Measurement Stability Analysis and Control Method of Aircraft Assembly Tooling
Citations
LIANG Yanjie, WANG Shouchuan, ZHOU Xinfang, et al. Measurement stability analysis and control method of aircraft assembly tooling[J]. Aeronautical Manufacturing Technology, 2025, 68(18): 114–119.
Measurement Stability Analysis and Control Method of Aircraft Assembly Tooling
LIANG Yanjie
WANG Shouchuan
ZHOU Xinfang
LIU Ruoxuan
AVIC Xi’an Aircraft Industry Group Company Ltd., Xi’an710089, China
Citations
LIANG Yanjie, WANG Shouchuan, ZHOU Xinfang, et al. Measurement stability analysis and control method of aircraft assembly tooling[J]. Aeronautical Manufacturing Technology, 2025, 68(18): 114–119.
Abstract
Aiming at the poor stability caused by temperature variation of aircraft assembly equipment, the spatial position of assembling equipment at different temperatures was measured considering the factors such as tooling structure design and assembly site environment. Based on statistical analysis of data, the position data of tooling at different temperatures was compared with those at periodic check and thermal expansion deformation of the equipment was obtained. The key factors causing poor measurement stability of the tooling were explored, and the corresponding solutions and control methods were put forward. According to the improved control method proposed in this study, when the temperature change is within 5 ℃, overall deformation of the assembly tooling can be controlled within the tolerance range required by assembly, verifying effectiveness of the proposed optimization measures for stabilizing measurement of tooling and providing reference basis for measurement accuracy and precision of aircraft assembly tooling.
Keywords
Aircraft assembly; Stability; Temperature compensation; Thermal expansion deformation; Accurate measurement;
工艺装备(如型架、夹具等)在飞机装配过程中是必不可少的工具,主要用于定位和固定飞机零部件,从而保证飞机的装配精度[ 郭飞燕, 刘检华, 肖庆东, 等. 数字化装配工装工作状态监测评估及适应性控制技术[J]. 航空学报, 2023, 44(16): 427914.GUO Feiyan, LIU Jianhua, XIAO Qingdong, et al. Monitoring and evaluation of working condition and adaptive control technology for digital assembly tooling[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(16): 427914. 1]。然而,翼盒装配型架工装具有尺寸大、使用周期长等特点,当温度剧烈变化时,会引起翼盒工装的热膨胀变形,如钢制材料(尺寸30 m)装配工装在温度变化为5 ℃时的工装变形量可达1.8 mm[ 杨宝旒, 俞慈君, 金涨军, 等. 激光跟踪仪转站热变形误差建模与补偿方法[J]. 航空学报, 2015, 36(9): 3155–3164.YANG Baoliu, YU Cijun, JIN Zhangjun, et al. Thermal deformation error modeling and compensation approach for laser tracker orientation[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9): 3155–3164. 2],严重影响飞机的装配精度[ 李婷, 李建双, 缪东晶, 等. 温度条件对大尺寸测量装置精度影响的研究[J]. 计量学报, 2019, 40(6): 975–979.LI Ting, LI Jianshuang, MIAO Dongjing, et al. Study of temperature states influence on the accuracy of large size measuring devices[J]. Acta Metrologica Sinica, 2019, 40(6): 975–979. 3]。
徐鹏[ 徐鹏. 温度变化对飞机翼面类结构装配的影响研究[J]. 机械制造与自动化, 2019, 48(5): 60–63.XU Peng. Study of effect of temperature on aircraft wing structure assembly[J]. Machine Building & Automation, 2019, 48(5): 60–63. 4]针对温度变化对结构件装配影响较大的问题,分析了温度变化对飞机升降铰链装配展向位置的影响,并提出相应的解决方案;张俐等[ 张俐, 王炜辰. 基于飞机装配的热变形误差分析方法[J]. 机械工程与自动化, 2017(1): 4–6.ZHANG Li, WANG Weichen. Thermal deformation errors analysis method based on aircraft assembly[J]. Mechanical Engineering & Automation, 2017(1): 4–6. 5]分析了飞机装配过程中受环境温度影响的相关因素,提出一种关键测量点的综合热变形误差分析方法;杜坤鹏等[ 杜坤鹏, 刘琦, 杨亚鹏, 等. 超大空间温度变化对飞机装配协调精度的影响规律[J]. 科学技术与工程, 2024, 24(14): 6089–6098.DU Kunpeng, LIU Qi, YANG Yapeng, et al. Influence of temperature change in super large space on the coordination accuracy of aircraft assembly[J]. Science Technology and Engineering, 2024, 24(14): 6089–6098. 6]针对大尺寸装配空间场内温度变化导致的装配过程热变形影响问题,研究了不同材料组合方式的工装在温度变化时的热变形规律。为了克服飞机装配过程中温度影响导致的精度下降问题,大量学者开展了温度补偿的相关研究,张炜[ 张炜. A319机翼总装型架数字化设计技术[J]. 