of Plasticity Engineering, 2025, 32(5): 52–59.
  汪玉, 邱雷, 黄永安. 面向飞行器结构健康监测智能蒙皮的柔性传感器网络综述[J]. 航空制造技术, 2020, 63(15): 60–69, 80.WANG Yu, QIU Lei, HUANG Yongan. Review of flexible sensor networks for structural health monitoring of aircraft smart skin[J]. Aeronautical Manufacturing Technology, 2020, 63(15): 60–69, 80.
  刘志文, 崔旭, 徐礼胜, 等. 聚合物基石墨烯复合材料在柔性传感器领域的研究进展[J]. 航空制造技术, 2019, 62(15): 78–87, 92.LIU Zhiwen, CUI Xu, XU Lisheng, et al. Progress in application of graphene conductive composites in flexible sensors[J]. Aeronautical Manufacturing Technology, 2019, 62(15): 78–87, 92.
  杜厚义, 赫玉欣, 黄烈然, 等. 具有结构健康监测功能的纤维增强聚合物基复合材料的研究现状[J]. 化工新型材料, 2025, 53(1): 9–14.DU Houyi, HE Yuxin, HUANG Lieran, et al. Research status of fiber-reinforced polymer-based composites with structural health monitoring function[J]. New Chemical Materials, 2025, 53(1): 9–14.
  王国珍, 黄克瑶, 朱妍焘. 结构健康监测技术研究及其在航空航天领域中的应用[J]. 科技资讯, 2022, 20(14): 56–58.WANG Guozhen, HUANG Keyao, ZHU Yantao. Research on structural health monitoring technology and its application in aerospace field[J]. Science & Technology Information, 2022, 20(14): 56–58.
  刘青旭, 陈海峰, ANTON B, 等. 航天复合材料结构健康监测技术应用进展[J]. 复合材料学报, 2024, 41(9): 4563–4588.LIU Qingxu, CHEN Haifeng, ANTON B, et al. Progress in application on health monitoring technology for aerospace composite structures[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4563–4588.
3-11
]
技术指标 柔性传感监测 光纤传感监测 超声监测 声发射监测
分辨率 分布式网络(亚mm级)[   汪玉, 邱雷, 黄永安. 面向飞行器结构健康监测智能蒙皮的柔性传感器网络综述[J]. 航空制造技术, 2020, 63(15): 60–69, 80.WANG Yu, QIU Lei, HUANG Yongan. Review of flexible sensor networks for structural health monitoring of aircraft smart skin[J]. Aeronautical Manufacturing Technology, 2020, 63(15): 60–69, 80.
  刘志文, 崔旭, 徐礼胜, 等. 聚合物基石墨烯复合材料在柔性传感器领域的研究进展[J]. 航空制造技术, 2019, 62(15): 78–87, 92.LIU Zhiwen, CUI Xu, XU Lisheng, et al. Progress in application of graphene conductive composites in flexible sensors[J]. Aeronautical Manufacturing Technology, 2019, 62(15): 78–87, 92.
7-8
]
离散点/线监测(需密集布设) 依赖探头密度(mm级)[   ZANG X L, XU Z D, LU H F, et al. Ultrasonic guided wave techniques and applications in pipeline defect detection: A review[J]. International Journal of Pressure Vessels and Piping, 2023, 206: 105033.
5
]
定位精度低(cm级)
安装方式 需胶黏剂固定或层间嵌入,柔性高,可设计性强 需胶黏剂固定或层间嵌入,存在应力集中风险 需耦合剂/固定探头,曲面适配差[   ZANG X L, XU Z D, LU H F, et al. Ultrasonic guided wave techniques and applications in pipeline defect detection: A review[J]. International Journal of Pressure Vessels and Piping, 2023, 206: 105033.
5
]
非接触式[   李银波, 杨建, 邢保英, 等. 基于声发射的铝合金薄板自冲铆成形过程分析[J]. 塑性工程学报, 2025, 32(5): 52–59.LI Yinbo, YANG Jian, XING Baoying, et al. Analysis of self-piercing riveting forming process for aluminum alloy sheets based on acoustic emission[J]. Journal of Plasticity Engineering, 2025, 32(5): 52–59.
6
]
监测内容 压力+应变+温度[   汪玉, 邱雷, 黄永安. 面向飞行器结构健康监测智能蒙皮的柔性传感器网络综述[J]. 航空制造技术, 2020, 63(15): 60–69, 80.WANG Yu, QIU Lei, HUANG Yongan. Review of flexible sensor networks for structural health monitoring of aircraft smart skin[J]. Aeronautical Manufacturing Technology, 2020, 63(15): 60–69, 80.
  刘志文, 崔旭, 徐礼胜, 等. 聚合物基石墨烯复合材料在柔性传感器领域的研究进展[J]. 航空制造技术, 2019, 62(15): 78–87, 92.LIU Zhiwen, CUI Xu, XU Lisheng, et al. Progress in application of graphene conductive composites in flexible sensors[J]. Aeronautical Manufacturing Technology, 2019, 62(15): 78–87, 92.
  杜厚义, 赫玉欣, 黄烈然, 等. 具有结构健康监测功能的纤维增强聚合物基复合材料的研究现状[J]. 化工新型材料, 2025, 53(1): 9–14.DU Houyi, HE Yuxin, HUANG Lieran, et al. Research status of fiber-reinforced polymer-based composites with structural health monitoring function[J]. New Chemical Materials, 2025, 53(1): 9–14.
  王国珍, 黄克瑶, 朱妍焘. 结构健康监测技术研究及其在航空航天领域中的应用[J]. 科技资讯, 2022, 20(14): 56–58.WANG Guozhen, HUANG Keyao, ZHU Yantao. Research on structural health monitoring technology and its application in aerospace field[J]. Science & Technology Information, 2022, 20(14): 56–58.
  刘青旭, 陈海峰, ANTON B, 等. 航天复合材料结构健康监测技术应用进展[J]. 复合材料学报, 2024, 41(9): 4563–4588.LIU Qingxu, CHEN Haifeng, ANTON B, et al. Progress in application on health monitoring technology for aerospace composite structures[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4563–4588.
7-11
]
应变+温度[   田童, 李建乐, 邓德双, 等. 飞行器结构健康监测技术研究进展[J]. 航空制造技术, 2024, 67(13): 41–67, 98.TIAN Tong, LI Jianle, DENG Deshuang, et al. Research progress of structural health monitoring technology for aircraft[J]. Aeronautical Manufacturing Technology, 2024, 67(13): 41–67, 98.
  冯振辉, 王哲, 曾捷, 等. 复合材料层板光纤冲击判位与载荷历程重构方法[J]. 复合材料科学与工程, 2024(9): 52–56, 112.FENG Zhenhui, WANG Zhe, ZENG Jie, et al. A method for optical fiber impact localization and load history reconstruction of composite laminates[J]. Composites Science and Engineering, 2024(9): 52–56, 112.
3-4
,   杜厚义, 赫玉欣, 黄烈然, 等. 具有结构健康监测功能的纤维增强聚合物基复合材料的研究现状[J]. 化工新型材料, 2025, 53(1): 9–14.DU Houyi, HE Yuxin, HUANG Lieran, et al. Research status of fiber-reinforced polymer-based composites with structural health monitoring function[J]. New Chemical Materials, 2025, 53(1): 9–14.
  王国珍, 黄克瑶, 朱妍焘. 结构健康监测技术研究及其在航空航天领域中的应用[J]. 科技资讯, 2022, 20(14): 56–58.WANG Guozhen, HUANG Keyao, ZHU Yantao. Research on structural health monitoring technology and its application in aerospace field[J]. Science & Technology Information, 2022, 20(14): 56–58.
  刘青旭, 陈海峰, ANTON B, 等. 航天复合材料结构健康监测技术应用进展[J]. 复合材料学报, 2024, 41(9): 4563–4588.LIU Qingxu, CHEN Haifeng, ANTON B, et al. Progress in application on health monitoring technology for aerospace composite structures[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4563–4588.
9-11
]
内部缺陷[   ZANG X L, XU Z D, LU H F, et al. Ultrasonic guided wave techniques and applications in pipeline defect detection: A review[J]. International Journal of Pressure Vessels and Piping, 2023, 206: 105033.
5
,   杜厚义, 赫玉欣, 黄烈然, 等. 具有结构健康监测功能的纤维增强聚合物基复合材料的研究现状[J]. 化工新型材料, 2025, 53(1): 9–14.DU Houyi, HE Yuxin, HUANG Lieran, et al. Research status of fiber-reinforced polymer-based composites with structural health monitoring function[J]. New Chemical Materials, 2025, 53(1): 9–14.
  王国珍, 黄克瑶, 朱妍焘. 结构健康监测技术研究及其在航空航天领域中的应用[J]. 科技资讯, 2022, 20(14): 56–58.WANG Guozhen, HUANG Keyao, ZHU Yantao. Research on structural health monitoring technology and its application in aerospace field[J]. Science & Technology Information, 2022, 20(14): 56–58.
  刘青旭, 陈海峰, ANTON B, 等. 航天复合材料结构健康监测技术应用进展[J]. 复合材料学报, 2024, 41(9): 4563–4588.LIU Qingxu, CHEN Haifeng, ANTON B, et al. Progress in application on health monitoring technology for aerospace composite structures[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4563–4588.
9-11
]
动态损伤事件[   李银波, 杨建, 邢保英, 等. 基于声发射的铝合金薄板自冲铆成形过程分析[J]. 塑性工程学报, 2025, 32(5): 52–59.LI Yinbo, YANG Jian, XING Baoying, et al. Analysis of self-piercing riveting forming process for aluminum alloy sheets based on acoustic emission[J]. Journal of Plasticity Engineering, 2025, 32(5): 52–59.
6
,   杜厚义, 赫玉欣, 黄烈然, 等. 具有结构健康监测功能的纤维增强聚合物基复合材料的研究现状[J]. 化工新型材料, 2025, 53(1): 9–14.DU Houyi, HE Yuxin, HUANG Lieran, et al. Research status of fiber-reinforced polymer-based composites with structural health monitoring function[J]. New Chemical Materials, 2025, 53(1): 9–14.
  王国珍, 黄克瑶, 朱妍焘. 结构健康监测技术研究及其在航空航天领域中的应用[J]. 科技资讯, 2022, 20(14): 56–58.WANG Guozhen, HUANG Keyao, ZHU Yantao. Research on structural health monitoring technology and its application in aerospace field[J]. Science & Technology Information, 2022, 20(14): 56–58.
  刘青旭, 陈海峰, ANTON B, 等. 航天复合材料结构健康监测技术应用进展[J]. 复合材料学报, 2024, 41(9): 4563–4588.LIU Qingxu, CHEN Haifeng, ANTON B, et al. Progress in application on health monitoring technology for aerospace composite structures[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4563–4588.
9-11
]
环境适应性 高温/辐射易失效 耐高温、抗电磁干扰[   田童, 李建乐, 邓德双, 等. 飞行器结构健康监测技术研究进展[J]. 航空制造技术, 2024, 67(13): 41–67, 98.TIAN Tong, LI Jianle, DENG Deshuang, et al. Research progress of structural health monitoring technology for aircraft[J]. Aeronautical Manufacturing Technology, 2024, 67(13): 41–67, 98.
  冯振辉, 王哲, 曾捷, 等. 复合材料层板光纤冲击判位与载荷历程重构方法[J]. 复合材料科学与工程, 2024(9): 52–56, 112.FENG Zhenhui, WANG Zhe, ZENG Jie, et al. A method for optical fiber impact localization and load history reconstruction of composite laminates[J]. Composites Science and Engineering, 2024(9): 52–56, 112.
3-4
]
耐高温(探头决定) 耐高温(传感器决定)[   李银波, 杨建, 邢保英, 等. 基于声发射的铝合金薄板自冲铆成形过程分析[J]. 塑性工程学报, 2025, 32(5): 52–59.LI Yinbo, YANG Jian, XING Baoying, et al. Analysis of self-piercing riveting forming process for aluminum alloy sheets based on acoustic emission[J]. Journal of Plasticity Engineering, 2025, 32(5): 52–59.
6
]
实时性 实时在线监测[   汪玉, 邱雷, 黄永安. 面向飞行器结构健康监测智能蒙皮的柔性传感器网络综述[J]. 航空制造技术, 2020, 63(15): 60–69, 80.WANG Yu, QIU Lei, HUANG Yongan. Review of flexible sensor networks for structural health monitoring of aircraft smart skin[J]. Aeronautical Manufacturing Technology, 2020, 63(15): 60–69, 80.
  刘志文, 崔旭, 徐礼胜, 等. 聚合物基石墨烯复合材料在柔性传感器领域的研究进展[J]. 航空制造技术, 2019, 62(15): 78–87, 92.LIU Zhiwen, CUI Xu, XU Lisheng, et al. Progress in application of graphene conductive composites in flexible sensors[J]. Aeronautical Manufacturing Technology, 2019, 62(15): 78–87, 92.
7-8
]
实时监测,但需解调设备[   田童, 李建乐, 邓德双, 等. 飞行器结构健康监测技术研究进展[J]. 航空制造技术, 2024, 67(13): 41–67, 98.TIAN Tong, LI Jianle, DENG Deshuang, et al. Research progress of structural health monitoring technology for aircraft[J]. Aeronautical Manufacturing Technology, 2024, 67(13): 41–67, 98.
  冯振辉, 王哲, 曾捷, 等. 复合材料层板光纤冲击判位与载荷历程重构方法[J]. 复合材料科学与工程, 2024(9): 52–56, 112.FENG Zhenhui, WANG Zhe, ZENG Jie, et al. A method for optical fiber impact localization and load history reconstruction of composite laminates[J]. Composites Science and Engineering, 2024(9): 52–56, 112.
3-4
]
离线/定期检测[   ZANG X L, XU Z D, LU H F, et al. Ultrasonic guided wave techniques and applications in pipeline defect detection: A review[J]. International Journal of Pressure Vessels and Piping, 2023, 206: 105033.
5
]
实时监测[   李银波, 杨建, 邢保英, 等. 基于声发射的铝合金薄板自冲铆成形过程分析[J]. 塑性工程学报, 2025, 32(5): 52–59.LI Yinbo, YANG Jian, XING Baoying, et al. Analysis of self-piercing riveting forming process for aluminum alloy sheets based on acoustic emission[J]. Journal of Plasticity Engineering, 2025, 32(5): 52–59.
6
,   杜厚义, 赫玉欣, 黄烈然, 等. 具有结构健康监测功能的纤维增强聚合物基复合材料的研究现状[J]. 化工新型材料, 2025, 53(1): 9–14.DU Houyi, HE Yuxin, HUANG Lieran, et al. Research status of fiber-reinforced polymer-based composites with structural health monitoring function[J]. New Chemical Materials, 2025, 53(1): 9–14.
  王国珍, 黄克瑶, 朱妍焘. 结构健康监测技术研究及其在航空航天领域中的应用[J]. 科技资讯, 2022, 20(14): 56–58.WANG Guozhen, HUANG Keyao, ZHU Yantao. Research on structural health monitoring technology and its application in aerospace field[J]. Science & Technology Information, 2022, 20(14): 56–58.
  刘青旭, 陈海峰, ANTON B, 等. 航天复合材料结构健康监测技术应用进展[J]. 复合材料学报, 2024, 41(9): 4563–4588.LIU Qingxu, CHEN Haifeng, ANTON B, et al. Progress in application on health monitoring technology for aerospace composite structures[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4563–4588.
9-11
]
工艺性与长期稳定性 工艺复杂,易氧化/疲劳,需封装保护 工艺成熟,稳定性高[   田童, 李建乐, 邓德双, 等. 飞行器结构健康监测技术研究进展[J]. 航空制造技术, 2024, 67(13): 41–67, 98.TIAN Tong, LI Jianle, DENG Deshuang, et al. Research progress of structural health monitoring technology for aircraft[J]. Aeronautical Manufacturing Technology, 2024, 67(13): 41–67, 98.
  冯振辉, 王哲, 曾捷, 等. 复合材料层板光纤冲击判位与载荷历程重构方法[J]. 复合材料科学与工程, 2024(9): 52–56, 112.FENG Zhenhui, WANG Zhe, ZENG Jie, et al. A method for optical fiber impact localization and load history reconstruction of composite laminates[J]. Composites Science and Engineering, 2024(9): 52–56, 112.
3-4
]
工艺性与稳定性依赖设备 工艺性与稳定性依赖设备
相对成本 材料成本高 光纤成本低 设备维护成本高 传感器成本低

随着航空航天领域对复合材料结构监测需求的日趋复杂化,叠加人体运动监测及医疗健康领域对柔性传感器性能要求的持续升级,高灵敏度的柔性传感器技术正逐步成为实现复合材料智能化的核心组件。本文立足柔性传感器的工作原理,系统综述该技术在复合材料结构健康监测领域的研究进展与典型应用案例,重点探讨其在航空航天装备实时损伤预测、长期服役监测等场景中的潜在工程化应用路径。

