自修复功能复合涂层及其在航空领域应用前景

基金项目

江苏省基础研究计划(自然科学基金)–面上项目(BK20191364)。

中图分类号:

V257.2

文献标识码:

A

通信作者

方亮,教授,博士,博士生导师,从事坚持四个面向的光/声吸收与调控高分子复合材料研究。

编辑

责编 :晓月

引文格式

李明玮, 方亮, 陆春华, 等. 自修复功能复合涂层及其在航空领域应用前景[J]. 航空制造技术, 2025, 68(18): 88–102.

Self-Healing Functional Composite Coatings and Application Prospects in Aeronautic Field

Citations

LI Mingwei, FANG Liang, LU Chunhua, et al. Self-healing functional composite coatings and application prospects in aeronautic field[J]. Aeronautical Manufacturing Technology, 2025, 68(18): 88–102.

航空制造技术    第68卷    第18期    88-102
Aeronautical Manufacturing Techinology    Vol.68    No.18 : 88-102
DOI: 10.16080/j.issn1671-833x.2025.18.088
论坛 >> 自修复涂层(FORUM >> Self-Healing Coatings)

自修复功能复合涂层及其在航空领域应用前景

  • 李明玮 1,2
  • 方亮 1,2
  • 陆春华 1,2
  • 许仲梓 1,2
1.南京工业大学材料科学与工程学院南京 211816
2.南京工业大学江苏先进无机功能复合材料协同创新中心南京 211816

通信作者

方亮,教授,博士,博士生导师,从事坚持四个面向的光/声吸收与调控高分子复合材料研究。

基金项目

江苏省基础研究计划(自然科学基金)–面上项目(BK20191364)。

中图分类号:

V257.2

文献标识码:

A

引文格式

李明玮, 方亮, 陆春华, 等. 自修复功能复合涂层及其在航空领域应用前景[J]. 航空制造技术, 2025, 68(18): 88–102.

摘要

随着航空航天装备对轻量化、智能化和长寿命需求的提升,自修复功能复合涂层(Self-healing functional composite coatings,SHFCs)因其动态损伤修复机制与多功能协同特性,成为应对极端环境挑战的关键技术之一。本文系统综述了自修复涂层的分类、修复机理及其在航空领域的功能化应用。自修复涂层分为外援型与本征型,其中,外援型通过微胶囊或中空纤维储存修复剂,实现损伤的物理填充或化学修复;本征型基于动态共价键(如Diels–Alder键、二硫键)或非共价键(如氢键、金属配位),通过分子链重组实现多次自愈。在此基础上,重点探讨了功能化自修复涂层的协同设计策略,包括防腐–自修复涂层、超疏水–自修复涂层、导电/电磁屏蔽–自修复涂层。未来研究需进一步优化动态化学键响应效率、解决大规模制备工艺瓶颈,并拓展其在极端温度、辐射等复杂场景的应用,为航空航天装备的可靠性与智能化发展提供革新方案。

关键词

自修复功能复合涂层(SHFCs);航空航天;防腐蚀;超疏水;润滑;导电;电磁屏蔽;

Self-Healing Functional Composite Coatings and Application Prospects in Aeronautic Field

  • LI Mingwei 1,2
  • FANG Liang 1,2
  • LU Chunhua 1,2
  • XU Zhongzi 1,2
1.Colleges of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
2.Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, China

Citations

LI Mingwei, FANG Liang, LU Chunhua, et al. Self-healing functional composite coatings and application prospects in aeronautic field[J]. Aeronautical Manufacturing Technology, 2025, 68(18): 88–102.

