Residual Strength and Life Prediction of Titanium Alloy Clinched Joints in Fatigue Service
Citations
LEI Lei, SUN Jiawei, ZHAO Zhiqiang, et al. Residual strength and life prediction of titanium alloy clinched joints in fatigue service[J]. Aeronautical Manufacturing Technology, 2025, 68(18): 146–153.
Residual Strength and Life Prediction of Titanium Alloy Clinched Joints in Fatigue Service
LEI Lei
SUN Jiawei
ZHAO Zhiqiang
SHI Ye
ZHANG Huabin
School of Mechanical Engineering, Shenyang University of Technology, Shenyang110870, China
Citations
LEI Lei, SUN Jiawei, ZHAO Zhiqiang, et al. Residual strength and life prediction of titanium alloy clinched joints in fatigue service[J]. Aeronautical Manufacturing Technology, 2025, 68(18): 146–153.
Abstract
To solve the problems associated with titanium alloy joining, this study examines the fatigue behavior of TA1 titanium alloy single-lap clinched joints. Dynamic response data and strength degradation tests were conducted to track the variations in natural frequency and residual strength with increasing fatigue cycles. The cyclic ratio was utilized to quantify the correlation between natural frequency changes and strength degradation, establishing a model to predict the joint’s fatigue life and damage progression. Based on the natural frequency change and strength degradation index model, the service state calculation model of TA1 titanium alloy clinched joints is established to realize the prediction of residual strength and residual life of the joints. The results show that the natural frequency change and the strength degradation show similarity in the damage stage, which corresponds to the different degradation stages of the joint under fatigue service. The joint service state calculation model realizes the prediction of the current remaining strength and remaining life of the joint by collecting the instantaneous natural frequency, and the model is found to have good accuracy through experimental verification.
Keywords
Titanium alloy; Clinched joints; Non-destructive testing; Dynamic response; Service condition;
钛合金具有轻质、高比强度和良好的耐腐蚀性等优势,在航空航天和军事领域应用广泛[ TANG J J, LIANG C, XU C G, et al. Effect of process parameters on properties of titanium alloy during thermal simulation deformation[J]. Advanced Materials Research, 2022, 1173: 101–106. 1]。电子束焊接、电弧焊与激光焊接等是航空航天和军事领域常用的连接方法,但钛的高熔点、高反应性以及焊接过程中可能出现热应力和裂纹的特点,会使这些焊接方法的连接性能下降[ 马照伟, 符成学, 廖志谦, 等. 钛合金激光窄间隙填丝焊接接头组织与性能研究[J]. 焊管, 2025, 48(3): 18–22.MA Zhaowei, FU Chengxue, LIAO Zhiqian, et al. Research on microstructure and properties of titanium alloy laser narrow gap wire filling welding joints[J]. Welded Pipe and Tube, 2025, 48(3): 18–22. 孙康, 肖笑, 石红信, 等. 钛合金电弧增材制造温度与残余应力数值模拟[J]. 材料热处理学报, 2025, 46(4): 202–210.SUN Kang, XIAO Xiao, SHI Hongxin, et al. Numerical simulation of temperature and residual stress in titanium alloy arc additive manufacturing[J]. Transactions of Materials and Heat Treatment, 2025, 46(4): 202–210. 