1     柔性传感器的技术原理与工作机制

作为感知外界刺激信号的媒介,柔性传感器中的导电材料是一个重要的组成部分[   张松月. 基于纳米银线与PDMS的微结构柔性电子皮肤的设计与应用[D]. 重庆: 重庆大学, 2021.ZHANG Songyue. Design and application of micro-structured flexible electronics skin based on nano-silver wire and PDMS[D]. Chongqing: Chongqing University, 2021.
  赵赟. 新型柔性传感器在可穿戴设备中的应用研究[J]. 模具制造, 2024, 24(10): 165–167.ZHAO Yun. Research on the application of new flexible sensors in wearable devices[J]. Die & Mould Manufacture, 2024, 24(10): 165–167.
  王丞, 王进美, 魏玲玲, 等. 导电纱线及柔性传感器在智能可穿戴设备中的应用[J]. 轻纺工业与技术, 2023, 52(4): 116–118.WANG Cheng, WANG Jinmei, WEI Lingling, et al. Application of conductive yarn and flexible sensor in smart wearable devices[J]. Light and Textile Industry and Technology, 2023, 52(4): 116–118.
12-14
]
,通过感受外界的不同刺激而反映出相应的物理信号,进一步转化为电信号被测量和分析。因此,一种性能优异的导电材料的选择即可为后续的研究提供了良好的铺垫。据报道,最常见的柔性导电材料包括二硫化钼[   张松月. 基于纳米银线与PDMS的微结构柔性电子皮肤的设计与应用[D]. 重庆: 重庆大学, 2021.ZHANG Songyue. Design and application of micro-structured flexible electronics skin based on nano-silver wire and PDMS[D]. Chongqing: Chongqing University, 2021.
12
]
、黑磷[   赵赟. 新型柔性传感器在可穿戴设备中的应用研究[J]. 模具制造, 2024, 24(10): 165–167.ZHAO Yun. Research on the application of new flexible sensors in wearable devices[J]. Die & Mould Manufacture, 2024, 24(10): 165–167.
13
]
、聚(3,4–乙烯二氧噻吩):聚(苯乙烯磺酸)(PEDOT:PSS)[   WANG Z Y, WANG T, ZHUANG M D, et al. Stretchable polymer composite with a 3D segregated structure of PEDOT: PSS for multifunctional touchless sensing[J]. ACS Applied Materials & Interfaces, 2019, 11(48): 45301–45309.
15
]
、聚吡咯(PPy)[   王韵, 胡少恒, 邓阿申, 等. 基于纳米纤维素/多壁碳纳米管气凝胶和泡沫镍构筑的三维复合材料及其电容性能[J]. 复合材料学报, 2023, 40(9): 5350–5358.WANG Yun, HU Shaoheng, DENG Ashen, et al. Three-dimensional hybrid material constructed by cellulose nanofibers/multiwall carbon nanotubes aerogel and foam nickel and its electrochemical capacitance performance[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5350–5358.
16
]
、氧化铟锡(ITO)[   CHOI Y I, HWANG B U, MEESEEPONG M, et al. Stretchable and transparent nanofiber-networked electrodes based on nanocomposites of polyurethane/reduced graphene oxide/silver nanoparticles with high dispersion and fused junctions[J]. Nanoscale, 2019, 11(9): 3916–3924.
17
]
、石墨烯(Graphene)[   WEI Y H, QIAO Y C, JIANG G Y, et al. A wearable skinlike ultra-sensitive artificial graphene throat[J]. ACS Nano, 2019, 13(8): 8639–8647.
18
]
、量子点、碳纳米管(Carbon nanotube,CNT)[   DING L, XUAN S H, PEI L, et al. Stress and magnetic field bimode detection sensors based on flexible CI/CNTs–PDMS sponges[J]. ACS Applied Materials & Interfaces, 2018, 10(36): 30774–30784.
19
]
、金属纳米粒子(MXene、银纳米粒子、金纳米粒子)[   郑贻强. 基于MXene复合材料的柔性传感器设计策略及其在人体健康监测领域的应用研究[D]. 长春: 吉林大学, 2024.ZHENG Yiqiang. Design strategy of flexible sensor based on MXene composite material and its application in the field of human health monitoring[D]. Changchun: Jilin University, 2024.
20
]
等,如图1(a)[   WANG B H, FACCHETTI A. Mechanically flexible conductors for stretchable and wearable e-skin and e-textile devices[J]. Advanced Materials, 2019, 31(28): 1901408.
21
]
所示。柔性基底作为柔性传感器的另一重要组成部分,主要包括:聚二甲基硅氧烷(PDMS)、共聚酯[   KIM S H, JUNG S, YOON I S, et al. Ultrastretchable conductor fabricated on skin-like hydrogel-elastomer hybrid substrates for skin electronics[J]. Advanced Materials, 2018, 30(26): 1800109.
22
]
、水凝胶[   LIU Z Y, WANG Y, REN Y Y, et al. Poly(ionic liquid) hydrogel-based anti-freezing ionic skin for a soft robotic gripper[J]. Materials Horizons, 2020, 7(3): 919–927.
23
]
、硅橡胶薄膜[   CHEN T, SHI Q F, ZHU M L, et al. Triboelectric self-powered wearable flexible patch as 3D motion control interface for robotic manipulator[J]. ACS Nano, 2018, 12(11): 11561–11571.
24
]
、聚(苯乙烯–嵌段–丁二烯–嵌段–苯乙烯)(SBS)[   张松月. 基于纳米银线与PDMS的微结构柔性电子皮肤的设计与应用[D]. 重庆: 重庆大学, 2021.ZHANG Songyue. Design and application of micro-structured flexible electronics skin based on nano-silver wire and PDMS[D]. Chongqing: Chongqing University, 2021.
12
]
和聚氨酯(PU)[   YOU X L, HE J X, NAN N, et al. Stretchable capacitive fabric electronic skin woven by electrospun nanofiber coated yarns for detecting tactile and multimodal mechanical stimuli[J]. Journal of Materials Chemistry C, 2018, 6(47): 12981–12991.
25
]
等,如图1(b)[   WANG B H, FACCHETTI A. Mechanically flexible conductors for stretchable and wearable e-skin and e-textile devices[J]. Advanced Materials, 2019, 31(28): 1901408.
21
]
所示。纳米材料因其量子尺寸效应、高比表面积及优异的树脂匹配性等特性,展现出独特的物理化学行为,成为构建高灵敏度、快速响应及稳定性优异的柔性传感器的主要材料。因此,本文重点以近年来新兴材料碳纳米管、石墨烯和MXene为例,论述柔性传感器的技术与机理。

图1     柔性传感器的主要材料与结构示意图[   WANG B H, FACCHETTI A. Mechanically flexible conductors for stretchable and wearable e-skin and e-textile devices[J]. Advanced Materials, 2019, 31(28): 1901408.
21
]
Fig.1     Schematic diagram of main materials and structure of flexible sensors[   WANG B H, FACCHETTI A. Mechanically flexible conductors for stretchable and wearable e-skin and e-textile devices[J]. Advanced Materials, 2019, 31(28): 1901408.
21
]

柔性传感器基于传感原理的不同,可分为压电式传感器、压容式传感器、压阻式传感器、离子压力传感器和摩擦电式压力传感器等,其传感机理如图2表2[   王韵, 胡少恒, 邓阿申, 等. 基于纳米纤维素/多壁碳纳米管气凝胶和泡沫镍构筑的三维复合材料及其电容性能[J]. 复合材料学报, 2023, 40(9): 5350–5358.WANG Yun, HU Shaoheng, DENG Ashen, et al. Three-dimensional hybrid material constructed by cellulose nanofibers/multiwall carbon nanotubes aerogel and foam nickel and its electrochemical capacitance performance[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5350–5358.
  CHOI Y I, HWANG B U, MEESEEPONG M, et al. Stretchable and transparent nanofiber-networked electrodes based on nanocomposites of polyurethane/reduced graphene oxide/silver nanoparticles with high dispersion and fused junctions[J]. Nanoscale, 2019, 11(9): 3916–3924.
  WEI Y H, QIAO Y C, JIANG G Y, et al. A wearable skinlike ultra-sensitive artificial graphene throat[J]. ACS Nano, 2019, 13(8): 8639–8647.
  DING L, XUAN S H, PEI L, et al. Stress and magnetic field bimode detection sensors based on flexible CI/CNTs–PDMS sponges[J]. ACS Applied Materials & Interfaces, 2018, 10(36): 30774–30784.
  郑贻强. 基于MXene复合材料的柔性传感器设计策略及其在人体健康监测领域的应用研究[D]. 长春: 吉林大学, 2024.ZHENG Yiqiang. Design strategy of flexible sensor based on MXene composite material and its application in the field of human health monitoring[D]. Changchun: Jilin University, 2024.
  WANG B H, FACCHETTI A. Mechanically flexible conductors for stretchable and wearable e-skin and e-textile devices[J]. Advanced Materials, 2019, 31(28): 1901408.
  KIM S H, JUNG S, YOON I S, et al. Ultrastretchable conductor fabricated on skin-like hydrogel-elastomer hybrid substrates for skin electronics[J]. Advanced Materials, 2018, 30(26): 1800109.
  LIU Z Y, WANG Y, REN Y Y, et al. Poly(ionic liquid) hydrogel-based anti-freezing ionic skin for a soft robotic gripper[J]. Materials Horizons, 2020, 7(3): 919–927.
  CHEN T, SHI Q F, ZHU M L, et al. Triboelectric self-powered wearable flexible patch as 3D motion control interface for robotic manipulator[J]. ACS Nano, 2018, 12(11): 11561–11571.
16-24
]
所示。研究表明,不同维度纳米材料展现的差异化力学性能与电学特性,为柔性传感器的传感性能优化提供了创新性解决方案。0D材料(如金属纳米颗粒)通过隧穿效应调控压阻式传感器的接触电阻,显著提升了低应变的灵敏度;1D材料(如碳纳米管)凭借高长径比与轴向导电性,在压阻/压电复合材料中构建出高效电荷传输路径,增强了信号响应速度;2D材料(如石墨烯、MXene)利用超大比表面积与面内变形能力,同步优化压容式传感器的介电常数与极板有效接触面积,实现微压检测量程下高响应灵敏性。这种“维度–性能”的定向调控,使得传感机制与材料本征特性深度契合。例如,压阻式中1D/2D材料构筑的三维导电网络,通过应变下的可逆断裂/重构机制,同时解决高灵敏度与大应变兼容性的矛盾;压容式中2D材料修饰的微结构介电层,利用纳米褶皱增大电极间距离,可调控电容变化率对压力的线性关系;压电/摩擦电式中0D/1D材料填充的多级异质结,通过局域电场极化增强,可将电荷输出密度提升1~2个数量级[   WANG B H, FACCHETTI A. Mechanically flexible conductors for stretchable and wearable e-skin and e-textile devices[J]. Advanced Materials, 2019, 31(28): 1901408.
21
]

图2     柔性传感器的传感机理
Fig.2     Sensing mechanism of flexible sensor
表2     柔性传感器的技术原理对比[   王韵, 胡少恒, 邓阿申, 等. 基于纳米纤维素/多壁碳纳米管气凝胶和泡沫镍构筑的三维复合材料及其电容性能[J]. 复合材料学报, 2023, 40(9): 5350–5358.WANG Yun, HU Shaoheng, DENG Ashen, et al. Three-dimensional hybrid material constructed by cellulose nanofibers/multiwall carbon nanotubes aerogel and foam nickel and its electrochemical capacitance performance[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5350–5358.
  CHOI Y I, HWANG B U, MEESEEPONG M, et al. Stretchable and transparent nanofiber-networked electrodes based on nanocomposites of polyurethane/reduced graphene oxide/silver nanoparticles with high dispersion and fused junctions[J]. Nanoscale, 2019, 11(9): 3916–3924.
  WEI Y H, QIAO Y C, JIANG G Y, et al. A wearable skinlike ultra-sensitive artificial graphene throat[J]. ACS Nano, 2019, 13(8): 8639–8647.
  DING L, XUAN S H, PEI L, et al. Stress and magnetic field bimode detection sensors based on flexible CI/CNTs–PDMS sponges[J]. ACS Applied Materials & Interfaces, 2018, 10(36): 30774–30784.
  郑贻强. 基于MXene复合材料的柔性传感器设计策略及其在人体健康监测领域的应用研究[D]. 长春: 吉林大学, 2024.ZHENG Yiqiang. Design strategy of flexible sensor based on MXene composite material and its application in the field of human health monitoring[D]. Changchun: Jilin University, 2024.
  WANG B H, FACCHETTI A. Mechanically flexible conductors for stretchable and wearable e-skin and e-textile devices[J]. Advanced Materials, 2019, 31(28): 1901408.
  KIM S H, JUNG S, YOON I S, et al. Ultrastretchable conductor fabricated on skin-like hydrogel-elastomer hybrid substrates for skin electronics[J]. Advanced Materials, 2018, 30(26): 1800109.
  LIU Z Y, WANG Y, REN Y Y, et al. Poly(ionic liquid) hydrogel-based anti-freezing ionic skin for a soft robotic gripper[J]. Materials Horizons, 2020, 7(3): 919–927.
  CHEN T, SHI Q F, ZHU M L, et al. Triboelectric self-powered wearable flexible patch as 3D motion control interface for robotic manipulator[J]. ACS Nano, 2018, 12(11): 11561–11571.
16-24
]
Table 2     Comparison of technical principles of flexible sensors[   王韵, 胡少恒, 邓阿申, 等. 基于纳米纤维素/多壁碳纳米管气凝胶和泡沫镍构筑的三维复合材料及其电容性能[J]. 复合材料学报, 2023, 40(9): 5350–5358.WANG Yun, HU Shaoheng, DENG Ashen, et al. Three-dimensional hybrid material constructed by cellulose nanofibers/multiwall carbon nanotubes aerogel and foam nickel and its electrochemical capacitance performance[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5350–5358.
  CHOI Y I, HWANG B U, MEESEEPONG M, et al. Stretchable and transparent nanofiber-networked electrodes based on nanocomposites of polyurethane/reduced graphene oxide/silver nanoparticles with high dispersion and fused junctions[J]. Nanoscale, 2019, 11(9): 3916–3924.
  WEI Y H, QIAO Y C, JIANG G Y, et al. A wearable skinlike ultra-sensitive artificial graphene throat[J]. ACS Nano, 2019, 13(8): 8639–8647.
  DING L, XUAN S H, PEI L, et al. Stress and magnetic field bimode detection sensors based on flexible CI/CNTs–PDMS sponges[J]. ACS Applied Materials & Interfaces, 2018, 10(36): 30774–30784.
  郑贻强. 基于MXene复合材料的柔性传感器设计策略及其在人体健康监测领域的应用研究[D]. 长春: 吉林大学, 2024.ZHENG Yiqiang. Design strategy of flexible sensor based on MXene composite material and its application in the field of human health monitoring[D]. Changchun: Jilin University, 2024.
  WANG B H, FACCHETTI A. Mechanically flexible conductors for stretchable and wearable e-skin and e-textile devices[J]. Advanced Materials, 2019, 31(28): 1901408.
  KIM S H, JUNG S, YOON I S, et al. Ultrastretchable conductor fabricated on skin-like hydrogel-elastomer hybrid substrates for skin electronics[J]. Advanced Materials, 2018, 30(26): 1800109.
  LIU Z Y, WANG Y, REN Y Y, et al. Poly(ionic liquid) hydrogel-based anti-freezing ionic skin for a soft robotic gripper[J]. Materials Horizons, 2020, 7(3): 919–927.
  CHEN T, SHI Q F, ZHU M L, et al. Triboelectric self-powered wearable flexible patch as 3D motion control interface for robotic manipulator[J]. ACS Nano, 2018, 12(11): 11561–11571.
16-24
]
压阻式传感器 压容式传感器 压电式传感器
基本原理 外部压力/应变引起电阻变化[   郑贻强. 基于MXene复合材料的柔性传感器设计策略及其在人体健康监测领域的应用研究[D]. 长春: 吉林大学, 2024.ZHENG Yiqiang. Design strategy of flexible sensor based on MXene composite material and its application in the field of human health monitoring[D]. Changchun: Jilin University, 2024.
  WANG B H, FACCHETTI A. Mechanically flexible conductors for stretchable and wearable e-skin and e-textile devices[J]. Advanced Materials, 2019, 31(28): 1901408.
  KIM S H, JUNG S, YOON I S, et al. Ultrastretchable conductor fabricated on skin-like hydrogel-elastomer hybrid substrates for skin electronics[J]. Advanced Materials, 2018, 30(26): 1800109.
20-22
]
外部压力引起电容变化[   郑贻强. 基于MXene复合材料的柔性传感器设计策略及其在人体健康监测领域的应用研究[D]. 长春: 吉林大学, 2024.ZHENG Yiqiang. Design strategy of flexible sensor based on MXene composite material and its application in the field of human health monitoring[D]. Changchun: Jilin University, 2024.
  WANG B H, FACCHETTI A. Mechanically flexible conductors for stretchable and wearable e-skin and e-textile devices[J]. Advanced Materials, 2019, 31(28): 1901408.
  KIM S H, JUNG S, YOON I S, et al. Ultrastretchable conductor fabricated on skin-like hydrogel-elastomer hybrid substrates for skin electronics[J]. Advanced Materials, 2018, 30(26): 1800109.
20-22
]
外力使材料偶极子变化产生电压[   郑贻强. 基于MXene复合材料的柔性传感器设计策略及其在人体健康监测领域的应用研究[D]. 长春: 吉林大学, 2024.ZHENG Yiqiang. Design strategy of flexible sensor based on MXene composite material and its application in the field of human health monitoring[D]. Changchun: Jilin University, 2024.
  WANG B H, FACCHETTI A. Mechanically flexible conductors for stretchable and wearable e-skin and e-textile devices[J]. Advanced Materials, 2019, 31(28): 1901408.
  KIM S H, JUNG S, YOON I S, et al. Ultrastretchable conductor fabricated on skin-like hydrogel-elastomer hybrid substrates for skin electronics[J]. Advanced Materials, 2018, 30(26): 1800109.
20-22
]
结构复杂度 简单(两电极+压阻层)[   CHOI Y I, HWANG B U, MEESEEPONG M, et al. Stretchable and transparent nanofiber-networked electrodes based on nanocomposites of polyurethane/reduced graphene oxide/silver nanoparticles with high dispersion and fused junctions[J]. Nanoscale, 2019, 11(9): 3916–3924.
  WEI Y H, QIAO Y C, JIANG G Y, et al. A wearable skinlike ultra-sensitive artificial graphene throat[J]. ACS Nano, 2019, 13(8): 8639–8647.
  DING L, XUAN S H, PEI L, et al. Stress and magnetic field bimode detection sensors based on flexible CI/CNTs–PDMS sponges[J]. ACS Applied Materials & Interfaces, 2018, 10(36): 30774–30784.
17-19
,   LIU Z Y, WANG Y, REN Y Y, et al. Poly(ionic liquid) hydrogel-based anti-freezing ionic skin for a soft robotic gripper[J]. Materials Horizons, 2020, 7(3): 919–927.
23
]
中等(需多层电极/介电层)[   王韵, 胡少恒, 邓阿申, 等. 基于纳米纤维素/多壁碳纳米管气凝胶和泡沫镍构筑的三维复合材料及其电容性能[J]. 复合材料学报, 2023, 40(9): 5350–5358.WANG Yun, HU Shaoheng, DENG Ashen, et al. Three-dimensional hybrid material constructed by cellulose nanofibers/multiwall carbon nanotubes aerogel and foam nickel and its electrochemical capacitance performance[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5350–5358.
16
]
复杂(需极化处理或摩擦电材料配对)[   郑贻强. 基于MXene复合材料的柔性传感器设计策略及其在人体健康监测领域的应用研究[D]. 长春: 吉林大学, 2024.ZHENG Yiqiang. Design strategy of flexible sensor based on MXene composite material and its application in the field of human health monitoring[D]. Changchun: Jilin University, 2024.
  WANG B H, FACCHETTI A. Mechanically flexible conductors for stretchable and wearable e-skin and e-textile devices[J]. Advanced Materials, 2019, 31(28): 1901408.
  KIM S H, JUNG S, YOON I S, et al. Ultrastretchable conductor fabricated on skin-like hydrogel-elastomer hybrid substrates for skin electronics[J]. Advanced Materials, 2018, 30(26): 1800109.
20-22
]
温度监测 可应用于温度监测,且高灵敏性,电阻温度系数表征监测能力,需温度补偿电路 一般不监测温度,且低敏感性,离子型传感器电解质电导率受温度影响[   王韵, 胡少恒, 邓阿申, 等. 基于纳米纤维素/多壁碳纳米管气凝胶和泡沫镍构筑的三维复合材料及其电容性能[J]. 复合材料学报, 2023, 40(9): 5350–5358.WANG Yun, HU Shaoheng, DENG Ashen, et al. Three-dimensional hybrid material constructed by cellulose nanofibers/multiwall carbon nanotubes aerogel and foam nickel and its electrochemical capacitance performance[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5350–5358.
16
]
一般不监测温度,且中等敏感性,摩擦电材料电荷衰减速率随温度升高而加快
应变监测 直接应变测量,电阻变化与应变高度相关(一般是线性相关)[   CHOI Y I, HWANG B U, MEESEEPONG M, et al. Stretchable and transparent nanofiber-networked electrodes based on nanocomposites of polyurethane/reduced graphene oxide/silver nanoparticles with high dispersion and fused junctions[J]. Nanoscale, 2019, 11(9): 3916–3924.
  WEI Y H, QIAO Y C, JIANG G Y, et al. A wearable skinlike ultra-sensitive artificial graphene throat[J]. ACS Nano, 2019, 13(8): 8639–8647.
  DING L, XUAN S H, PEI L, et al. Stress and magnetic field bimode detection sensors based on flexible CI/CNTs–PDMS sponges[J]. ACS Applied Materials & Interfaces, 2018, 10(36): 30774–30784.
17-19
,   LIU Z Y, WANG Y, REN Y Y, et al. Poly(ionic liquid) hydrogel-based anti-freezing ionic skin for a soft robotic gripper[J]. Materials Horizons, 2020, 7(3): 919–927.
23
]
间接应变测量,通过电极之间距离或平板面积变化反映应变[   王韵, 胡少恒, 邓阿申, 等. 基于纳米纤维素/多壁碳纳米管气凝胶和泡沫镍构筑的三维复合材料及其电容性能[J]. 复合材料学报, 2023, 40(9): 5350–5358.WANG Yun, HU Shaoheng, DENG Ashen, et al. Three-dimensional hybrid material constructed by cellulose nanofibers/multiwall carbon nanotubes aerogel and foam nickel and its electrochemical capacitance performance[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5350–5358.
16
]
振动应变测量,通过输出电压反应应变,无法测量静态或准静态应变[   郑贻强. 基于MXene复合材料的柔性传感器设计策略及其在人体健康监测领域的应用研究[D]. 长春: 吉林大学, 2024.ZHENG Yiqiang. Design strategy of flexible sensor based on MXene composite material and its application in the field of human health monitoring[D]. Changchun: Jilin University, 2024.
  WANG B H, FACCHETTI A. Mechanically flexible conductors for stretchable and wearable e-skin and e-textile devices[J]. Advanced Materials, 2019, 31(28): 1901408.
  KIM S H, JUNG S, YOON I S, et al. Ultrastretchable conductor fabricated on skin-like hydrogel-elastomer hybrid substrates for skin electronics[J]. Advanced Materials, 2018, 30(26): 1800109.
20-22
,   CHEN T, SHI Q F, ZHU M L, et al. Triboelectric self-powered wearable flexible patch as 3D motion control interface for robotic manipulator[J]. ACS Nano, 2018, 12(11): 11561–11571.
24
]
应力监测 宽范围应力监测,灵敏度依赖结构设计[   郑贻强. 基于MXene复合材料的柔性传感器设计策略及其在人体健康监测领域的应用研究[D]. 长春: 吉林大学, 2024.ZHENG Yiqiang. Design strategy of flexible sensor based on MXene composite material and its application in the field of human health monitoring[D]. Changchun: Jilin University, 2024.
  WANG B H, FACCHETTI A. Mechanically flexible conductors for stretchable and wearable e-skin and e-textile devices[J]. Advanced Materials, 2019, 31(28): 1901408.
  KIM S H, JUNG S, YOON I S, et al. Ultrastretchable conductor fabricated on skin-like hydrogel-elastomer hybrid substrates for skin electronics[J]. Advanced Materials, 2018, 30(26): 1800109.
20-22
]
高精度微应力监测,对微小法向应力敏感[   郑贻强. 基于MXene复合材料的柔性传感器设计策略及其在人体健康监测领域的应用研究[D]. 长春: 吉林大学, 2024.ZHENG Yiqiang. Design strategy of flexible sensor based on MXene composite material and its application in the field of human health monitoring[D]. Changchun: Jilin University, 2024.
  WANG B H, FACCHETTI A. Mechanically flexible conductors for stretchable and wearable e-skin and e-textile devices[J]. Advanced Materials, 2019, 31(28): 1901408.
  KIM S H, JUNG S, YOON I S, et al. Ultrastretchable conductor fabricated on skin-like hydrogel-elastomer hybrid substrates for skin electronics[J]. Advanced Materials, 2018, 30(26): 1800109.
20-22
]
动态应力捕捉,输出电荷与应力变化率正比,仅响应动态应力(如冲击/振动等)[   郑贻强. 基于MXene复合材料的柔性传感器设计策略及其在人体健康监测领域的应用研究[D]. 长春: 吉林大学, 2024.ZHENG Yiqiang. Design strategy of flexible sensor based on MXene composite material and its application in the field of human health monitoring[D]. Changchun: Jilin University, 2024.
  WANG B H, FACCHETTI A. Mechanically flexible conductors for stretchable and wearable e-skin and e-textile devices[J]. Advanced Materials, 2019, 31(28): 1901408.
  KIM S H, JUNG S, YOON I S, et al. Ultrastretchable conductor fabricated on skin-like hydrogel-elastomer hybrid substrates for skin electronics[J]. Advanced Materials, 2018, 30(26): 1800109.
20-22
]
迟滞性 可能存在(由材料蠕变导致) 低(弹性介电层恢复性好) 极低(瞬时电荷释放)
线性度 中(电阻–压力常呈非线性) 高(电容变化与电极间距离成反比) 低(电压与应力非线性)
创新研究方向 高灵敏的新材料及多孔/仿生结构设计 高介电材料/离子聚合物 高压电复合材料/摩擦电材料