Abstract

With the growing demand for lightweight, intelligent, and long-life aerospace equipment, self-healing functional composite coatings (SHFCs) have become a critical technology to address extreme environmental challenges, owing to their dynamic damage-repair mechanisms and multifunctional synergy. This article systematically reviews the classification, repair mechanisms, and functional applications of self-healing coatings in aviation. SHFCs are categorized into extrinsic and intrinsic types: Extrinsic coatings employ microcapsules or hollow fibers to store healing agents, enabling physical filling or chemical repair of damage; Intrinsic coatings rely on dynamic covalent bonds (e.g., Diels–Alder bonds, disulfide bonds) or non-covalent bonds (e.g., hydrogen bonds, metal coordination) to achieve repeated self-healing through molecular chain reorganization. Furthermore, synergistic design strategies for functionalized SHFCs are highlighted, including corrosion-resistant self-healing coatings, superhydrophobic self-healing coatings and conductive/electromagnetic shielding self-healing coatings. Future research should focus on optimizing the responsiveness of dynamic chemical bonds, resolving large-scale manufacturing bottlenecks, and expanding applications in extreme environments such as high temperatures and radiation, thereby providing innovative solutions to enhance the reliability and intelligent development of aerospace equipment.

Keywords

Self-healing functional coatings; Aerospace; Anticorrosion; Superhydrophobic; Lubricity; Conductivity; Electromagnetic shielding;



随着航空航天技术的飞速发展,飞行器面临的极端环境挑战日益严峻。从超音速飞行时的高温氧化、高海拔盐雾腐蚀,到太空环境中的微陨石撞击与强辐射,材料表面的微小损伤若未能及时修复,可能引发灾难性后果。传统防护涂层虽能提供基础保护,但其静态特性无法应对动态损伤的累积,最终导致频繁维护和高昂成本。在此背景下,自修复功能涂层(Self-healing functional coatings,SHFCs)因其独特的主动修复机制,成为提升航空航天装备可靠性与经济性的关键技术之一。

自修复涂层不只局限于防护功能,其与导电、隐身、防冰等特性的结合[   ZHANG F, JU P F, PAN M Q, et al. Self-healing mechanisms in smart protective coatings: A review[J]. Corrosion Science, 2018, 144: 74–88.
  UTRERA-BARRIOS S, VERDEJO R, LÓPEZ-MANCHADO M A, et al. Evolution of self-healing elastomers, from extrinsic to combined intrinsic mechanisms: A review[J]. Materials Horizons, 2020, 7(11): 2882–2902.
  ZHANG Z P, RONG M Z, ZHANG M Q. Self-healable functional polymers and polymer-based composites[J]. Progress in Polymer Science, 2023, 144: 101724.
1-3
]
,推动了航空航天材料的轻量化与智能化。例如,军用战机将自修复能力融入雷达吸波涂层,确保了隐身性能在损伤后快速恢复;商用飞机机翼前缘的防冰涂层通过电热触发自修复机制,同步解决结冰与微裂纹问题。此类创新降低了传统冗余设计的重量,助力飞行器提升燃油效率与任务适应性[   WEN N, SONG T T, JI Z H, et al. Recent advancements in self-healing materials: Mechanicals, performances and features[J]. Reactive and Functional Polymers, 2021, 168: 105041.
  KAUSAR A, AHMAD I, MAAZA M, et al. Self-healing nanocomposites—Advancements and aerospace applications[J]. Journal of Composites Science, 2023, 7(4): 148.
4-5
]

自修复涂层整体分为外援型和本征型两种愈合类型[   KUMAR E K, PATEL S S, KUMAR V, et al. State of art review on applications and mechanism of self-healing materials and structure[J]. Archives of Computational Methods in Engineering, 2023, 30(2): 1041–1055.
  AN Z W, XUE R, YE K, et al. Recent advances in self-healing polyurethane based on dynamic covalent bonds combined with other self-healing methods[J]. Nanoscale, 2023, 15(14): 6505–6520.
6-7
]
。外援型自修复涂层,通常在涂层中填入微胶囊、纤维或修复剂等,在产生裂纹的同时,从填充缝隙流出并与催化剂接触产生反应,从而裂纹得以修复。本征型可分为动态共价键与动态非共价键两种[   LI Z L, YU R, GUO B L. Shape-memory and self-healing polymers based on dynamic covalent bonds and dynamic noncovalent interactions: Synthesis, mechanism, and application[J]. ACS Applied Bio Materials, 2021, 4(8): 5926–5943.
  THAKUR V K, KESSLER M R. Self-healing polymer nanocomposite materials: A review[J]. Polymer, 2015, 69: 369–383.
8-9
]
。动态共价键包括Diels–Alder键、二硫键、硼酸酯键等,利用可逆共价键的断裂在外部刺激(热、光、pH)下重组实现修复;动态非共价键通过非共价相互作用(氢键、离子键、π–π堆积、金属配位)实现自愈合,损伤后的分子链通过动态相互作用重新排列,恢复结构完整性[   WHITE S R, CARUSO M M, MOORE J S. Autonomic healing of polymers[J]. MRS Bulletin, 2008, 33(8): 766–769.
  ZHANG M Q, RONG M Z. Design and synthesis of self-healing polymers[J]. Science China Chemistry, 2012, 55(5): 648–676.
10-11
]