雷小伟, 廖志谦, 吕逸帆, 等. TA5钛合金激光与电子束焊接组织及性能对比研究[J]. 热加工工艺, 2025, 54(6): 153–158.LEI Xiaowei, LIAO Zhiqian, LÜ Yifan, et al. Comparative study on microstructure and properties of laser and electron beam welding of TA5 titanium alloy[J]. Hot Working Technology, 2025, 54(6): 153–158. 2-4]。压印连接技术是一种冷成形连接方法,通过冲压形成机械内锁结构[ 石也, 雷蕾, 闫明, 等. 5182铝合金压印接头疲劳服役失效规律量化分析[J]. 焊接学报, 2025, 46(3): 75–81.SHI Ye, LEI Lei, YAN Ming, et al. Quantitative analysis of fatigue service failure law of 5182 aluminium alloy clinched joints[J]. Transactions of the China Welding Institution, 2025, 46(3): 75–81. 5],具有成本低、效率高、节能、无污染等优点,适用于包括钛合金在内的多种难焊接材料,能够提高结构的整体性能和可靠性,增加材料使用率,减轻结构质量,并增强连接区域的强度[ SONG C Y, LEI L, YAN M. Clinched joining mechanical performance in multiple states[J]. The International Journal of Advanced Manufacturing Technology, 2023, 129(9): 3799–3812. 张越, 何晓聪, 张龙, 等. 钛合金压印接头疲劳性能与微观分析[J]. 材料导报, 2017, 31(6): 81–85.ZHANG Yue, HE Xiaocong, ZHANG Long, et al. Fatigue property and microanalysis of clinched joints of titanium alloy[J]. Materials Review, 2017, 31(6): 81–85. QIN D L, CHEN C. Research on the joining of dissimilar aluminum alloys by a dieless clinching process[J]. The International Journal of Advanced Manufacturing Technology, 2022, 122(5): 2529–2542. 韩秋生, 姚庆泰, 王子国, 等. 汽车轻量化机械连接工艺技术研究[J]. 汽车工艺与材料, 2024(9): 7–11.HAN Qiusheng, YAO Qingtai, WANG Ziguo, et al. Research on the technology of automotive lightweight mechanical connection[J]. Automobile Technology & Material, 2024(9): 7–11. 6-9]。
钛合金接头在服役期间会因承受循环载荷而疲劳失效。对钛合金连接结构强度与服役寿命的预测,已成为业界的重要研究内容。动态响应方法被用于结构件的无损检测中[ 赵倩, 冯侃. 基于高频动态响应的点阵夹芯结构损伤识别研究[J]. 应用力学学报, 2023, 40(4): 873–882.ZHAO Qian, FENG Kan. Research on damage identification of lattice sandwich structure based on high frequency dynamic response[J]. Chinese Journal of Applied Mechanics, 2023, 40(4): 873–882. 李学朋, 尚德广, 周健伟, 等. 基于固有频率变化和载荷特性的点焊疲劳寿命预测[J]. 焊接学报, 2010, 31(5): 85–88, 117.LI Xuepeng, SHANG Deguang, ZHOU Jianwei, et al. Prediction of fatigue life based on change of natural frequency and load characteristic for spot welded joint[J]. Transactions of the China Welding Institution, 2010, 31(5): 85–88, 117. 10-11],有学者对疲劳加载下的点焊接头动态响应特性和疲劳寿命进行了预测。李承山等[ 李承山, 尚德广, 王瑞杰, 等. 变幅加载下基于动态响应特性的点焊接头疲劳寿命预测[J]. 机械工程学报, 2009, 45(4): 70–75.LI Chengshan, SHANG Deguang, WANG Ruijie, et al. Fatigue life prediction based on dynamic response characteristics for spot-welded joints under variable amplitude loading[J]. Journal of Mechanical Engineering, 2009, 45(4): 70–75. 12]在变幅加载下基于动态响应特性对点焊接头进行了疲劳寿命预测;李力森等[ 李力森, 尚德广, 王瑞杰, 等. 基于有限元模拟和动态响应的双点点焊接头疲劳损伤分析[J]. 机械强度, 2008, 30(2): 276–282.LI Lisen, SHANG Deguang, WANG Ruijie, et al. Fatigue damage analysis based on fe simulation and dynamic response for double-spot welded joints[J]. Journal of Mechanical Strength, 2008, 30(2): 276–282. 13]对双点焊接头的动态响应频率进行了采集,并据此探究疲劳损伤进程。在压印接头的动态响应分析[ 张文斌. 单搭压印连接接头的机械性能研究[D]. 昆明: 昆明理工大学, 2011.ZHANG Wenbin. Mechanical properties of single lap-jointed clinched joints[D]. Kunming: Kunming University of Science and Technology, 2011. 14]方面,Lei等[ LEI L, SHI Y, YAN M, et al. Effect of foam metal on dynamic response and fatigue damage of 5182 aluminium alloy clinched joints[J]. Engineering Failure Analysis, 2024, 158: 108001. 15]对疲劳加载状态下压印接头进行动态响应特性试验,分析了泡沫铜材料对动态响应的影响。理论上,在疲劳裂纹萌生及扩展过程中,接头固有频率会发生明显变化。因此,动态响应特性研究为压印接头疲劳失效全过程监测提供了一种新的解决思路。