1.1     压阻式柔性传感器

压阻式柔性传感器的基本原理是测量由外部压力引起的电阻变化,实现从压力/应变信号到电阻信号的转化,可以通过对电阻信号变化的测量来检测压力的变化[   倪秀雯. 基于MXene的高性能柔性电子皮肤设计及应用[D]. 青岛: 青岛科技大学, 2022.NI Xiuwen. Design and application of high performance flexible electronics skin based on MXene[D]. Qingdao: Qingdao University of Science & Technology, 2022.
26
]
。电阻的变化可以由几个因素引起,包括以下方面的变化:导电网络的组成和空间构型,两种材料之间的接触电阻和隧穿电阻以及由于颗粒间分离变化引起的复合材料的变化电阻率[   倪秀雯. 基于MXene的高性能柔性电子皮肤设计及应用[D]. 青岛: 青岛科技大学, 2022.NI Xiuwen. Design and application of high performance flexible electronics skin based on MXene[D]. Qingdao: Qingdao University of Science & Technology, 2022.
  张铖. 基于纳米技术的柔性可穿戴电子皮肤的制备和应用研究[D]. 成都: 电子科技大学, 2022.ZHANG Cheng. Preparation and application of flexible wearable electronic skin based on nanotechnology[D]. Chengdu: University of Electronic Science and Technology of China, 2022.
26-27
]
。材料的电阻R与固有电阻Ri、接触电阻Rc和隧穿电阻Rt有关。应变传感器的灵敏度被称为压阻因子(Gauge factor,GF)。在碳纳米管、石墨烯、MXene等材料中已经发现由材料带结构变化引起的压阻性。为了提升压阻式柔性传感器的传感性能,研究人员通过合理的结构设计(包括构建丰富的孔洞结构[   SUN J Z, DU H, CHEN Z J, et al. MXene quantum dot within natural 3D watermelon peel matrix for biocompatible flexible sensing platform[J]. Nano Research, 2022, 15(4): 3653–3659.
  YIN Y M, LI H Y, XU J, et al. Facile fabrication of flexible pressure sensor with programmable lattice structure[J]. ACS Applied Materials & Interfaces, 2021, 13(8): 10388–10396.
28-29
]
,疏松的片层结构[   DU Q F, LIU L L, TANG R T, et al. High-performance flexible pressure sensor based on controllable hierarchical microstructures by laser scribing for wearable electronics[J]. Advanced Materials Technologies, 2021, 6(9): 2100122.
30
]
以及仿金字塔结构[   YAO H C, SUN T, CHIAM J S, et al. Augmented reality interfaces using virtual customization of microstructured electronic skin sensor sensitivity performances[J]. Advanced Functional Materials, 2021, 31(39): 2008650.
31
]
等),不仅可以提升传感器的压阻因子,还有利于扩宽传感器的响应范围。柔性压阻传感器因其具有高灵敏性、高可设计性以及结构简单等明显的优势而得到广泛的研究。例如,Harada团队创新性地采用碳纳米管缠绕银纳米颗粒的复合结构,通过应变载荷下银颗粒间距变化引发的导电网络重构机制,成功实现电阻变化率与应变量的线性响应,该设计使传感器动态范围扩展的同时GF值提升7倍[   HARADA S, KANAO K, YAMAMOTO Y, et al. Fully printed flexible fingerprint-like three-axis tactile and slip force and temperature sensors for artificial skin[J]. ACS Nano, 2014, 8(12): 12851–12857.
32
]

1.2     压容式柔性传感器

平行板电容器的电容C与自由空间的介电常数ε0、相对介电常数εr、平板面积A和电极之间的距离d有关。其中的3个变量εrAd对应变的变化很敏感。d的变化通常用于测量法向力;而A的变化通常用于测量剪切力。电容式传感器的控制方法简单,εrA保持不变,其最主要的变化取决于在施加外部压力刺激时,微结构很容易在外力刺激下被压缩,使得d显著变化,从而会极大地提升传感器的电容变化[   李宁. 基于纳米纤维结构柔性电子皮肤的设计及应用研究[D]. 济南: 济南大学, 2023.LI Ning. Design and application of flexible electronics skin based on nanofiber structure[D]. Jinan: University of Jinan, 2023.
33
]
。例如,Li等[   LI W Z, XIONG L, PU Y M, et al. High-performance paper-based capacitive flexible pressure sensor and its application in human-related measurement[J]. Nanoscale Research Letters, 2019, 14(1): 183.
34
]
开发了基于银纳米线阵列修饰纸基电极层与PDMS介电层构筑的三明治结构电容式柔性压力传感器,试验数据显示其压力灵敏系数Sp达1.05 kPa–1,线性检测范围覆盖1 Pa~2 kPa。

柔性离子压力传感器是柔性压容式传感器的一种,同柔性压容式传感器的结构一样,通常也是上下电极中间传感层的三明治结构。区别于传统电容的传感层,离子压力传感器的传感层通常采用聚合物电解质,电解质中含有大量的可自由移动阳离子与阴离子。在受外部压力的刺激作用下可以在传感层和电极的接触界面生成双电容,使其具有相对较高的单位面积电容,从而使离子压力传感器灵敏度高和工作范围宽[   倪秀雯. 基于MXene的高性能柔性电子皮肤设计及应用[D]. 青岛: 青岛科技大学, 2022.NI Xiuwen. Design and application of high performance flexible electronics skin based on MXene[D]. Qingdao: Qingdao University of Science & Technology, 2022.
  张铖. 基于纳米技术的柔性可穿戴电子皮肤的制备和应用研究[D]. 成都: 电子科技大学, 2022.ZHANG Cheng. Preparation and application of flexible wearable electronic skin based on nanotechnology[D]. Chengdu: University of Electronic Science and Technology of China, 2022.
26-27
  李宁. 基于纳米纤维结构柔性电子皮肤的设计及应用研究[D]. 济南: 济南大学, 2023.LI Ning. Design and application of flexible electronics skin based on nanofiber structure[D]. Jinan: University of Jinan, 2023.
33
]

1.3     压电式柔性传感器

压电式柔性传感器具有在外力作用下产生电压的能力,外力会导致材料中偶极子的长度和间距发生变化,从而在电极上积累补偿电荷[   曹旭阳. 基于柔性压阻纤维层的复材构件变形监测[D]. 杭州: 浙江理工大学, 2023.CAO Xuyang. Deformation monitoring of composite components based on flexible piezoresistive fiber layer[D]. Hangzhou: Zhejiang Sci-Tech University, 2023.
35
]
。压电式传感器可以通过一定的设计来去除外部电源的供电,通常在材料上进行改进以实现压电式传感器的自供电,并且可以提高传感器的性能。Kim等[   KIM H J, KIM Y J. High performance flexible piezoelectric pressure sensor based on CNTs-doped 0–3 ceramic–epoxy nanocomposites[J]. Materials & Design, 2018, 151: 133–140.
36
]
通过将多壁碳纳米管(MWCNT)引入三元固溶体/环氧树脂复合体系,构建出具有梯度介电特性的压电陶瓷复合材料,该材料体系可有效降低介电损耗,并提高压电性能。

与压电效应类似,摩擦电压力传感器通过耦合接触带电与静电感应将外界刺激转换为电压,因此也被称为自供电触觉传感器。两种具有不同电负性的材料在受到外界刺激接触后,在它们的表面会形成极性相反但数量相等的电荷。当两个表面分离时,随之而来的补偿电荷会感应在相应材料的电极上,导致电子流过外部电路,直到它们完全分离。当两个表面再次接近时,电子将沿相反方向流动。因此,选择电负性差异较大的材料以及增加它们电荷保存的有效面积是获得尽可能大的摩擦电输出的有效策略[   李宁. 基于纳米纤维结构柔性电子皮肤的设计及应用研究[D]. 济南: 济南大学, 2023.LI Ning. Design and application of flexible electronics skin based on nanofiber structure[D]. Jinan: University of Jinan, 2023.
33
  曹旭阳. 基于柔性压阻纤维层的复材构件变形监测[D]. 杭州: 浙江理工大学, 2023.CAO Xuyang. Deformation monitoring of composite components based on flexible piezoresistive fiber layer[D]. Hangzhou: Zhejiang Sci-Tech University, 2023.
35
]

2     复合材料结构健康监测中的应用进展

2.1     温度感知传感器

传统的半导体或金属温度传感器因其柔性差、刚性大限制了其在柔性空间展开结构等领域的应用。然而,碳纳米管、石墨烯等碳基材料作为主要传感材料的柔性温度感知传感器却可以弥补这方面的不足。碳基材料作为柔性温度传感器的敏感元件,凭借其本征高导电性、优异机械柔韧性和可调控的微结构特性,展现出显著优势。其高载流子迁移率与柔性基底兼容性优化了信号传输效率,而化学稳定性与低密度特性克服了传统金属材料热膨胀失配及导电高分子热稳定性不足的局限。碳基材料因微观结构的不同,其电阻值随温度的变化可能表现出负温度系数(Negative temperature coefficient,NTC)和正温度系数(Positive temperature coefficient,PTC)[   齐越. 石墨烯温度传感器温敏机理与实验验证[D]. 太原: 中北大学, 2022.QI Yue. Temperature-sensitive mechanism and experimental verification of graphene temperature sensor[D]. Taiyuan: North University of China, 2022.
37
]