航空制造技术, 2012, 55(1/2): 81–85.ZHANG Wei. Digital design technology for A319 wing final assembly fixture[J]. Aeronautical Manufacturing Technology, 2012, 55(1/2): 81–85. 7]提出了一种采用钢结构框架和铝膨胀板来进行温度补偿的方式;樊虎等[ 樊虎, 杨靖雯. 机翼翼盒数字化装配关键技术应用研究[J]. 科学技术创新, 2020(26): 71–72.FAN Hu, YANG Jingwen. Research on application of key technologies in digital assembly of wing box[J]. Scientific and Technological Innovation, 2020(26): 71–72. 8]在翼盒数字化装配型架中考虑了温度变化的协调补偿,避免了装配过程中由于温度变化引起型架伸缩而导致的定位精度降低问题。另外,在工装设计过程中,除了需要考虑温度变化导致工装变形的影响外,在工装的安装和使用过程中也需要进行工装的稳定性检测来保证装配精度[ 王巍, 林博文. 可移动柔性工装对接稳定性研究[J]. 航空制造技术, 2020, 63(1/2): 34–38.WANG Wei, LIN Bowen. Research on docking stability of movable flexible tooling[J]. Aeronautical Manufacturing Technology, 2020, 63(1/2): 34–38. 9]。姜昕彤[ 姜昕彤. 飞机装配过程中工装应变监测及预测技术研究[D]. 大连: 大连理工大学, 2020.JIANG Xintong. Research on tooling strain monitoring and forecasting technology during aircraft assembly[D]. Dalian: Dalian University of Technology, 2020. 10]对工装在使用过程中的应变监测及预测技术开展研究,构建全局工装应变场;张宏博等[ 张宏博, 郑联语, 王艺玮. 基于模块服役状态的盒式连接可重构型架稳定性评估方法[J]. 航空学报, 2021, 42(9): 424180.ZHANG Hongbo, ZHENG Lianyu, WANG Yiwei. Stability evaluation method for box-joint reconfigurable jig based on module service state[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 424180. 11]从型架模块化特征出发,研究了盒式连接可重构型架稳定性的评估方法,能够简捷、有效地实现型架服役稳定性的评估。
郭飞燕, 刘检华, 肖庆东, 等. 数字化装配工装工作状态监测评估及适应性控制技术[J]. 航空学报, 2023, 44(16): 427914. GUOFeiyan, LIUJianhua, XIAOQingdong, et al. Monitoring and evaluation of working condition and adaptive control technology for digital assembly tooling[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(16): 427914.
[2]
杨宝旒, 俞慈君, 金涨军, 等. 激光跟踪仪转站热变形误差建模与补偿方法[J]. 航空学报, 2015, 36(9): 3155–3164. YANGBaoliu, YUCijun, JINZhangjun, et al. Thermal deformation error modeling and compensation approach for laser tracker orientation[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9): 3155–3164.
[3]
李婷, 李建双, 缪东晶, 等. 温度条件对大尺寸测量装置精度影响的研究[J]. 计量学报, 2019, 40(6): 975–979. LITing, LIJianshuang, MIAODongjing, et al. Study of temperature states influence on the accuracy of large size measuring devices[J]. Acta Metrologica Sinica, 2019, 40(6): 975–979.
[4]
徐鹏. 温度变化对飞机翼面类结构装配的影响研究[J]. 机械制造与自动化, 2019, 48(5): 60–63. XUPeng. Study of effect of temperature on aircraft wing structure assembly[J]. Machine Building & Automation, 2019, 48(5): 60–63.
杜坤鹏, 刘琦, 杨亚鹏, 等. 超大空间温度变化对飞机装配协调精度的影响规律[J]. 科学技术与工程, 2024, 24(14): 6089–6098. DUKunpeng, LIUQi, YANGYapeng, et al. Influence of temperature change in super large space on the coordination accuracy of aircraft assembly[J]. Science Technology and Engineering, 2024, 24(14): 6089–6098.
[7]
张炜. A319机翼总装型架数字化设计技术[J]. 航空制造技术, 2012, 55(1/2): 81–85. ZHANGWei. Digital design technology for A319 wing final assembly fixture[J]. Aeronautical Manufacturing Technology, 2012, 55(1/2): 81–85.
[8]
樊虎, 杨靖雯. 机翼翼盒数字化装配关键技术应用研究[J]. 科学技术创新, 2020(26): 71–72. FANHu, YANGJingwen. Research on application of key technologies in digital assembly of wing box[J]. Scientific and Technological Innovation, 2020(26): 71–72.
[9]
王巍, 林博文. 可移动柔性工装对接稳定性研究[J]. 航空制造技术, 2020, 63(1/2): 34–38. WANGWei, LINBowen. Research on docking stability of movable flexible tooling[J]. Aeronautical Manufacturing Technology, 2020, 63(1/2): 34–38.
[10]
姜昕彤. 飞机装配过程中工装应变监测及预测技术研究[D]. 大连: 大连理工大学, 2020. JIANGXintong. Research on tooling strain monitoring and forecasting technology during aircraft assembly[D]. Dalian: Dalian University of Technology, 2020.
[11]
张宏博, 郑联语, 王艺玮. 基于模块服役状态的盒式连接可重构型架稳定性评估方法[J]. 航空学报, 2021, 42(9): 424180. ZHANGHongbo, ZHENGLianyu, WANGYiwei. Stability evaluation method for box-joint reconfigurable jig based on module service state[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 424180.