在循环载荷的作用下,机械零件所产生的疲劳损伤将不断积累,从而导致机械结构强度降低,使机械结构安全性与可靠性面临挑战[ 魏文杰, 何晓聪, 张先炼, 等. DP790/AA6061薄板自冲铆接头微动损伤特性[J]. 机械工程学报, 2020, 56(6): 169–175.WEI Wenjie, HE Xiaocong, ZHANG Xianlian, et al. Characteristics of fretting damage in hybrid DP780/AA6061 self-piercing riveted joints[J]. Journal of Mechanical Engineering, 2020, 56(6): 169–175. KHAN A I, VENKATARAMAN S, MILLER I. Predicting fatigue damage of composites using strength degradation and cumulative damage model[J]. Journal of Composites Science, 2018, 2(1): 9. GAO J X, AN Z W. A new probability model of residual strength of material based on interference theory[J]. International Journal of Fatigue, 2019, 118: 202–208. RISITANO A, RISITANO G. Cumulative damage evaluation in multiple cycle fatigue tests taking into account energy parameters[J]. International Journal of Fatigue, 2013, 48: 214–222. 16-19]。目前在工程应用中发现,强度退化数值模型不断演化,可逐步揭示疲劳累积损伤的演变过程。Zhao等[ ZHAO G W, LIU Y T, YE N H. An improved fatigue accumulation damage model based on load interaction and strength degradation[J]. International Journal of Fatigue, 2022, 156: 106636. 20]改进了累积损伤模型,提出一种新的对数残余强度模型,并通过两组强度退化试验数据验证了其精度。Schaff等[ SCHAFF J R, DAVIDSON B D. Life prediction methodology for composite structures. part I—Constant amplitude and two-stress level fatigue[J]. Journal of Composite Materials, 1997, 31(2): 128–157. 21]根据试验数据拟合出材料退化系数,以指数模型来描述强度退化规律。张禄等[ 张禄, 纪威, 周炜, 等. 基于强度退化的疲劳积累损伤模型[J]. 农业工程学报, 2015, 31(S1): 47–52.ZHANG L, JI W, ZHOU W, et al. Fatigue cumulative damage models based on strength degradation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(S1):47–52. 22]基于上述模型及试验数据建立了精度更高的疲劳累积损伤模型。但是强度退化数字模型主要是依据经验和试验数据建立退化模型。
目前,基于强度退化试验的剩余强度模型发展较为完善。Li和Chen等[ LI L, XIE L Y, HE X H, et al. Strength degradation law of metallic material under fatigue loading[J]. Journal of Mechanical Strength, 2010, 32(6): 967–971. CHEN X J, SUN Y, WU Z W, et al. An investigation on residual strength and failure probability prediction for plain weave composite under random fatigue loading[J]. International Journal of Fatigue, 2019, 120: 267–282. 23-24]基于35CrMo钢疲劳试验提出了强度退化的指数模型;刘苏超等[ 刘苏超, 姜长杰, 刘新田. 基于强度退化的金属材料疲劳寿命预估[J]. 机械强度, 2021, 43(3): 742–746.LIU Suchao, JIANG Changjie, LIU Xintian. Fatigue life prediction of metal materials based on strength degradation[J]. Journal of Mechanical Strength, 2021, 43(3): 742–746. 25]优化了该指数模型,结合基于固有频率变化的强度预测模型,建立了强度退化指数模型,即
TANGJ J, LIANGC, XUC G, et al. Effect of process parameters on properties of titanium alloy during thermal simulation deformation[J]. Advanced Materials Research, 2022, 1173: 101–106.