在温度感知传感器的研究过程中,研究者普遍关注热阻式温度传感器监测的温度范围、电阻温度系数(Temperature coefficient of resistance,TCR)、与温度的线性关系R2和响应时间等[   郭丁萌, 李晓玉, 孙天懿, 等. 热敏型碳点作为温度传感材料的研究进展[J]. 材料导报, 2024, 38(18): 47–57.GUO Dingmeng, LI Xiaoyu, SUN Tianyi, et al. Research progress of thermosensitive carbon dots as temperature sensing materials[J]. Materials Reports, 2024, 38(18): 47–57.
38
]
。其中,TCR等于温度改变1 K或1 ℃时电阻的变化量(式1);ΔR/R0为实时电阻变化与初始电阻的百分比[   XING F, LI M, WANG S K, et al. Temperature dependence of electrical resistance in carbon nanotube composite film during curing process[J]. Nanomaterials, 2022, 12(20): 3552.
39
]
表3概括了近年柔性温度传感器的TCR值,表明传感器的灵敏性与碳基材料的分散状态、聚集状态和制备工艺有关[   XING F, LI M, WANG S K, et al. Temperature dependence of electrical resistance in carbon nanotube composite film during curing process[J]. Nanomaterials, 2022, 12(20): 3552.
  石磊, 李磊磊, 刘银鹏, 等. 具有线性PTC效应的高灵敏柔性热塑性聚氨酯/石墨烯复合材料温度传感器[J/OL]. 复合材料学报, 2025, 42: 1–15. [2025–04–21]. https://navi.cnki.net/knavi/detail?p=qLM05Z5D9z9p0aS6t1KGD4vIgKBQnLDCcyT51zD7Zp4LnTyRzLAuNQkpUbta6_bUTkJbTVYRGqa5e4OTgHt9QCOGg1-4_cEd70OtfJzqtDQ=&uniplatform=NZKPT.SHI Lei, LI Leilei, LIU Yinpeng, et al. Highly sensitive flexible thermoplastic polyurethane/graphene composite temperature sensor with linear PTC effect[J/OL]. Acta Materiae Compositae Sinica, 2025, 42: 1–15. [2025–04–21]. https://navi.cnki.net/knavi/detail?p=qLM05Z5D9z9p0aS6t1KGD4vIgKBQnLDCcyT51zD7Zp4LnTyRzLAuNQkpUbta6_bUTkJbTVYRGqa5e4OTgHt9QCOGg1-4_cEd70OtfJzqtDQ=&uniplatform=NZKPT.
  GAO W, ZHANG Z G, ZHANG Y, et al. Efficient carbon nanotube/polyimide composites exhibiting tunable temperature coefficient of resistance for multi-role thermal films[J]. Composites Science and Technology, 2020, 199: 108333.
  PENG X Y, ZHANG X Q, WANG R, et al. Printing of carbon nanotube-based temperature and bending sensors for high-temperature-resistant intelligent textiles[J]. ACS Applied Electronic Materials, 2022, 4(4): 1949–1957.
  ALAMUSI, LI Y, HU N, et al. Temperature-dependent piezoresistivity in an MWCNT/epoxy nanocomposite temperature sensor with ultrahigh performance[J]. Nanotechnology, 2013, 24(45): 455501.
  LIU Q X, TAI H L, YUAN Z, et al. A high-performances flexible temperature sensor composed of polyethyleneimine/reduced graphene oxide bilayer for real-time monitoring[J]. Advanced Materials Technologies, 2019, 4(3): 1800594.
  ARAI F, NG C, LIU P, et al. Ultra-small site temperature sensing by carbon nanotube thermal probes[C]//4th IEEE Conference on Nanotechnology, 2004. Munich: IEEE, 2005: 146–148.
  HONDA W, HARADA S, ARIE T, et al. Printed wearable temperature sensor for health monitoring[C]//SENSORS, 2014 IEEE. Valencia: IEEE, 2014: 2227–2229.
  CHANI M T S, KARIMOV K S, ASIRI A M. Impedimetric humidity and temperature sensing properties of the graphene-carbon nanotubes-silicone adhesive nanocomposite[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(7): 6419–6429.
  YANG X, ZHOU Z Y, ZHENG F Z, et al. High sensitivity temperature sensor based on a long, suspended single-walled carbon nanotube array[J]. Micro & Nano Letters, 2010, 5(2): 157–161.
39-48
]
。碳基的柔性温度传感器的常见制备工艺有CVD法[   XING F, LI M, WANG S K, et al. Temperature dependence of electrical resistance in carbon nanotube composite film during curing process[J]. Nanomaterials, 2022, 12(20): 3552.
39
]
、喷涂法[   石磊, 李磊磊, 刘银鹏, 等. 具有线性PTC效应的高灵敏柔性热塑性聚氨酯/石墨烯复合材料温度传感器[J/OL]. 复合材料学报, 2025, 42: 1–15. [2025–04–21]. https://navi.cnki.net/knavi/detail?p=qLM05Z5D9z9p0aS6t1KGD4vIgKBQnLDCcyT51zD7Zp4LnTyRzLAuNQkpUbta6_bUTkJbTVYRGqa5e4OTgHt9QCOGg1-4_cEd70OtfJzqtDQ=&uniplatform=NZKPT.SHI Lei, LI Leilei, LIU Yinpeng, et al. Highly sensitive flexible thermoplastic polyurethane/graphene composite temperature sensor with linear PTC effect[J/OL]. Acta Materiae Compositae Sinica, 2025, 42: 1–15. [2025–04–21]. https://navi.cnki.net/knavi/detail?p=qLM05Z5D9z9p0aS6t1KGD4vIgKBQnLDCcyT51zD7Zp4LnTyRzLAuNQkpUbta6_bUTkJbTVYRGqa5e4OTgHt9QCOGg1-4_cEd70OtfJzqtDQ=&uniplatform=NZKPT.
40
]
、介电电泳法[   GAO W, ZHANG Z G, ZHANG Y, et al. Efficient carbon nanotube/polyimide composites exhibiting tunable temperature coefficient of resistance for multi-role thermal films[J]. Composites Science and Technology, 2020, 199: 108333.
41
]
、3D打印和印刷电路法[   PENG X Y, ZHANG X Q, WANG R, et al. Printing of carbon nanotube-based temperature and bending sensors for high-temperature-resistant intelligent textiles[J]. ACS Applied Electronic Materials, 2022, 4(4): 1949–1957.
42
]
等。Peng等[   PENG X Y, ZHANG X Q, WANG R, et al. Printing of carbon nanotube-based temperature and bending sensors for high-temperature-resistant intelligent textiles[J]. ACS Applied Electronic Materials, 2022, 4(4): 1949–1957.
42
]
在石英织物上印刷了基于MWCNT的温度传感器,其在600 ℃煅烧后保持了良好的TCR值和突出的稳定性。在30~300 ℃的温度范围内,温度传感器的负温度电阻系数为–11.8×10–4–1。石磊等[   石磊, 李磊磊, 刘银鹏, 等. 具有线性PTC效应的高灵敏柔性热塑性聚氨酯/石墨烯复合材料温度传感器[J/OL]. 复合材料学报, 2025, 42: 1–15. [2025–04–21]. https://navi.cnki.net/knavi/detail?p=qLM05Z5D9z9p0aS6t1KGD4vIgKBQnLDCcyT51zD7Zp4LnTyRzLAuNQkpUbta6_bUTkJbTVYRGqa5e4OTgHt9QCOGg1-4_cEd70OtfJzqtDQ=&uniplatform=NZKPT.SHI Lei, LI Leilei, LIU Yinpeng, et al. Highly sensitive flexible thermoplastic polyurethane/graphene composite temperature sensor with linear PTC effect[J/OL]. Acta Materiae Compositae Sinica, 2025, 42: 1–15. [2025–04–21]. https://navi.cnki.net/knavi/detail?p=qLM05Z5D9z9p0aS6t1KGD4vIgKBQnLDCcyT51zD7Zp4LnTyRzLAuNQkpUbta6_bUTkJbTVYRGqa5e4OTgHt9QCOGg1-4_cEd70OtfJzqtDQ=&uniplatform=NZKPT.
40
]
制备了不同石墨烯含量的热塑性聚氨酯/石墨烯(TPU/GNs)复合材料温度传感器,如图3(a)所示。传感器在25~55 ℃之间表现出线性(R2=0.99)的PTC效应,TCR为220×10–4–1。Alamusi等[   ALAMUSI, LI Y, HU N, et al. Temperature-dependent piezoresistivity in an MWCNT/epoxy nanocomposite temperature sensor with ultrahigh performance[J]. Nanotechnology, 2013, 24(45): 455501.
43
]
研究了热膨胀与MWCNT填料对温阻系数的影响,如图3(b)所示,温度变化导致的MWCNT之前产生的隧道效应是当前MWCNT/环氧纳米复合传感器的主要机制,电阻随温度的升高和CNT含量的降低而增大。Liu等[   LIU Q X, TAI H L, YUAN Z, et al. A high-performances flexible temperature sensor composed of polyethyleneimine/reduced graphene oxide bilayer for real-time monitoring[J]. Advanced Materials Technologies, 2019, 4(3): 1800594.
44
]
制备的石墨烯传感器在25~45 ℃范围内具有较高的TCR值(130×10–4–1)、线性度(R2=0.999)、精度(0.1 ℃)。Xing等[   XING F, LI M, WANG S K, et al. Temperature dependence of electrical resistance in carbon nanotube composite film during curing process[J]. Nanomaterials, 2022, 12(20): 3552.
39
]
将碳纳米管薄膜与环氧树脂复合制备出的柔性传感器,在20~180 ℃的温度范围内的TCR值为8.5×10–4–1R2为0.999,并研究了传感器对复合材料固化过程和固化行为的监测。

TCR=ΔRR0ΔT
(1)

表3     柔性温度传感器的TCR值[   XING F, LI M, WANG S K, et al. Temperature dependence of electrical resistance in carbon nanotube composite film during curing process[J]. Nanomaterials, 2022, 12(20): 3552.
  石磊, 李磊磊, 刘银鹏, 等. 具有线性PTC效应的高灵敏柔性热塑性聚氨酯/石墨烯复合材料温度传感器[J/OL]. 复合材料学报, 2025, 42: 1–15. [2025–04–21]. https://navi.cnki.net/knavi/detail?p=qLM05Z5D9z9p0aS6t1KGD4vIgKBQnLDCcyT51zD7Zp4LnTyRzLAuNQkpUbta6_bUTkJbTVYRGqa5e4OTgHt9QCOGg1-4_cEd70OtfJzqtDQ=&uniplatform=NZKPT.SHI Lei, LI Leilei, LIU Yinpeng, et al. Highly sensitive flexible thermoplastic polyurethane/graphene composite temperature sensor with linear PTC effect[J/OL]. Acta Materiae Compositae Sinica, 2025, 42: 1–15. [2025–04–21]. https://navi.cnki.net/knavi/detail?p=qLM05Z5D9z9p0aS6t1KGD4vIgKBQnLDCcyT51zD7Zp4LnTyRzLAuNQkpUbta6_bUTkJbTVYRGqa5e4OTgHt9QCOGg1-4_cEd70OtfJzqtDQ=&uniplatform=NZKPT.
  GAO W, ZHANG Z G, ZHANG Y, et al. Efficient carbon nanotube/polyimide composites exhibiting tunable temperature coefficient of resistance for multi-role thermal films[J]. Composites Science and Technology, 2020, 199: 108333.
  PENG X Y, ZHANG X Q, WANG R, et al. Printing of carbon nanotube-based temperature and bending sensors for high-temperature-resistant intelligent textiles[J]. ACS Applied Electronic Materials, 2022, 4(4): 1949–1957.
  ALAMUSI, LI Y, HU N, et al. Temperature-dependent piezoresistivity in an MWCNT/epoxy nanocomposite temperature sensor with ultrahigh performance[J]. Nanotechnology, 2013, 24(45): 455501.
  LIU Q X, TAI H L, YUAN Z, et al. A high-performances flexible temperature sensor composed of polyethyleneimine/reduced graphene oxide bilayer for real-time monitoring[J]. Advanced Materials Technologies, 2019, 4(3): 1800594.
  ARAI F, NG C, LIU P, et al. Ultra-small site temperature sensing by carbon nanotube thermal probes[C]//4th IEEE Conference on Nanotechnology, 2004. Munich: IEEE, 2005: 146–148.
  HONDA W, HARADA S, ARIE T, et al. Printed wearable temperature sensor for health monitoring[C]//SENSORS, 2014 IEEE. Valencia: IEEE, 2014: 2227–2229.
  CHANI M T S, KARIMOV K S, ASIRI A M. Impedimetric humidity and temperature sensing properties of the graphene-carbon nanotubes-silicone adhesive nanocomposite[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(7): 6419–6429.
  YANG X, ZHOU Z Y, ZHENG F Z, et al. High sensitivity temperature sensor based on a long, suspended single-walled carbon nanotube array[J]. Micro & Nano Letters, 2010, 5(2): 157–161.
39-48
]
Table 3     TCR values of flexible temperature sensors[   XING F, LI M, WANG S K, et al. Temperature dependence of electrical resistance in carbon nanotube composite film during curing process[J]. Nanomaterials, 2022, 12(20): 3552.
  石磊, 李磊磊, 刘银鹏, 等. 具有线性PTC效应的高灵敏柔性热塑性聚氨酯/石墨烯复合材料温度传感器[J/OL]. 复合材料学报, 2025, 42: 1–15. [2025–04–21]. https://navi.cnki.net/knavi/detail?p=qLM05Z5D9z9p0aS6t1KGD4vIgKBQnLDCcyT51zD7Zp4LnTyRzLAuNQkpUbta6_bUTkJbTVYRGqa5e4OTgHt9QCOGg1-4_cEd70OtfJzqtDQ=&uniplatform=NZKPT.SHI Lei, LI Leilei, LIU Yinpeng, et al. Highly sensitive flexible thermoplastic polyurethane/graphene composite temperature sensor with linear PTC effect[J/OL]. Acta Materiae Compositae Sinica, 2025, 42: 1–15. [2025–04–21]. https://navi.cnki.net/knavi/detail?p=qLM05Z5D9z9p0aS6t1KGD4vIgKBQnLDCcyT51zD7Zp4LnTyRzLAuNQkpUbta6_bUTkJbTVYRGqa5e4OTgHt9QCOGg1-4_cEd70OtfJzqtDQ=&uniplatform=NZKPT.
  GAO W, ZHANG Z G, ZHANG Y, et al. Efficient carbon nanotube/polyimide composites exhibiting tunable temperature coefficient of resistance for multi-role thermal films[J]. Composites Science and Technology, 2020, 199: 108333.
  PENG X Y, ZHANG X Q, WANG R, et al. Printing of carbon nanotube-based temperature and bending sensors for high-temperature-resistant intelligent textiles[J]. ACS Applied Electronic Materials, 2022, 4(4): 1949–1957.
  ALAMUSI, LI Y, HU N, et al. Temperature-dependent piezoresistivity in an MWCNT/epoxy nanocomposite temperature sensor with ultrahigh performance[J]. Nanotechnology, 2013, 24(45): 455501.
  LIU Q X, TAI H L, YUAN Z, et al. A high-performances flexible temperature sensor composed of polyethyleneimine/reduced graphene oxide bilayer for real-time monitoring[J]. Advanced Materials Technologies, 2019, 4(3): 1800594.
  ARAI F, NG C, LIU P, et al. Ultra-small site temperature sensing by carbon nanotube thermal probes[C]//4th IEEE Conference on Nanotechnology, 2004. Munich: IEEE, 2005: 146–148.
  HONDA W, HARADA S, ARIE T, et al. Printed wearable temperature sensor for health monitoring[C]//SENSORS, 2014 IEEE. Valencia: IEEE, 2014: 2227–2229.
  CHANI M T S, KARIMOV K S, ASIRI A M. Impedimetric humidity and temperature sensing properties of the graphene-carbon nanotubes-silicone adhesive nanocomposite[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(7): 6419–6429.
  YANG X, ZHOU Z Y, ZHENG F Z, et al. High sensitivity temperature sensor based on a long, suspended single-walled carbon nanotube array[J]. Micro & Nano Letters, 2010, 5(2): 157–161.
39-48
]
材料 温度范围/℃ TCR/(×10–4–1
MWCNT Film[   XING F, LI M, WANG S K, et al. Temperature dependence of electrical resistance in carbon nanotube composite film during curing process[J]. Nanomaterials, 2022, 12(20): 3552.
39
]
20~180 8.5
Graphene[   石磊, 李磊磊, 刘银鹏, 等. 具有线性PTC效应的高灵敏柔性热塑性聚氨酯/石墨烯复合材料温度传感器[J/OL]. 复合材料学报, 2025, 42: 1–15. [2025–04–21]. https://navi.cnki.net/knavi/detail?p=qLM05Z5D9z9p0aS6t1KGD4vIgKBQnLDCcyT51zD7Zp4LnTyRzLAuNQkpUbta6_bUTkJbTVYRGqa5e4OTgHt9QCOGg1-4_cEd70OtfJzqtDQ=&uniplatform=NZKPT.SHI Lei, LI Leilei, LIU Yinpeng, et al. Highly sensitive flexible thermoplastic polyurethane/graphene composite temperature sensor with linear PTC effect[J/OL]. Acta Materiae Compositae Sinica, 2025, 42: 1–15. [2025–04–21]. https://navi.cnki.net/knavi/detail?p=qLM05Z5D9z9p0aS6t1KGD4vIgKBQnLDCcyT51zD7Zp4LnTyRzLAuNQkpUbta6_bUTkJbTVYRGqa5e4OTgHt9QCOGg1-4_cEd70OtfJzqtDQ=&uniplatform=NZKPT.
40
]
25~50 220
SWCNT[   GAO W, ZHANG Z G, ZHANG Y, et al. Efficient carbon nanotube/polyimide composites exhibiting tunable temperature coefficient of resistance for multi-role thermal films[J]. Composites Science and Technology, 2020, 199: 108333.
41
]
0~35 –150
SWCNT[   GAO W, ZHANG Z G, ZHANG Y, et al. Efficient carbon nanotube/polyimide composites exhibiting tunable temperature coefficient of resistance for multi-role thermal films[J]. Composites Science and Technology, 2020, 199: 108333.
41
]
0~35 100
MWCNT[   PENG X Y, ZHANG X Q, WANG R, et al. Printing of carbon nanotube-based temperature and bending sensors for high-temperature-resistant intelligent textiles[J]. ACS Applied Electronic Materials, 2022, 4(4): 1949–1957.
42
]
30~300 –11.8
MWCNT[   ALAMUSI, LI Y, HU N, et al. Temperature-dependent piezoresistivity in an MWCNT/epoxy nanocomposite temperature sensor with ultrahigh performance[J]. Nanotechnology, 2013, 24(45): 455501.
43
]
60~100 210
Graphene[   LIU Q X, TAI H L, YUAN Z, et al. A high-performances flexible temperature sensor composed of polyethyleneimine/reduced graphene oxide bilayer for real-time monitoring[J]. Advanced Materials Technologies, 2019, 4(3): 1800594.
44
]
25~45 130
CNT[   ARAI F, NG C, LIU P, et al. Ultra-small site temperature sensing by carbon nanotube thermal probes[C]//4th IEEE Conference on Nanotechnology, 2004. Munich: IEEE, 2005: 146–148.
45
]
25~90 4
CNT ink[   HONDA W, HARADA S, ARIE T, et al. Printed wearable temperature sensor for health monitoring[C]//SENSORS, 2014 IEEE. Valencia: IEEE, 2014: 2227–2229.
46
]
25~90 –60
CNT、Graphene[   CHANI M T S, KARIMOV K S, ASIRI A M. Impedimetric humidity and temperature sensing properties of the graphene-carbon nanotubes-silicone adhesive nanocomposite[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(7): 6419–6429.
47
]
37~85 –47
CNT Film[   YANG X, ZHOU Z Y, ZHENG F Z, et al. High sensitivity temperature sensor based on a long, suspended single-walled carbon nanotube array[J]. Micro & Nano Letters, 2010, 5(2): 157–161.
48
]
0~100 60.1

图3     柔性温度传感器的设计案例和传感机制
Fig.3     Design cases and sensing mechanisms of flexible temperature sensors

相较于传统金属或高分子基器件,石墨烯、碳纳米管等碳基体系在实现高灵敏度(TCR>2% ℃–1)、宽温域响应(–30~300 ℃)的同时,完美兼容柔性材料的可拉伸性。然而,碳基柔性温度传感器在复杂环境(湿热、真空、辐射等)下的长期信号稳定性、校准精度及规模化制造工艺仍需进一步优化。

2.2     应变感知传感器

应变感知传感器作为测量物体应变变化的关键传感器件,其工作原理基于材料形变至电学信号的转换机制。电阻式应变计作为应用最广泛的传感器类型,通过将机械变形转化为电阻变化实现测量功能。此类传感器的核心性能指标为压阻因子(Gauge factor,GF),即ΔR/R0与应变ε的比值(式(2)),其数值大小直接表征传感器对应变的响应能力。

GF=ΔRR0ε
(2)

柔性应变传感器的核心优势在于其可拉伸性、高GF值及与复杂曲面的共形贴合能力,这些特性源于导电纳米材料与柔性基体的协同设计。以聚二甲基硅氧烷(PDMS)为代表的弹性基底,凭借其高透明度(透光率>90%)、超弹恢复性(应变恢复率>98%)及宽温域稳定性(≤200 ℃),成为碳纳米管、石墨烯、MXene等材料的理想载体[   田文帅, 曹厚勇, 高杰, 等. 基于聚二甲基硅氧烷的可穿戴柔性传感器的研究进展[J]. 分析化学, 2022, 50(11): 1712–1722.TIAN Wenshuai, CAO Houyong, GAO Jie, et al. Research progress of wearable flexible sensors based on polydimethylsiloxane[J]. Chinese Journal of Analytical Chemistry, 2022, 50(11): 1712–1722.
49
]
。通过调控导电网络微结构(如裂纹扩展、纳米片层滑移、量子隧穿效应等),柔性传感器可实现远超传统金属箔应变片的灵敏度(GF=2)与动态响应范围[   田文帅, 曹厚勇, 高杰, 等. 基于聚二甲基硅氧烷的可穿戴柔性传感器的研究进展[J]. 分析化学, 2022, 50(11): 1712–1722.TIAN Wenshuai, CAO Houyong, GAO Jie, et al. Research progress of wearable flexible sensors based on polydimethylsiloxane[J]. Chinese Journal of Analytical Chemistry, 2022, 50(11): 1712–1722.
  邢飞, 李皓鹏, 章令晖, 等. 导电纳米材料在树脂基复合材料成型过程和结构健康监测的研究进展[J/OL]. 材料导报, 2025: 1–15. [2025–04–27]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=CLDB2025042500F&dbname=CJFD&dbcode=CJFQ.XING Fei, LI Haopeng, ZHANG Linghui, et al. Research progress of conductive nano-materials in resin matrix composites molding process and structural health monitoring[J/OL]. China Industrial Economics, 2025: 1–15. [2025–04–27]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=CLDB2025042500F&dbname=CJFD&dbcode=CJFQ.
  曲抒旋, 巩文斌, 孙小珠, 等. 基于碳纳米管薄膜的复合材料在线损伤监测[J]. 航空学报, 2022, 43(1): 424949.QU Shuxuan, GONG Wenbin, SUN Xiaozhu, et al. On-line damage monitoring of composites based on carbon nanotube films[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 424949.
49-51
]

以碳纳米管、石墨烯、MXene等纳米材料为主制备的应变传感器的压阻因子如表4所示[   ZITOUN A, FAKIS D, JAYASREE N, et al. Graphene-based strain sensing in composites for structural and health monitoring applications[J]. SN Applied Sciences, 2022, 4(2): 58.
  PAUL S J, ELIZABETH I, GUPTA B K. Ultrasensitive wearable strain sensors based on a VACNT/PDMS thin film for a wide range of human motion monitoring[J]. ACS Applied Materials & Interfaces, 2021, 13(7): 8871–8879.
  XING F, HE Z L, WANG S K, et al. Nano-particles doped carbon nanotube films for in situ monitoring of temperature and strain during the processing of carbon fiber/epoxy composites[J]. Polymer Composites, 2025, 46(1): 193–207.
  TOLVANEN J, HANNU J, JANTUNEN H. Stretchable and washable strain sensor based on cracking structure for human motion monitoring[J]. Scientific Reports, 2018, 8(1): 13241.
  KOO J H, KIM D C, SHIM H J, et al. Flexible and stretchable smart display: Materials, fabrication, device design, and system integration[J]. Advanced Functional Materials, 2018, 28(35): 1801834.
  WANG Q, LING S J, LIANG X P, et al. Self-healable multifunctional electronic tattoos based on silk and graphene[J]. Advanced Functional Materials, 2019, 29(16): 1808695.
  ZHOU J, XU X Z, YU H, et al. Deformable and wearable carbon nanotube microwire-based sensors for ultrasensitive monitoring of strain, pressure and torsion[J]. Nanoscale, 2017, 9(2): 604–612.
  CHEN Y F, LI J, TAN Y J, et al. Achieving highly electrical conductivity and piezoresistive sensitivity in polydimethylsiloxane/multi-walled carbon nanotube composites via the incorporation of silicon dioxide micro-particles[J]. Composites Science and Technology, 2019, 177: 41–48.
  CAI Y C, SHEN J, DAI Z Y, et al. Extraordinarily stretchable all-carbon collaborative nanoarchitectures for epidermal sensors[J]. Advanced Materials, 2017, 29(31): 1606411.
  DU D H, TANG Z H, OUYANG J Y. Highly washable e-textile prepared by ultrasonic nanosoldering of carbon nanotubes onto polymer fibers[J]. Journal of Materials Chemistry C, 2018, 6(4): 883–889.
  WANG Y L, HAO J, HUANG Z Q, et al. Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring[J]. Carbon, 2018, 126: 360–371.
  WANG X, LI J F, SONG H N, et al. Highly stretchable and wearable strain sensor based on printable carbon nanotube layers/polydimethylsiloxane composites with adjustable sensitivity[J]. ACS Applied Materials & Interfaces, 2018, 10(8): 7371–7380.
  XU T, QIU Q D, LU S W, et al. Multi-direction health monitoring with carbon nanotube film strain sensor[J]. International Journal of Distributed Sensor Networks, 2019, 15(2): 155014771982968.
52-64
]
。通常以溶液喷涂(零维)、纤维(一维)和薄膜(二维)等形式与柔性基底材料复合[   WENG S, ZHANG J S, GAO K, et al. Review on strain transfer effects based on material properties for flexible sensors in structural health monitoring[J]. Smart Materials and Structures, 2025, 34(5): 053002.
65
]
。例如,Huang等[   HUANG K Y, NING H M, HU N, et al. Ultrasensitive MWCNT/PDMS composite strain sensor fabricated by laser ablation process[J]. Composites Science and Technology, 2020, 192: 108105.
66
]
通过CO2激光烧蚀法制备多壁碳纳米管/PDMS超灵敏传感器,在10%应变下经100次循环后仍保持应力–应变曲线的高度重合性,印证了碳基材料在循环载荷下的结构稳定性。Zitoun等[   ZITOUN A, FAKIS D, JAYASREE N, et al. Graphene-based strain sensing in composites for structural and health monitoring applications[J]. SN Applied Sciences, 2022, 4(2): 58.
52
]
提出了一种基于石墨烯的传感器,并建立了一个有限元模型来研究驱动石墨烯作为应变传感器的机制,如图4(a)所示,其压阻因子为6,大于市售的金属箔应变计(GF=2)。Paul等[   PAUL S J, ELIZABETH I, GUPTA B K. Ultrasensitive wearable strain sensors based on a VACNT/PDMS thin film for a wide range of human motion monitoring[J]. ACS Applied Materials & Interfaces, 2021, 13(7): 8871–8879.
53
]
通过垂直排列碳纳米管(VACNT)与PDMS复合,构建了兼具高灵敏度(GF=6436.8)与抗疲劳性(10000次循环后信号漂移<5%)的压阻传感器,成功应用于人体生理信号(呼吸、脉搏)的精准监测。如图4(b)所示,Xing等[   XING F, HE Z L, WANG S K, et al. Nano-particles doped carbon nanotube films for in situ monitoring of temperature and strain during the processing of carbon fiber/epoxy composites[J]. Polymer Composites, 2025, 46(1): 193–207.
54
]
将碳纳米管/SiO2掺杂薄膜嵌入到正交铺层的碳纤复合材料上下表面,实现了脱模过程中残余应力释放和弯曲变形的监测,压阻因子高达2301。

表4     柔性应变传感器的GF值[   ZITOUN A, FAKIS D, JAYASREE N, et al. Graphene-based strain sensing in composites for structural and health monitoring applications[J]. SN Applied Sciences, 2022, 4(2): 58.
  PAUL S J, ELIZABETH I, GUPTA B K. Ultrasensitive wearable strain sensors based on a VACNT/PDMS thin film for a wide range of human motion monitoring[J]. ACS Applied Materials & Interfaces, 2021, 13(7): 8871–8879.
  XING F, HE Z L, WANG S K, et al. Nano-particles doped carbon nanotube films for in situ monitoring of temperature and strain during the processing of carbon fiber/epoxy composites[J]. Polymer Composites, 2025, 46(1): 193–207.
  TOLVANEN J, HANNU J, JANTUNEN H. Stretchable and washable strain sensor based on cracking structure for human motion monitoring[J]. Scientific Reports, 2018, 8(1): 13241.
  KOO J H, KIM D C, SHIM H J, et al. Flexible and stretchable smart display: Materials, fabrication, device design, and system integration[J]. Advanced Functional Materials, 2018, 28(35): 1801834.
  WANG Q, LING S J, LIANG X P, et al. Self-healable multifunctional electronic tattoos based on silk and graphene[J]. Advanced Functional Materials, 2019, 29(16): 1808695.
  ZHOU J, XU X Z, YU H, et al. Deformable and wearable carbon nanotube microwire-based sensors for ultrasensitive monitoring of strain, pressure and torsion[J]. Nanoscale, 2017, 9(2): 604–612.
  CHEN Y F, LI J, TAN Y J, et al. Achieving highly electrical conductivity and piezoresistive sensitivity in polydimethylsiloxane/multi-walled carbon nanotube composites via the incorporation of silicon dioxide micro-particles[J]. Composites Science and Technology, 2019, 177: 41–48.
  CAI Y C, SHEN J, DAI Z Y, et al. Extraordinarily stretchable all-carbon collaborative nanoarchitectures for epidermal sensors[J]. Advanced Materials, 2017, 29(31): 1606411.
  DU D H, TANG Z H, OUYANG J Y. Highly washable e-textile prepared by ultrasonic nanosoldering of carbon nanotubes onto polymer fibers[J]. Journal of Materials Chemistry C, 2018, 6(4): 883–889.
  WANG Y L, HAO J, HUANG Z Q, et al. Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring[J]. Carbon, 2018, 126: 360–371.
  WANG X, LI J F, SONG H N, et al. Highly stretchable and wearable strain sensor based on printable carbon nanotube layers/polydimethylsiloxane composites with adjustable sensitivity[J]. ACS Applied Materials & Interfaces, 2018, 10(8): 7371–7380.
  XU T, QIU Q D, LU S W, et al. Multi-direction health monitoring with carbon nanotube film strain sensor[J]. International Journal of Distributed Sensor Networks, 2019, 15(2): 155014771982968.
52-64
]
Table 4     GF values of flexible strain sensors [   ZITOUN A, FAKIS D, JAYASREE N, et al. Graphene-based strain sensing in composites for structural and health monitoring applications[J]. SN Applied Sciences, 2022, 4(2): 58.
  PAUL S J, ELIZABETH I, GUPTA B K. Ultrasensitive wearable strain sensors based on a VACNT/PDMS thin film for a wide range of human motion monitoring[J]. ACS Applied Materials & Interfaces, 2021, 13(7): 8871–8879.
  XING F, HE Z L, WANG S K, et al. Nano-particles doped carbon nanotube films for in situ monitoring of temperature and strain during the processing of carbon fiber/epoxy composites[J]. Polymer Composites, 2025, 46(1): 193–207.
  TOLVANEN J, HANNU J, JANTUNEN H. Stretchable and washable strain sensor based on cracking structure for human motion monitoring[J]. Scientific Reports, 2018, 8(1): 13241.
  KOO J H, KIM D C, SHIM H J, et al. Flexible and stretchable smart display: Materials, fabrication, device design, and system integration[J]. Advanced Functional Materials, 2018, 28(35): 1801834.
  WANG Q, LING S J, LIANG X P, et al. Self-healable multifunctional electronic tattoos based on silk and graphene[J]. Advanced Functional Materials, 2019, 29(16): 1808695.
  ZHOU J, XU X Z, YU H, et al. Deformable and wearable carbon nanotube microwire-based sensors for ultrasensitive monitoring of strain, pressure and torsion[J]. Nanoscale, 2017, 9(2): 604–612.
  CHEN Y F, LI J, TAN Y J, et al. Achieving highly electrical conductivity and piezoresistive sensitivity in polydimethylsiloxane/multi-walled carbon nanotube composites via the incorporation of silicon dioxide micro-particles[J]. Composites Science and Technology, 2019, 177: 41–48.
  CAI Y C, SHEN J, DAI Z Y, et al. Extraordinarily stretchable all-carbon collaborative nanoarchitectures for epidermal sensors[J]. Advanced Materials, 2017, 29(31): 1606411.
  DU D H, TANG Z H, OUYANG J Y. Highly washable e-textile prepared by ultrasonic nanosoldering of carbon nanotubes onto polymer fibers[J]. Journal of Materials Chemistry C, 2018, 6(4): 883–889.
  WANG Y L, HAO J, HUANG Z Q, et al. Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring[J]. Carbon, 2018, 126: 360–371.
  WANG X, LI J F, SONG H N, et al. Highly stretchable and wearable strain sensor based on printable carbon nanotube layers/polydimethylsiloxane composites with adjustable sensitivity[J]. ACS Applied Materials & Interfaces, 2018, 10(8): 7371–7380.
  XU T, QIU Q D, LU S W, et al. Multi-direction health monitoring with carbon nanotube film strain sensor[J]. International Journal of Distributed Sensor Networks, 2019, 15(2): 155014771982968.
52-64
]
材料 柔性基底 应变范围/% GF
Graphene[   ZITOUN A, FAKIS D, JAYASREE N, et al. Graphene-based strain sensing in composites for structural and health monitoring applications[J]. SN Applied Sciences, 2022, 4(2): 58.
52
]
0~1.6 6
VACNT Forest[   PAUL S J, ELIZABETH I, GUPTA B K. Ultrasensitive wearable strain sensors based on a VACNT/PDMS thin film for a wide range of human motion monitoring[J]. ACS Applied Materials & Interfaces, 2021, 13(7): 8871–8879.
53
]
PDMS 0~30 6436.8
MWCNT film/SiO2[   XING F, HE Z L, WANG S K, et al. Nano-particles doped carbon nanotube films for in situ monitoring of temperature and strain during the processing of carbon fiber/epoxy composites[J]. Polymer Composites, 2025, 46(1): 193–207.
54
]
Epoxy 0~0.02 2301
AgNPs/nylon[   TOLVANEN J, HANNU J, JANTUNEN H. Stretchable and washable strain sensor based on cracking structure for human motion monitoring[J]. Scientific Reports, 2018, 8(1): 13241.
55
]
Silicone rubber 0~4 130
AuNWs+AuNPs[   KOO J H, KIM D C, SHIM H J, et al. Flexible and stretchable smart display: Materials, fabrication, device design, and system integration[J]. Advanced Functional Materials, 2018, 28(35): 1801834.
56
]
SEBS 0~150 4@100%
Graphene/silk fibro in[   WANG Q, LING S J, LIANG X P, et al. Self-healable multifunctional electronic tattoos based on silk and graphene[J]. Advanced Functional Materials, 2019, 29(16): 1808695.
57
]
Silk fibroin 0~90 10@59%
CNT[   ZHOU J, XU X Z, YU H, et al. Deformable and wearable carbon nanotube microwire-based sensors for ultrasensitive monitoring of strain, pressure and torsion[J]. Nanoscale, 2017, 9(2): 604–612.
58
]
PDMS 0~50 107@50%
MWCNT[   CHEN Y F, LI J, TAN Y J, et al. Achieving highly electrical conductivity and piezoresistive sensitivity in polydimethylsiloxane/multi-walled carbon nanotube composites via the incorporation of silicon dioxide micro-particles[J]. Composites Science and Technology, 2019, 177: 41–48.
59
]
PDMS 0~41 62.9
Graphene/CNT[   CAI Y C, SHEN J, DAI Z Y, et al. Extraordinarily stretchable all-carbon collaborative nanoarchitectures for epidermal sensors[J]. Advanced Materials, 2017, 29(31): 1606411.
60
]
PDMS 0~85 20.5@85%
CNT[   DU D H, TANG Z H, OUYANG J Y. Highly washable e-textile prepared by ultrasonic nanosoldering of carbon nanotubes onto polymer fibers[J]. Journal of Materials Chemistry C, 2018, 6(4): 883–889.
61
]
PP–Rayon 0~70 29.9@1%
rGO/PU[   WANG Y L, HAO J, HUANG Z Q, et al. Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring[J]. Carbon, 2018, 126: 360–371.
62
]
Self-standing textile 0~200 15.2~155.7
MWCNT[   WANG X, LI J F, SONG H N, et al. Highly stretchable and wearable strain sensor based on printable carbon nanotube layers/polydimethylsiloxane composites with adjustable sensitivity[J]. ACS Applied Materials & Interfaces, 2018, 10(8): 7371–7380.
63
]
PDMS 0~45 35.8
MWCNT film[   XU T, QIU Q D, LU S W, et al. Multi-direction health monitoring with carbon nanotube film strain sensor[J]. International Journal of Distributed Sensor Networks, 2019, 15(2): 155014771982968.
64
]
Epoxy 0~0.6 60.9