[2]
马照伟, 符成学, 廖志谦, 等. 钛合金激光窄间隙填丝焊接接头组织与性能研究[J]. 焊管, 2025, 48(3): 18–22. MAZhaowei, FUChengxue, LIAOZhiqian, et al. Research on microstructure and properties of titanium alloy laser narrow gap wire filling welding joints[J]. Welded Pipe and Tube, 2025, 48(3): 18–22.
[3]
孙康, 肖笑, 石红信, 等. 钛合金电弧增材制造温度与残余应力数值模拟[J]. 材料热处理学报, 2025, 46(4): 202–210. SUNKang, XIAOXiao, SHIHongxin, et al. Numerical simulation of temperature and residual stress in titanium alloy arc additive manufacturing[J]. Transactions of Materials and Heat Treatment, 2025, 46(4): 202–210.
[4]
雷小伟, 廖志谦, 吕逸帆, 等. TA5钛合金激光与电子束焊接组织及性能对比研究[J]. 热加工工艺, 2025, 54(6): 153–158. LEIXiaowei, LIAOZhiqian, LÜYifan, et al. Comparative study on microstructure and properties of laser and electron beam welding of TA5 titanium alloy[J]. Hot Working Technology, 2025, 54(6): 153–158.
[5]
石也, 雷蕾, 闫明, 等. 5182铝合金压印接头疲劳服役失效规律量化分析[J]. 焊接学报, 2025, 46(3): 75–81. SHIYe, LEILei, YANMing, et al. Quantitative analysis of fatigue service failure law of 5182 aluminium alloy clinched joints[J]. Transactions of the China Welding Institution, 2025, 46(3): 75–81.
[6]
SONGC Y, LEIL, YANM. Clinched joining mechanical performance in multiple states[J]. The International Journal of Advanced Manufacturing Technology, 2023, 129(9): 3799–3812.
[7]
张越, 何晓聪, 张龙, 等. 钛合金压印接头疲劳性能与微观分析[J]. 材料导报, 2017, 31(6): 81–85. ZHANGYue, HEXiaocong, ZHANGLong, et al. Fatigue property and microanalysis of clinched joints of titanium alloy[J]. Materials Review, 2017, 31(6): 81–85.
[8]
QIND L, CHENC. Research on the joining of dissimilar aluminum alloys by a dieless clinching process[J]. The International Journal of Advanced Manufacturing Technology, 2022, 122(5): 2529–2542.
[9]
韩秋生, 姚庆泰, 王子国, 等. 汽车轻量化机械连接工艺技术研究[J]. 汽车工艺与材料, 2024(9): 7–11. HANQiusheng, YAOQingtai, WANGZiguo, et al. Research on the technology of automotive lightweight mechanical connection[J]. Automobile Technology & Material, 2024(9): 7–11.
[10]
赵倩, 冯侃. 基于高频动态响应的点阵夹芯结构损伤识别研究[J]. 应用力学学报, 2023, 40(4): 873–882. ZHAOQian, FENGKan. Research on damage identification of lattice sandwich structure based on high frequency dynamic response[J]. Chinese Journal of Applied Mechanics, 2023, 40(4): 873–882.
[11]
李学朋, 尚德广, 周健伟, 等. 基于固有频率变化和载荷特性的点焊疲劳寿命预测[J]. 焊接学报, 2010, 31(5): 85–88, 117. LIXuepeng, SHANGDeguang, ZHOUJianwei, et al. Prediction of fatigue life based on change of natural frequency and load characteristic for spot welded joint[J]. Transactions of the China Welding Institution, 2010, 31(5): 85–88, 117.