图4     柔性应变传感器的设计案例
Fig.4     Design case of flexible strain sensors

金属基导电纳米材料(如银纳米线、MXene等)凭借其超高导电性与低渗流阈值,为高灵敏柔性传感器的设计开辟了新路径[   王士军, 杨明, 王雯嘉. MXene基复合材料在航空领域应用研究进展[J/OL]. 材料导报, 2025: 1–16. [2025–03–26]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=CLDB20250325004&dbname=CJFD&dbcode=CJFQ.WANG Shijun, YANG Ming, WANG Wenjia. Research progress in application of MXene matrix composites in aviation field[J/OL]. China Industrial Economics, 2025: 1–16. [2025–03–26]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=CLDB20250325004&dbname=CJFD&dbcode=CJFQ.
67
]
。MXene(如Ti3C2Tx等)因其二维层状结构与表面丰富官能团(—OH、—O—),可通过喷涂、共混等工艺与聚氨酯(PU)、水凝胶等柔性基体高效复合,其压阻响应机制源于层间滑移引起的接触电阻变化[   YIN Y M, LI H Y, XU J, et al. Facile fabrication of flexible pressure sensor with programmable lattice structure[J]. ACS Applied Materials & Interfaces, 2021, 13(8): 10388–10396.
29
]
。然而,此类材料在纤维增强复合材料的结构健康监测中应用受限,主要归因于高成本及与树脂固化工艺的兼容性挑战。未来研究需聚焦于低成本规模化制备及界面增强技术,以推动金属基柔性传感器从可穿戴电子向工业级结构健康监测领域拓展。

2.3     压力感知传感器

测量压力、声音震动时的装置称为压力传感器。如上文所述,根据传感原理差异,目前已发展出电阻式、电容式、压阻式及压电式等主要类型,可广泛应用于张力、压缩、压力、重量及声压等力学参量的监测。对于压力和声音传感器,通常采用灵敏度S代替GF作为性能参数(式(3)[   YOU X L, HE J X, NAN N, et al. Stretchable capacitive fabric electronic skin woven by electrospun nanofiber coated yarns for detecting tactile and multimodal mechanical stimuli[J]. Journal of Materials Chemistry C, 2018, 6(47): 12981–12991.
25
]
和(4)[   YOU X L, HE J X, NAN N, et al. Stretchable capacitive fabric electronic skin woven by electrospun nanofiber coated yarns for detecting tactile and multimodal mechanical stimuli[J]. Journal of Materials Chemistry C, 2018, 6(47): 12981–12991.
25
]
),其中压力感知传感器应用的原理更多是压电式和压容式等,近年报道的压力灵敏系数如表5[   LI W Z, XIONG L, PU Y M, et al. High-performance paper-based capacitive flexible pressure sensor and its application in human-related measurement[J]. Nanoscale Research Letters, 2019, 14(1): 183.
34
  LIU W J, LIU N S, YUE Y, et al. A flexible and highly sensitive pressure sensor based on elastic carbon foam[J]. Journal of Materials Chemistry C, 2018, 6(6): 1451–1458.
  LIU W J, LIU N S, YUE Y, et al. Piezoresistive pressure sensor based on synergistical innerconnect polyvinyl alcohol nanowires/wrinkled graphene film[J]. Small, 2018, 14(15): 1704149.
  MA Y N, LIU N S, LI L Y, et al. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances[J]. Nature Communications, 2017, 8(1): 1207.
  钟山, 贾磊, 李晓春, 等. 基于MXene/PEDOT: PSS柔性压力传感器的制备及其在唇语识别中的应用[J]. 复合材料学报, 2025, 42(1): 374–385.ZHONG Shan, JIA Lei, LI Xiaochun, et al. Preparation of flexible pressure sensor based on MXene/PEDOT: PSS and its application in lip language recognition[J]. Acta Materiae Compositae Sinica, 2025, 42(1): 374–385.
  GAO L B, CAO K, HU X K, et al. Nano electromechanical approach for flexible piezoresistive sensor[J]. Applied Materials Today, 2020, 18: 100475.
  ZHAO Y, SHEN T Y, ZHANG M Y, et al. Advancing the pressure sensing performance of conductive CNT/PDMS composite film by constructing a hierarchical-structured surface[J]. Nano Materials Science, 2023, 5(4): 343–350.
  ZHOU Y, ZHAO L P, TAO W, et al. All-nanofiber network structure for ultrasensitive piezoresistive pressure sensors[J]. ACS Applied Materials & Interfaces, 2022, 14(17): 19949–19957.
  FU X Y, LI J Z, LI D D, et al. MXene/ZIF–67/PAN nanofiber film for ultra-sensitive pressure sensors[J]. ACS Applied Materials & Interfaces, 2022, 14(10): 12367–12374.
  FAN Z H, ZHANG L, TAN Q L, et al. Wearable pressure sensor based on MXene/single-wall carbon nanotube film with crumpled structure for broad-range measurements[J]. Smart Material Structures, 2021, 30(3): 035024.
68-76
]
所示,在压力传感器设计过程中,研究者更喜欢基于仿生结构的拓扑设计,构建受压大变形且可回弹的结构。

SP=ΔRR0P
(3)

SdB=ΔRR0dB
(4)

式中,SP为压力灵敏系数,kPa–1SdB为声音灵敏系数,dB–1P为压力变化量。

表5     柔性压力传感器的SP[   LI W Z, XIONG L, PU Y M, et al. High-performance paper-based capacitive flexible pressure sensor and its application in human-related measurement[J]. Nanoscale Research Letters, 2019, 14(1): 183.
34
  LIU W J, LIU N S, YUE Y, et al. A flexible and highly sensitive pressure sensor based on elastic carbon foam[J]. Journal of Materials Chemistry C, 2018, 6(6): 1451–1458.
  LIU W J, LIU N S, YUE Y, et al. Piezoresistive pressure sensor based on synergistical innerconnect polyvinyl alcohol nanowires/wrinkled graphene film[J]. Small, 2018, 14(15): 1704149.
  MA Y N, LIU N S, LI L Y, et al. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances[J]. Nature Communications, 2017, 8(1): 1207.
  钟山, 贾磊, 李晓春, 等. 基于MXene/PEDOT: PSS柔性压力传感器的制备及其在唇语识别中的应用[J]. 复合材料学报, 2025, 42(1): 374–385.ZHONG Shan, JIA Lei, LI Xiaochun, et al. Preparation of flexible pressure sensor based on MXene/PEDOT: PSS and its application in lip language recognition[J]. Acta Materiae Compositae Sinica, 2025, 42(1): 374–385.
  GAO L B, CAO K, HU X K, et al. Nano electromechanical approach for flexible piezoresistive sensor[J]. Applied Materials Today, 2020, 18: 100475.
  ZHAO Y, SHEN T Y, ZHANG M Y, et al. Advancing the pressure sensing performance of conductive CNT/PDMS composite film by constructing a hierarchical-structured surface[J]. Nano Materials Science, 2023, 5(4): 343–350.
  ZHOU Y, ZHAO L P, TAO W, et al. All-nanofiber network structure for ultrasensitive piezoresistive pressure sensors[J]. ACS Applied Materials & Interfaces, 2022, 14(17): 19949–19957.
  FU X Y, LI J Z, LI D D, et al. MXene/ZIF–67/PAN nanofiber film for ultra-sensitive pressure sensors[J]. ACS Applied Materials & Interfaces, 2022, 14(10): 12367–12374.
  FAN Z H, ZHANG L, TAN Q L, et al. Wearable pressure sensor based on MXene/single-wall carbon nanotube film with crumpled structure for broad-range measurements[J]. Smart Material Structures, 2021, 30(3): 035024.
68-76
]
Table 5     SP Values of flexible pressure sensors[   LI W Z, XIONG L, PU Y M, et al. High-performance paper-based capacitive flexible pressure sensor and its application in human-related measurement[J]. Nanoscale Research Letters, 2019, 14(1): 183.
34
,   LIU W J, LIU N S, YUE Y, et al. A flexible and highly sensitive pressure sensor based on elastic carbon foam[J]. Journal of Materials Chemistry C, 2018, 6(6): 1451–1458.
  LIU W J, LIU N S, YUE Y, et al. Piezoresistive pressure sensor based on synergistical innerconnect polyvinyl alcohol nanowires/wrinkled graphene film[J]. Small, 2018, 14(15): 1704149.
  MA Y N, LIU N S, LI L Y, et al. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances[J]. Nature Communications, 2017, 8(1): 1207.
  钟山, 贾磊, 李晓春, 等. 基于MXene/PEDOT: PSS柔性压力传感器的制备及其在唇语识别中的应用[J]. 复合材料学报, 2025, 42(1): 374–385.ZHONG Shan, JIA Lei, LI Xiaochun, et al. Preparation of flexible pressure sensor based on MXene/PEDOT: PSS and its application in lip language recognition[J]. Acta Materiae Compositae Sinica, 2025, 42(1): 374–385.
  GAO L B, CAO K, HU X K, et al. Nano electromechanical approach for flexible piezoresistive sensor[J]. Applied Materials Today, 2020, 18: 100475.
  ZHAO Y, SHEN T Y, ZHANG M Y, et al. Advancing the pressure sensing performance of conductive CNT/PDMS composite film by constructing a hierarchical-structured surface[J]. Nano Materials Science, 2023, 5(4): 343–350.
  ZHOU Y, ZHAO L P, TAO W, et al. All-nanofiber network structure for ultrasensitive piezoresistive pressure sensors[J]. ACS Applied Materials & Interfaces, 2022, 14(17): 19949–19957.
  FU X Y, LI J Z, LI D D, et al. MXene/ZIF–67/PAN nanofiber film for ultra-sensitive pressure sensors[J]. ACS Applied Materials & Interfaces, 2022, 14(10): 12367–12374.
  FAN Z H, ZHANG L, TAN Q L, et al. Wearable pressure sensor based on MXene/single-wall carbon nanotube film with crumpled structure for broad-range measurements[J]. Smart Material Structures, 2021, 30(3): 035024.
68-76
]
材料 基体 应力范围/kPa SP/kPa–1
Silver nanowires[   LI W Z, XIONG L, PU Y M, et al. High-performance paper-based capacitive flexible pressure sensor and its application in human-related measurement[J]. Nanoscale Research Letters, 2019, 14(1): 183.
34
]
PDMS 1~2 1.05
Carbonized carbon foam[   LIU W J, LIU N S, YUE Y, et al. A flexible and highly sensitive pressure sensor based on elastic carbon foam[J]. Journal of Materials Chemistry C, 2018, 6(6): 1451–1458.
68
]
PI 0~10 100.3@0~1.8 kPa
rGO/PVA NWs[   LIU W J, LIU N S, YUE Y, et al. Piezoresistive pressure sensor based on synergistical innerconnect polyvinyl alcohol nanowires/wrinkled graphene film[J]. Small, 2018, 14(15): 1704149.
69
]
PI 0~10 28.3@4~10 kPa
MXene[   MA Y N, LIU N S, LI L Y, et al. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances[J]. Nature Communications, 2017, 8(1): 1207.
70
]
PDMS 0~35 0.18@0~5 kPa
MXene/PEDOT:PSS[   钟山, 贾磊, 李晓春, 等. 基于MXene/PEDOT: PSS柔性压力传感器的制备及其在唇语识别中的应用[J]. 复合材料学报, 2025, 42(1): 374–385.ZHONG Shan, JIA Lei, LI Xiaochun, et al. Preparation of flexible pressure sensor based on MXene/PEDOT: PSS and its application in lip language recognition[J]. Acta Materiae Compositae Sinica, 2025, 42(1): 374–385.
71
]
Ecoflex 0~2.5 42.31
Graphene[   GAO L B, CAO K, HU X K, et al. Nano electromechanical approach for flexible piezoresistive sensor[J]. Applied Materials Today, 2020, 18: 100475.
72
]
MnO2 NWs 0~28.9 8.6
h–CNT[   ZHAO Y, SHEN T Y, ZHANG M Y, et al. Advancing the pressure sensing performance of conductive CNT/PDMS composite film by constructing a hierarchical-structured surface[J]. Nano Materials Science, 2023, 5(4): 343–350.
73
]
PDMS 0~18 4.7×10–1
PEDOT:PSS[   ZHOU Y, ZHAO L P, TAO W, et al. All-nanofiber network structure for ultrasensitive piezoresistive pressure sensors[J]. ACS Applied Materials & Interfaces, 2022, 14(17): 19949–19957.
74
]
PA6 0~1.4 6554.6
MXene[   FU X Y, LI J Z, LI D D, et al. MXene/ZIF–67/PAN nanofiber film for ultra-sensitive pressure sensors[J]. ACS Applied Materials & Interfaces, 2022, 14(10): 12367–12374.
75
]
PAN 0~100 62.8
MXene/SWCNT[   FAN Z H, ZHANG L, TAN Q L, et al. Wearable pressure sensor based on MXene/single-wall carbon nanotube film with crumpled structure for broad-range measurements[J]. Smart Material Structures, 2021, 30(3): 035024.
76
]
0~40 116.15

Gao等[   GAO L B, CAO K, HU X K, et al. Nano electromechanical approach for flexible piezoresistive sensor[J]. Applied Materials Today, 2020, 18: 100475.
72
]
使用生物衍生叶脉作为第1层避免层,将传感元件和电极部分分离,并在石墨薄片内使用超长二氧化锰纳米线作为第2层间隔层,将SP值从4.7 kPa–1显著提高到8.6 kPa–1,并将传感范围扩大到28.9 kPa,并揭示了加载和卸载过程中微观尺度的变化(图5(a))。Zhao团队通过溶液共混与叶片涂层协同工艺,成功构建了具有层级排列特征的h–CNT/PDMS复合薄膜,该团队创新性地采用交指电极与聚氨酯透明胶带封装策略,开发出新型h–CNT/PDMS压阻传感器[   ZHAO Y, SHEN T Y, ZHANG M Y, et al. Advancing the pressure sensing performance of conductive CNT/PDMS composite film by constructing a hierarchical-structured surface[J]. Nano Materials Science, 2023, 5(4): 343–350.
73
]
。试验数据显示,该器件在宽域压力响应中展现出梯度SP值特征:4.66×10–1 kPa–1(0~18 kPa)、4.57×10–1 kPa–1(18~133 kPa)、0.99×10–1 kPa–1(133~300 kPa),体现了优异的全量程适应能力。Zhou等[   ZHOU Y, ZHAO L P, TAO W, et al. All-nanofiber network structure for ultrasensitive piezoresistive pressure sensors[J]. ACS Applied Materials & Interfaces, 2022, 14(17): 19949–19957.
74
]
利用静电纺丝技术制备了由PEDOT∶PSS/PA6组成的复合纳米纤维膜,如图5(b)所示。该传感器具有灵敏度高(0~1.4 kPa时6554.6 kPa–1)、响应时间快(53 ms)、检测压力范围宽(60 kPa)等特点。该装置在5 kPa下循环加载超过10000次时仍保持超高灵敏度。Fu等[   FU X Y, LI J Z, LI D D, et al. MXene/ZIF–67/PAN nanofiber film for ultra-sensitive pressure sensors[J]. ACS Applied Materials & Interfaces, 2022, 14(10): 12367–12374.
75
]
利用静电纺丝技术制备的MXene/ZIF–67/聚丙烯腈(PAN)纳米纤维薄膜开发出可穿戴压力传感器,其具有较宽的工作范围(0~100 kPa)、良好的灵敏度(62.8 kPa–1)和强大的机械稳定性(超过10000次循环)。Fan等[   FAN Z H, ZHANG L, TAN Q L, et al. Wearable pressure sensor based on MXene/single-wall carbon nanotube film with crumpled structure for broad-range measurements[J]. Smart Material Structures, 2021, 30(3): 035024.
76
]
通过真空辅助过滤结合热致收缩技术,实现了Ti3C2Tx与单壁碳纳米管(SWCNT)的精准复合,所研制传感器展现出显著的双模响应特性:低压区(<40 kPa)的SP值度高达116.15 kPa–1;高压段(40~130 kPa)仍维持12.7 kPa–1的稳定响应。另外,传感器具备13 ms超快响应速度、33 Pa微小压力分辨极限以及130 kPa超高检测上限。经6000次循环测试,SP值衰减率低于5%,证实了其卓越的机械耐久性。

图5     柔性压力传感器的工作原理及设计思路
Fig.5     Working principle and design concept of flexible pressure sensors

因此,柔性压力传感器在航空航天领域面临特殊挑战与重大机遇。当前技术受限于极端环境适应性,器件在超低温(如深空环境的–270 ℃)、高频振动及强辐射条件下易出现材料脆化、导电网络失效等问题,制约其在航天器结构健康监测、舱外宇航服触觉反馈等场景的应用。未来突破需聚焦耐候性材料体系开发,通过碳基纳米材料与陶瓷聚合物复合,构建兼具宽温域稳定性与抗辐照特性的敏感单元。结合仿生微结构设计与柔性电子集成工艺,实现曲面共形贴装与多维力学信号同步感知,满足飞行器气动外形实时监测、机械臂精准操控等需求。同步发展自供电技术与无线传输模块,可突破传统供能限制,为深空探测装备提供轻量化、长寿命的智能感知解决方案。随着材料科学与微纳制造技术的协同创新,柔性传感器将推动航空航天装备向智能化、自适应方向跨越发展。

3     面向航空航天领域的发展趋势与挑战

近年来,柔性传感器在材料科学、微纳制造与人工智能交叉融合的推动下取得突破性进展,其在可穿戴医疗、运动健康监测等领域的商业化应用已初具规模[   邵艳秋, 任婷, 王迪, 等. 可印刷柔性传感器在人体健康监测中的研究进展[J]. 材料导报, 2025, 39(12): 28–36.SHAO Yanqiu, REN Ting, WANG Di, et al. Research progress of printable flexible sensors in human health monitoring[J]. Materials Reports, 2025, 39(12): 28–36.
77
]
。然而,面向航空航天典型承力结构(如民机机翼、空间展开机构等)的工程化应用仍鲜见报道,究其根源在于3大关键技术瓶颈亟待突破:(1)长期服役可靠性验证体系缺失,柔性传感器在循环载荷、湿热老化、电磁辐照等工况下的疲劳寿命预测缺乏标准化测试方法[   谢有秀, 李逢春, 杨潇东, 等. 基于热塑性聚氨酯熔喷非织造材料的高性能柔性应变传感器[J]. 高分子学报, 2025, 56(7): 1203–1214.XIE Youxiu, LI Fengchun, YANG Xiaodong, et al. High performance flexible strain sensor based on thermoplastic polyurethane melt-blown nonwovens[J]. Acta Polymerica Sinica, 2025, 56(7): 1203–1214.
78
]
。(2)数据传输方式和信号处理技术需提高,例如外接导线易对结构性能产生影响、造成应力集中等[   马雪, 孙东睿, 金科, 等. 柔性传感器在智能网联汽车上的应用与发展[J]. 汽车工艺与材料, 2025(7): 1–18.MA Xue, SUN Dongrui, JIN Ke, et al. Application and Development of Flexible Sensors in Intelligent Connected Vehicles [J]. Automotive Technology and Materials, 2025(7): 1–18.
79
]
。(3)极端热力环境适应性受限,现有柔性传感器耐温阈值普遍局限在0~200 ℃,无法应用到超高温/低温环境下的结构监测[   董轩, 刘立俊. 碳基导电纤维材料的研究进展[J/OL]. 棉纺织技术, 2025: 1–9. [2025–07–26]. https://www.cnki.com.cn/Article/CJFDTotal-MFJS20250627001.DONG Xuan, LIU Lijun. Research Progress of Carbon-Based Conductive Fiber Materials[J/OL]. Cotton Textile Technology, 2025: 1–9. [2025–07–26]. https://www.cnki.com.cn/Article/CJFDTotal-MFJS20250627001.
80
]
。但随着陶瓷基柔性传感材料、无线供能技术(如射频能量采集)与数字孪生算法的协同突破,柔性传感器有望从实验室跨越至工程应用阶段,成为空天智能结构健康监测系统的核心技术[   NESSER H, MAHMOUD H A, LUBINEAU G. High-sensitivity RFID sensor for structural health monitoring[J]. Advanced Science, 2023, 10(26): 2301807.
81
]

3.1     航空领域

在航空领域,柔性传感器的技术攻关需面向飞行器全寿命周期健康管理,重点解决关键承力结构的疲劳损伤和冲击响应等工程痛点。目前,光纤光栅技术已应用到民机复合材料的结构健康监测中(图6(a)),但是光纤质脆,嵌入复合材料内部后对力学性能有损伤[   WADA D, IGAWA H, TAMAYAMA M, et al. Flight demonstrationof aircraft fuselage and bulkhead monitoring using optical fiber dis-tributed sensing system[J]. Smart Materials and Structures, 2018, 27(2): 025014.
82
]
,碳基纳米材料制备的柔性传感器可以有效地解决这一问题,是结构/功能一体化的可选材料之一,可用于关键部位的结构应变监测、疲劳裂纹监测、压力监测和冲击损伤监测等(图6(b)[   卿新林, 王奕首, 赵琳. 结构健康监测技术及其在航空航天领域中的应用[J]. 实验力学, 2012, 27(5): 517–526.QING Xinlin, WANG Yishou, ZHAO Lin. Structural health monitoring technology and its application in aeronautics and astronautics[J]. Journal of Experimental Mechanics, 2012, 27(5): 517–526.
83
]
)。例如,民机复合材料机翼疲劳裂纹扩展监测。针对CFRP层压板在循环载荷下的分层/纤维断裂耦合损伤机制,可采用多物理场融合传感策略:将碳基纳米材料/聚偏氟乙烯(PVDF)压电复合薄膜共固化嵌入蒙皮–桁条界面,通过电阻–电容双模信号解耦分层与纤维损伤。再如长期循环载荷下蒙皮–桁条界面易发生分层与纤维断裂的监测,将碳基纳米材料/PDMS传感薄膜嵌入蒙皮铺层间,与复合材料同步固化成型,预测裂纹扩展趋势并优化检修周期,替代传统定期拆解检测。

图6     光纤在航空领域的应用及柔性传感器在航空领域潜在的应用
Fig.6     Application of optical fibers in the aviation field and the potential application of flexible sensors in the aviation field

3.2     航天领域

近年来,光纤光栅技术虽已应用与国内外卫星结构中(图7(a)[   韩润奇, 刘伟松, 林伯韬, 等. 航天器结构健康监测技术研究进展[J]. 遥测遥控, 2025, 46(3): 1–24.HAN Runqi, LIU Weisong, LIN Botao, et al. Research progress on spacecraft structural health monitoring technology[J]. Journal of Telemetry, Tracking and Command, 2025, 46(3): 1–24.
84
]
)和(b)
[   韩润奇, 刘伟松, 林伯韬, 等. 航天器结构健康监测技术研究进展[J]. 遥测遥控, 2025, 46(3): 1–24.HAN Runqi, LIU Weisong, LIN Botao, et al. Research progress on spacecraft structural health monitoring technology[J]. Journal of Telemetry, Tracking and Command, 2025, 46(3): 1–24.
84
]
),但在实际监测中仍存在诸多局限性,柔性传感器技术正展现出弥补这些不足的潜力。在航天领域,柔性传感器需同时着眼于未来深空探测与空间站建设中复合材料长期服役的监测需求,并满足可回收航天器重复使用寿命监测的要求,以实现对结构微变形与大变形的有效监测,从而提升产品的重复使用次数与在轨稳定运行寿命。以图7(c)为例[   李蒙. 给中国空间站拍张“全家福”[J]. 知识就是力量, 2024(2): 30–31.LI Meng. Take a “family photo” of China’s space station[J]. Knowledge is Power, 2024(2): 30–31.
  张万欣, 丁凌艳, 李元丰, 等. 航天服技术的发展历程与展望[J]. 航天医学与医学工程, 2025, 38(2): 89–95.ZHANG Wanxin, DING Lingyan, LI Yuanfeng, et al. Spacesuit technology: An evolutionary journey and prospective directions[J]. Space Medicine & Medical Engineering, 2025, 38(2): 89–95.
85-86
]
,其一,航天器结构微应变监测。深空探测器、遥感卫星和空间站等长期暴露在高能粒子辐射、冷热交变与微陨石撞击环境中,极端环境会易引发碳纤维复合材料(如太阳能帆板、天线、空间可展开结构等)产生亚毫米级裂纹与界面脱黏,导致太阳能帆板功率衰减与天线信号失真。针对此问题,可采用柔性应变监测传感器监测结构的应变变化。如使用碳纳米管/石墨烯材料涂覆或嵌入结构中,通过监测其电阻响应,实现服役状态的监测,并可与自修复树脂(微胶囊化导电聚合物)配合使用,实现应变监测与损伤修复的协同作用。其二,机械臂在空间站和火星、月球表面采样等任务中发挥重要作用,关节轴承因粉尘侵入导致异常磨损,影响操作精度。可考虑在轴承外圈集成柔性摩擦电传感器(PDMS/导电粒子摩擦电层),通过摩擦电信号强度变化监测磨损程度。其三,地外着陆器缓冲结构大变形量化。月球/小行星着陆器在触地瞬间,铝蜂窝缓冲结构的塑性变形需精确量化以评估重复使用能力。可考虑将导电粒子与高弹性PDMS复合后贴于蜂窝表面,实现缓冲过程的大变形监测。另外,还有火箭推进系统压力传感监测、宇航服温度传感和关节应变应力监测等领域也有望应用柔性传感技术。

图7     光纤在航天领域的应用及柔性传感器在航天领域潜在的应用
Fig.7     Application of optical fibers in the aerospace field and the potential applications of flexible sensors in the aerospace field

4     结论与展望

复合材料在航空航天领域的广泛应用对其结构健康监测提出了智能化、实时化、原位化的迫切需求。柔性传感器技术,特别是以碳纳米管、石墨烯和MXene等新兴纳米材料为核心的传感技术,凭借其高灵敏度、优异的形态适配性、宽监测范围以及多物理量感知潜力,为复合材料结构健康监测(SHM)开辟了革命性的新途径。本文系统综述了柔性传感器在复合材料SHM领域的研究进展。在关键技术与机理层面,重点探讨了压阻式、压容式(包括离子型)、压电式及摩擦电式等主要传感机制,深入分析了碳基材料(CNT、石墨烯)和MXene等纳米材料独特的物理/化学性质(如量子尺寸效应、高比表面积、优异的电学/机械性能)如何赋能高灵敏度、快速响应和良好稳定性的柔性传感器设计。结构设计(如多孔、多层、微金字塔、互锁结构)和纳米材料/柔性基底(如PDMS、PI等)的协同优化是提升传感器性能的关键策略。

面向未来航空航天领域的发展,柔性传感器在实现复合材料结构功能一体化、智能蒙皮、实时损伤诊断与寿命预测方面具有广阔前景,但仍需突破三大关键技术瓶颈:(1)长期服役可靠性,亟需建立标准化测试方法和预测模型,评估其在循环载荷、湿热老化、辐照等极端复杂工况下的疲劳寿命与信号稳定性;(2)制造与集成工艺,需解决柔性传感器与复合材料制造工艺(如热压罐固化等)的兼容性问题,并发展高效、可靠、无干扰的数据传输方案(如无线传感网络),消除外接导线导致的应力集中和性能影响;(3)极端环境适应性,提升现有柔性传感器(特别是传感材料与界面)的耐温极限,以满足高超音速飞行器、临近空间装备等超高温环境监测需求。

总之,柔性传感器技术是推动航空航天复合材料结构向智能化、高可靠、长寿命方向发展的关键使能技术之一。随着材料科学与高端装备制造等领域深度交叉融合,以及工程化应用瓶颈的逐步突破,柔性传感器必将在保障未来空天装备安全、高效、智能运行中发挥不可替代的核心作用。

作者介绍



邢飞 博士,工程师,主要研究方向为先进复合材料结构健康监测、复合材料界面性能等。

参考文献

[1]

IRFAN M S, KHAN T, HUSSAIN T, et al. Carbon coated piezoresistive fiber sensors: From process monitoring to structural health monitoring of composites–A review[J]. Composites Part A: Applied Science and Manufacturing, 2021, 141: 106236.

[2]

蒋孝伟, 章文瑾, 刘玲. 复合材料结构健康监测中机器学习方法研究进展[J]. 航空制造技术, 2024, 67(13): 3040.
JIANG Xiaowei, ZHANG Wenjin, LIU Ling. Research progress on machine learning methods in structural health monitoring of composite materials[J]. Aeronautical Manufacturing Technology, 2024, 67(13): 3040.

[3]

田童, 李建乐, 邓德双, . 飞行器结构健康监测技术研究进展[J]. 航空制造技术, 2024, 67(13): 4167, 98.
TIAN Tong, LI Jianle, DENG Deshuang, et al. Research progress of structural health monitoring technology for aircraft[J]. Aeronautical Manufacturing Technology, 2024, 67(13): 4167, 98.

[4]

冯振辉, 王哲, 曾捷, . 复合材料层板光纤冲击判位与载荷历程重构方法[J]. 复合材料科学与工程, 2024(9): 5256, 112.
FENG Zhenhui, WANG Zhe, ZENG Jie, et al. A method for optical fiber impact localization and load history reconstruction of composite laminates[J]. Composites Science and Engineering, 2024(9): 5256, 112.

[5]

ZANG X L, XU Z D, LU H F, et al. Ultrasonic guided wave techniques and applications in pipeline defect detection: A review[J]. International Journal of Pressure Vessels and Piping, 2023, 206: 105033.

[6]

李银波, 杨建, 邢保英, . 基于声发射的铝合金薄板自冲铆成形过程分析[J]. 塑性工程学报, 2025, 32(5): 5259.
LI Yinbo, YANG Jian, XING Baoying, et al. Analysis of self-piercing riveting forming process for aluminum alloy sheets based on acoustic emission[J]. Journal of Plasticity Engineering, 2025, 32(5): 5259.

[7]

汪玉, 邱雷, 黄永安. 面向飞行器结构健康监测智能蒙皮的柔性传感器网络综述[J]. 航空制造技术, 2020, 63(15): 6069, 80.
WANG Yu, QIU Lei, HUANG Yongan. Review of flexible sensor networks for structural health monitoring of aircraft smart skin[J]. Aeronautical Manufacturing Technology, 2020, 63(15): 6069, 80.

[8]

刘志文, 崔旭, 徐礼胜, . 聚合物基石墨烯复合材料在柔性传感器领域的研究进展[J]. 航空制造技术, 2019, 62(15): 7887, 92.
LIU Zhiwen, CUI Xu, XU Lisheng, et al. Progress in application of graphene conductive composites in flexible sensors[J]. Aeronautical Manufacturing Technology, 2019, 62(15): 7887, 92.

[9]

杜厚义, 赫玉欣, 黄烈然, . 具有结构健康监测功能的纤维增强聚合物基复合材料的研究现状[J]. 化工新型材料, 2025, 53(1): 914.
DU Houyi, HE Yuxin, HUANG Lieran, et al. Research status of fiber-reinforced polymer-based composites with structural health monitoring function[J]. New Chemical Materials, 2025, 53(1): 914.

[10]

王国珍, 黄克瑶, 朱妍焘. 结构健康监测技术研究及其在航空航天领域中的应用[J]. 科技资讯, 2022, 20(14): 5658.
WANG Guozhen, HUANG Keyao, ZHU Yantao. Research on structural health monitoring technology and its application in aerospace field[J]. Science & Technology Information, 2022, 20(14): 5658.

[11]

刘青旭, 陈海峰, ANTON B, . 航天复合材料结构健康监测技术应用进展[J]. 复合材料学报, 2024, 41(9): 45634588.
LIU Qingxu, CHEN Haifeng, ANTON B, et al. Progress in application on health monitoring technology for aerospace composite structures[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 45634588.

[12]

张松月. 基于纳米银线与PDMS的微结构柔性电子皮肤的设计与应用[D]. 重庆: 重庆大学, 2021.
ZHANG Songyue. Design and application of micro-structured flexible electronics skin based on nano-silver wire and PDMS[D]. Chongqing: Chongqing University, 2021.

[13]

赵赟. 新型柔性传感器在可穿戴设备中的应用研究[J]. 模具制造, 2024, 24(10): 165167.
ZHAO Yun. Research on the application of new flexible sensors in wearable devices[J]. Die & Mould Manufacture, 2024, 24(10): 165167.

[14]

王丞, 王进美, 魏玲玲, . 导电纱线及柔性传感器在智能可穿戴设备中的应用[J]. 轻纺工业与技术, 2023, 52(4): 116118.
WANG Cheng, WANG Jinmei, WEI Lingling, et al. Application of conductive yarn and flexible sensor in smart wearable devices[J]. Light and Textile Industry and Technology, 2023, 52(4): 116118.

[15]

WANG Z Y, WANG T, ZHUANG M D, et al. Stretchable polymer composite with a 3D segregated structure of PEDOT: PSS for multifunctional touchless sensing[J]. ACS Applied Materials & Interfaces, 2019, 11(48): 4530145309.

[16]

王韵, 胡少恒, 邓阿申, . 基于纳米纤维素/多壁碳纳米管气凝胶和泡沫镍构筑的三维复合材料及其电容性能[J]. 复合材料学报, 2023, 40(9): 53505358.
WANG Yun, HU Shaoheng, DENG Ashen, et al. Three-dimensional hybrid material constructed by cellulose nanofibers/multiwall carbon nanotubes aerogel and foam nickel and its electrochemical capacitance performance[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 53505358.

[17]

CHOI Y I, HWANG B U, MEESEEPONG M, et al. Stretchable and transparent nanofiber-networked electrodes based on nanocomposites of polyurethane/reduced graphene oxide/silver nanoparticles with high dispersion and fused junctions[J]. Nanoscale, 2019, 11(9): 39163924.

[18]

WEI Y H, QIAO Y C, JIANG G Y, et al. A wearable skinlike ultra-sensitive artificial graphene throat[J]. ACS Nano, 2019, 13(8): 86398647.

[19]

DING L, XUAN S H, PEI L, et al. Stress and magnetic field bimode detection sensors based on flexible CI/CNTs–PDMS sponges[J]. ACS Applied Materials & Interfaces, 2018, 10(36): 3077430784.

[20]

郑贻强. 基于MXene复合材料的柔性传感器设计策略及其在人体健康监测领域的应用研究[D]. 长春: 吉林大学, 2024.
ZHENG Yiqiang. Design strategy of flexible sensor based on MXene composite material and its application in the field of human health monitoring[D]. Changchun: Jilin University, 2024.

[21]

WANG B H, FACCHETTI A. Mechanically flexible conductors for stretchable and wearable e-skin and e-textile devices[J]. Advanced Materials, 2019, 31(28): 1901408.

[22]

KIM S H, JUNG S, YOON I S, et al. Ultrastretchable conductor fabricated on skin-like hydrogel-elastomer hybrid substrates for skin electronics[J]. Advanced Materials, 2018, 30(26): 1800109.