[12]
李承山, 尚德广, 王瑞杰, 等. 变幅加载下基于动态响应特性的点焊接头疲劳寿命预测[J]. 机械工程学报, 2009, 45(4): 70–75. LIChengshan, SHANGDeguang, WANGRuijie, et al. Fatigue life prediction based on dynamic response characteristics for spot-welded joints under variable amplitude loading[J]. Journal of Mechanical Engineering, 2009, 45(4): 70–75.
[13]
李力森, 尚德广, 王瑞杰, 等. 基于有限元模拟和动态响应的双点点焊接头疲劳损伤分析[J]. 机械强度, 2008, 30(2): 276–282. LILisen, SHANGDeguang, WANGRuijie, et al. Fatigue damage analysis based on fe simulation and dynamic response for double-spot welded joints[J]. Journal of Mechanical Strength, 2008, 30(2): 276–282.
[14]
张文斌. 单搭压印连接接头的机械性能研究[D]. 昆明: 昆明理工大学, 2011. ZHANGWenbin. Mechanical properties of single lap-jointed clinched joints[D]. Kunming: Kunming University of Science and Technology, 2011.
[15]
LEIL, SHIY, YANM, et al. Effect of foam metal on dynamic response and fatigue damage of 5182 aluminium alloy clinched joints[J]. Engineering Failure Analysis, 2024, 158: 108001.
[16]
魏文杰, 何晓聪, 张先炼, 等. DP790/AA6061薄板自冲铆接头微动损伤特性[J]. 机械工程学报, 2020, 56(6): 169–175. WEIWenjie, HEXiaocong, ZHANGXianlian, et al. Characteristics of fretting damage in hybrid DP780/AA6061 self-piercing riveted joints[J]. Journal of Mechanical Engineering, 2020, 56(6): 169–175.
[17]
KHANA I, VENKATARAMANS, MILLERI. Predicting fatigue damage of composites using strength degradation and cumulative damage model[J]. Journal of Composites Science, 2018, 2(1): 9.
[18]
GAOJ X, ANZ W. A new probability model of residual strength of material based on interference theory[J]. International Journal of Fatigue, 2019, 118: 202–208.
[19]
RISITANOA, RISITANOG. Cumulative damage evaluation in multiple cycle fatigue tests taking into account energy parameters[J]. International Journal of Fatigue, 2013, 48: 214–222.
[20]
ZHAOG W, LIUY T, YEN H. An improved fatigue accumulation damage model based on load interaction and strength degradation[J]. International Journal of Fatigue, 2022, 156: 106636.
[21]
SCHAFFJ R, DAVIDSONB D. Life prediction methodology for composite structures. part I—Constant amplitude and two-stress level fatigue[J]. Journal of Composite Materials, 1997, 31(2): 128–157.
[22]
张禄, 纪威, 周炜, 等. 基于强度退化的疲劳积累损伤模型[J]. 农业工程学报, 2015, 31(S1): 47–52. ZHANGL, JIW, ZHOUW, et al. Fatigue cumulative damage models based on strength degradation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(S1):47–52.
[23]
LIL, XIEL Y, HEX H, et al. Strength degradation law of metallic material under fatigue loading[J]. Journal of Mechanical Strength, 2010, 32(6): 967–971.
[24]
CHENX J, SUNY, WUZ W, et al. An investigation on residual strength and failure probability prediction for plain weave composite under random fatigue loading[J]. International Journal of Fatigue, 2019, 120: 267–282.
[25]
刘苏超, 姜长杰, 刘新田. 基于强度退化的金属材料疲劳寿命预估[J]. 机械强度, 2021, 43(3): 742–746. LIUSuchao, JIANGChangjie, LIUXintian. Fatigue life prediction of metal materials based on strength degradation[J]. Journal of Mechanical Strength, 2021, 43(3): 742–746.