[23]

LIU Z Y, WANG Y, REN Y Y, et al. Poly(ionic liquid) hydrogel-based anti-freezing ionic skin for a soft robotic gripper[J]. Materials Horizons, 2020, 7(3): 919927.

[24]

CHEN T, SHI Q F, ZHU M L, et al. Triboelectric self-powered wearable flexible patch as 3D motion control interface for robotic manipulator[J]. ACS Nano, 2018, 12(11): 1156111571.

[25]

YOU X L, HE J X, NAN N, et al. Stretchable capacitive fabric electronic skin woven by electrospun nanofiber coated yarns for detecting tactile and multimodal mechanical stimuli[J]. Journal of Materials Chemistry C, 2018, 6(47): 1298112991.

[26]

倪秀雯. 基于MXene的高性能柔性电子皮肤设计及应用[D]. 青岛: 青岛科技大学, 2022.
NI Xiuwen. Design and application of high performance flexible electronics skin based on MXene[D]. Qingdao: Qingdao University of Science & Technology, 2022.

[27]

张铖. 基于纳米技术的柔性可穿戴电子皮肤的制备和应用研究[D]. 成都: 电子科技大学, 2022.
ZHANG Cheng. Preparation and application of flexible wearable electronic skin based on nanotechnology[D]. Chengdu: University of Electronic Science and Technology of China, 2022.

[28]

SUN J Z, DU H, CHEN Z J, et al. MXene quantum dot within natural 3D watermelon peel matrix for biocompatible flexible sensing platform[J]. Nano Research, 2022, 15(4): 36533659.

[29]

YIN Y M, LI H Y, XU J, et al. Facile fabrication of flexible pressure sensor with programmable lattice structure[J]. ACS Applied Materials & Interfaces, 2021, 13(8): 1038810396.

[30]

DU Q F, LIU L L, TANG R T, et al. High-performance flexible pressure sensor based on controllable hierarchical microstructures by laser scribing for wearable electronics[J]. Advanced Materials Technologies, 2021, 6(9): 2100122.

[31]

YAO H C, SUN T, CHIAM J S, et al. Augmented reality interfaces using virtual customization of microstructured electronic skin sensor sensitivity performances[J]. Advanced Functional Materials, 2021, 31(39): 2008650.

[32]

HARADA S, KANAO K, YAMAMOTO Y, et al. Fully printed flexible fingerprint-like three-axis tactile and slip force and temperature sensors for artificial skin[J]. ACS Nano, 2014, 8(12): 1285112857.

[33]

李宁. 基于纳米纤维结构柔性电子皮肤的设计及应用研究[D]. 济南: 济南大学, 2023.
LI Ning. Design and application of flexible electronics skin based on nanofiber structure[D]. Jinan: University of Jinan, 2023.

[34]

LI W Z, XIONG L, PU Y M, et al. High-performance paper-based capacitive flexible pressure sensor and its application in human-related measurement[J]. Nanoscale Research Letters, 2019, 14(1): 183.

[35]

曹旭阳. 基于柔性压阻纤维层的复材构件变形监测[D]. 杭州: 浙江理工大学, 2023.
CAO Xuyang. Deformation monitoring of composite components based on flexible piezoresistive fiber layer[D]. Hangzhou: Zhejiang Sci-Tech University, 2023.

[36]

KIM H J, KIM Y J. High performance flexible piezoelectric pressure sensor based on CNTs-doped 0–3 ceramic–epoxy nanocomposites[J]. Materials & Design, 2018, 151: 133140.

[37]

齐越. 石墨烯温度传感器温敏机理与实验验证[D]. 太原: 中北大学, 2022.
QI Yue. Temperature-sensitive mechanism and experimental verification of graphene temperature sensor[D]. Taiyuan: North University of China, 2022.

[38]

郭丁萌, 李晓玉, 孙天懿, . 热敏型碳点作为温度传感材料的研究进展[J]. 材料导报, 2024, 38(18): 4757.
GUO Dingmeng, LI Xiaoyu, SUN Tianyi, et al. Research progress of thermosensitive carbon dots as temperature sensing materials[J]. Materials Reports, 2024, 38(18): 4757.

[39]

XING F, LI M, WANG S K, et al. Temperature dependence of electrical resistance in carbon nanotube composite film during curing process[J]. Nanomaterials, 2022, 12(20): 3552.

[40]

石磊, 李磊磊, 刘银鹏, . 具有线性PTC效应的高灵敏柔性热塑性聚氨酯/石墨烯复合材料温度传感器[J/OL]. 复合材料学报, 2025, 42: 115. [2025–04–21]. https://navi.cnki.net/knavi/detail?p=qLM05Z5D9z9p0aS6t1KGD4vIgKBQnLDCcyT51zD7Zp4LnTyRzLAuNQkpUbta6_bUTkJbTVYRGqa5e4OTgHt9QCOGg1-4_cEd70OtfJzqtDQ=&uniplatform=NZKPT.
SHI Lei, LI Leilei, LIU Yinpeng, et al. Highly sensitive flexible thermoplastic polyurethane/graphene composite temperature sensor with linear PTC effect[J/OL]. Acta Materiae Compositae Sinica, 2025, 42: 115. [2025–04–21]. https://navi.cnki.net/knavi/detail?p=qLM05Z5D9z9p0aS6t1KGD4vIgKBQnLDCcyT51zD7Zp4LnTyRzLAuNQkpUbta6_bUTkJbTVYRGqa5e4OTgHt9QCOGg1-4_cEd70OtfJzqtDQ=&uniplatform=NZKPT.

[41]

GAO W, ZHANG Z G, ZHANG Y, et al. Efficient carbon nanotube/polyimide composites exhibiting tunable temperature coefficient of resistance for multi-role thermal films[J]. Composites Science and Technology, 2020, 199: 108333.

[42]

PENG X Y, ZHANG X Q, WANG R, et al. Printing of carbon nanotube-based temperature and bending sensors for high-temperature-resistant intelligent textiles[J]. ACS Applied Electronic Materials, 2022, 4(4): 19491957.

[43]

ALAMUSI, LI Y, HU N, et al. Temperature-dependent piezoresistivity in an MWCNT/epoxy nanocomposite temperature sensor with ultrahigh performance[J]. Nanotechnology, 2013, 24(45): 455501.

[44]

LIU Q X, TAI H L, YUAN Z, et al. A high-performances flexible temperature sensor composed of polyethyleneimine/reduced graphene oxide bilayer for real-time monitoring[J]. Advanced Materials Technologies, 2019, 4(3): 1800594.

[45]

ARAI F, NG C, LIU P, et al. Ultra-small site temperature sensing by carbon nanotube thermal probes[C]//4th IEEE Conference on Nanotechnology, 2004. Munich: IEEE, 2005: 146148.

[46]

HONDA W, HARADA S, ARIE T, et al. Printed wearable temperature sensor for health monitoring[C]//SENSORS, 2014 IEEE. Valencia: IEEE, 2014: 22272229.

[47]

CHANI M T S, KARIMOV K S, ASIRI A M. Impedimetric humidity and temperature sensing properties of the graphene-carbon nanotubes-silicone adhesive nanocomposite[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(7): 64196429.

[48]

YANG X, ZHOU Z Y, ZHENG F Z, et al. High sensitivity temperature sensor based on a long, suspended single-walled carbon nanotube array[J]. Micro & Nano Letters, 2010, 5(2): 157161.

[49]

田文帅, 曹厚勇, 高杰, . 基于聚二甲基硅氧烷的可穿戴柔性传感器的研究进展[J]. 分析化学, 2022, 50(11): 17121722.
TIAN Wenshuai, CAO Houyong, GAO Jie, et al. Research progress of wearable flexible sensors based on polydimethylsiloxane[J]. Chinese Journal of Analytical Chemistry, 2022, 50(11): 17121722.

[50]

邢飞, 李皓鹏, 章令晖, . 导电纳米材料在树脂基复合材料成型过程和结构健康监测的研究进展[J/OL]. 材料导报, 2025: 115. [2025–04–27]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=CLDB2025042500F&dbname=CJFD&dbcode=CJFQ.
XING Fei, LI Haopeng, ZHANG Linghui, et al. Research progress of conductive nano-materials in resin matrix composites molding process and structural health monitoring[J/OL]. China Industrial Economics, 2025: 115. [2025–04–27]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=CLDB2025042500F&dbname=CJFD&dbcode=CJFQ.

[51]

曲抒旋, 巩文斌, 孙小珠, . 基于碳纳米管薄膜的复合材料在线损伤监测[J]. 航空学报, 2022, 43(1): 424949.
QU Shuxuan, GONG Wenbin, SUN Xiaozhu, et al. On-line damage monitoring of composites based on carbon nanotube films[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 424949.

[52]

ZITOUN A, FAKIS D, JAYASREE N, et al. Graphene-based strain sensing in composites for structural and health monitoring applications[J]. SN Applied Sciences, 2022, 4(2): 58.

[53]

PAUL S J, ELIZABETH I, GUPTA B K. Ultrasensitive wearable strain sensors based on a VACNT/PDMS thin film for a wide range of human motion monitoring[J]. ACS Applied Materials & Interfaces, 2021, 13(7): 88718879.

[54]

XING F, HE Z L, WANG S K, et al. Nano-particles doped carbon nanotube films for in situ monitoring of temperature and strain during the processing of carbon fiber/epoxy composites[J]. Polymer Composites, 2025, 46(1): 193207.

[55]

TOLVANEN J, HANNU J, JANTUNEN H. Stretchable and washable strain sensor based on cracking structure for human motion monitoring[J]. Scientific Reports, 2018, 8(1): 13241.

[56]

KOO J H, KIM D C, SHIM H J, et al. Flexible and stretchable smart display: Materials, fabrication, device design, and system integration[J]. Advanced Functional Materials, 2018, 28(35): 1801834.

[57]

WANG Q, LING S J, LIANG X P, et al. Self-healable multifunctional electronic tattoos based on silk and graphene[J]. Advanced Functional Materials, 2019, 29(16): 1808695.

[58]

ZHOU J, XU X Z, YU H, et al. Deformable and wearable carbon nanotube microwire-based sensors for ultrasensitive monitoring of strain, pressure and torsion[J]. Nanoscale, 2017, 9(2): 604612.

[59]

CHEN Y F, LI J, TAN Y J, et al. Achieving highly electrical conductivity and piezoresistive sensitivity in polydimethylsiloxane/multi-walled carbon nanotube composites via the incorporation of silicon dioxide micro-particles[J]. Composites Science and Technology, 2019, 177: 4148.

[60]

CAI Y C, SHEN J, DAI Z Y, et al. Extraordinarily stretchable all-carbon collaborative nanoarchitectures for epidermal sensors[J]. Advanced Materials, 2017, 29(31): 1606411.

[61]

DU D H, TANG Z H, OUYANG J Y. Highly washable e-textile prepared by ultrasonic nanosoldering of carbon nanotubes onto polymer fibers[J]. Journal of Materials Chemistry C, 2018, 6(4): 883889.

[62]

WANG Y L, HAO J, HUANG Z Q, et al. Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring[J]. Carbon, 2018, 126: 360371.

[63]

WANG X, LI J F, SONG H N, et al. Highly stretchable and wearable strain sensor based on printable carbon nanotube layers/polydimethylsiloxane composites with adjustable sensitivity[J]. ACS Applied Materials & Interfaces, 2018, 10(8): 73717380.

[64]

XU T, QIU Q D, LU S W, et al. Multi-direction health monitoring with carbon nanotube film strain sensor[J]. International Journal of Distributed Sensor Networks, 2019, 15(2): 155014771982968.

[65]

WENG S, ZHANG J S, GAO K, et al. Review on strain transfer effects based on material properties for flexible sensors in structural health monitoring[J]. Smart Materials and Structures, 2025, 34(5): 053002.

[66]

HUANG K Y, NING H M, HU N, et al. Ultrasensitive MWCNT/PDMS composite strain sensor fabricated by laser ablation process[J]. Composites Science and Technology, 2020, 192: 108105.

[67]

王士军, 杨明, 王雯嘉. MXene基复合材料在航空领域应用研究进展[J/OL]. 材料导报, 2025: 116. [2025–03–26]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=CLDB20250325004&dbname=CJFD&dbcode=CJFQ.
WANG Shijun, YANG Ming, WANG Wenjia. Research progress in application of MXene matrix composites in aviation field[J/OL]. China Industrial Economics, 2025: 116. [2025–03–26]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=CLDB20250325004&dbname=CJFD&dbcode=CJFQ.

[68]

LIU W J, LIU N S, YUE Y, et al. A flexible and highly sensitive pressure sensor based on elastic carbon foam[J]. Journal of Materials Chemistry C, 2018, 6(6): 14511458.

[69]

LIU W J, LIU N S, YUE Y, et al. Piezoresistive pressure sensor based on synergistical innerconnect polyvinyl alcohol nanowires/wrinkled graphene film[J]. Small, 2018, 14(15): 1704149.

[70]

MA Y N, LIU N S, LI L Y, et al. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances[J]. Nature Communications, 2017, 8(1): 1207.

[71]

钟山, 贾磊, 李晓春, . 基于MXene/PEDOT: PSS柔性压力传感器的制备及其在唇语识别中的应用[J]. 复合材料学报, 2025, 42(1): 374385.
ZHONG Shan, JIA Lei, LI Xiaochun, et al. Preparation of flexible pressure sensor based on MXene/PEDOT: PSS and its application in lip language recognition[J]. Acta Materiae Compositae Sinica, 2025, 42(1): 374385.

[72]

GAO L B, CAO K, HU X K, et al. Nano electromechanical approach for flexible piezoresistive sensor[J]. Applied Materials Today, 2020, 18: 100475.

[73]

ZHAO Y, SHEN T Y, ZHANG M Y, et al. Advancing the pressure sensing performance of conductive CNT/PDMS composite film by constructing a hierarchical-structured surface[J]. Nano Materials Science, 2023, 5(4): 343350.

[74]

ZHOU Y, ZHAO L P, TAO W, et al. All-nanofiber network structure for ultrasensitive piezoresistive pressure sensors[J]. ACS Applied Materials & Interfaces, 2022, 14(17): 1994919957.

[75]

FU X Y, LI J Z, LI D D, et al. MXene/ZIF–67/PAN nanofiber film for ultra-sensitive pressure sensors[J]. ACS Applied Materials & Interfaces, 2022, 14(10): 1236712374.

[76]

FAN Z H, ZHANG L, TAN Q L, et al. Wearable pressure sensor based on MXene/single-wall carbon nanotube film with crumpled structure for broad-range measurements[J]. Smart Material Structures, 2021, 30(3): 035024.

[77]

邵艳秋, 任婷, 王迪, . 可印刷柔性传感器在人体健康监测中的研究进展[J]. 材料导报, 2025, 39(12): 2836.
SHAO Yanqiu, REN Ting, WANG Di, et al. Research progress of printable flexible sensors in human health monitoring[J]. Materials Reports, 2025, 39(12): 2836.

[78]

谢有秀, 李逢春, 杨潇东, . 基于热塑性聚氨酯熔喷非织造材料的高性能柔性应变传感器[J]. 高分子学报, 2025, 56(7): 12031214.
XIE Youxiu, LI Fengchun, YANG Xiaodong, et al. High performance flexible strain sensor based on thermoplastic polyurethane melt-blown nonwovens[J]. Acta Polymerica Sinica, 2025, 56(7): 12031214.

[79]

马雪, 孙东睿, 金科, . 柔性传感器在智能网联汽车上的应用与发展[J]. 汽车工艺与材料, 2025(7): 118.
MA Xue, SUN Dongrui, JIN Ke, et al. Application and Development of Flexible Sensors in Intelligent Connected Vehicles [J]. Automotive Technology and Materials, 2025(7): 118.

[80]

董轩, 刘立俊. 碳基导电纤维材料的研究进展[J/OL]. 棉纺织技术, 2025: 19. [2025–07–26]. https://www.cnki.com.cn/Article/CJFDTotal-MFJS20250627001.
DONG Xuan, LIU Lijun. Research Progress of Carbon-Based Conductive Fiber Materials[J/OL]. Cotton Textile Technology, 2025: 19. [2025–07–26]. https://www.cnki.com.cn/Article/CJFDTotal-MFJS20250627001.

[81]

NESSER H, MAHMOUD H A, LUBINEAU G. High-sensitivity RFID sensor for structural health monitoring[J]. Advanced Science, 2023, 10(26): 2301807.

[82]

WADA D, IGAWA H, TAMAYAMA M, et al. Flight demonstrationof aircraft fuselage and bulkhead monitoring using optical fiber dis-tributed sensing system[J]. Smart Materials and Structures, 2018, 27(2): 025014.

[83]

卿新林, 王奕首, 赵琳. 结构健康监测技术及其在航空航天领域中的应用[J]. 实验力学, 2012, 27(5): 517526.
QING Xinlin, WANG Yishou, ZHAO Lin. Structural health monitoring technology and its application in aeronautics and astronautics[J]. Journal of Experimental Mechanics, 2012, 27(5): 517526.

[84]

韩润奇, 刘伟松, 林伯韬, . 航天器结构健康监测技术研究进展[J]. 遥测遥控, 2025, 46(3): 124.
HAN Runqi, LIU Weisong, LIN Botao, et al. Research progress on spacecraft structural health monitoring technology[J]. Journal of Telemetry, Tracking and Command, 2025, 46(3): 124.

[85]

李蒙. 给中国空间站拍张“全家福”[J]. 知识就是力量, 2024(2): 3031.
LI Meng. Take a “family photo” of China’s space station[J]. Knowledge is Power, 2024(2): 3031.

[86]

张万欣, 丁凌艳, 李元丰, . 航天服技术的发展历程与展望[J]. 航天医学与医学工程, 2025, 38(2): 8995.
ZHANG Wanxin, DING Lingyan, LI Yuanfeng, et al. Spacesuit technology: An evolutionary journey and prospective directions[J]. Space Medicine & Medical Engineering, 2025, 38(2): 8995.

目录