将自修复特性与多种功能有机结合得到的自修复功能涂层,为航空航天邻域提供了应对极端环境、降低运维成本、实现可持续发展的革新方案。本文将从修复机理入手,以适用于航空工业发展趋势的功能涂层为导向,协同自修复–多功能一体化,介绍各功能涂层耦合策略、性能优势,探寻功能化自修复涂层在航空航天领域的应用前景。

1     自修复涂层

1.1     外援型自修复涂层

外援型自修复涂层是一种通过预埋修复剂实现损伤修复的智能材料。其核心原理是将修复剂(如单体、预聚体、缓蚀剂等)封装于微胶囊、中空纤维或三维网络载体中,并分散于涂层基体内。当涂层因机械刮擦、冲击或腐蚀产生裂纹时,损伤处的载体破裂,修复剂迅速释放至破损区域,通过聚合、交联或化学反应固化,实现损伤的自主修复(图1[   YE K X, BI Z X, CUI G, et al. External self-healing coatings in anticorrosion applications: A review[J]. Corrosion:The Journal of Science and Engineering, 2020, 76(3): 279–298.
12
]

图1     外援型自修复涂层修复机理[   YE K X, BI Z X, CUI G, et al. External self-healing coatings in anticorrosion applications: A review[J]. Corrosion:The Journal of Science and Engineering, 2020, 76(3): 279–298.
12
]
Fig.1     Repair mechanism of externally assisted self-healing coatings[   YE K X, BI Z X, CUI G, et al. External self-healing coatings in anticorrosion applications: A review[J]. Corrosion:The Journal of Science and Engineering, 2020, 76(3): 279–298.
12
]

1.1.1     微胶囊型自修复涂层

典型的微胶囊结构由球形核–壳结构组成,芯部为具有修复功能的修复剂,壳层由聚合物材料组成,将含有修复剂的微胶囊作为涂层填料,当涂层受损时,微胶囊破裂释放内部修复剂,通过聚合或物理覆盖的方式修复损伤。这类修复涂层修复响应快,工艺成熟,适用于小范围损伤[   YE K X, BI Z X, CUI G, et al. External self-healing coatings in anticorrosion applications: A review[J]. Corrosion:The Journal of Science and Engineering, 2020, 76(3): 279–298.
  KARTSONAKIS I A, KONTIZA A, KANELLOPOULOU I A. Advanced micro/nanocapsules for self-healing coatings[J]. Applied Sciences, 2024, 14(18): 8396.
12-13
]

常见的修复剂有双环戊二烯(DCPD)–Grubbs固化体系、环氧树脂固化体系、聚二甲基硅氧烷(PDMS)体系等,其中DCPD体系由于其良好的聚合活性,固化速率快,成为自修复涂层中最早使用的修复剂。2001年,White等[   WHITE S R, SOTTOS N R, GEUBELLE P H, et al. Autonomic healing of polymer composites[J]. Nature, 2001, 409: 794–797.
14
]
首次将DCPD与嵌入式催化剂Grubbs包裹在脲醛树脂中形成微胶囊,出现裂纹时微胶囊破裂释放修复剂,通过毛细作用填充裂纹;修复剂与催化剂接触后,发生开环易位聚合(ROMP),形成交联聚合物从而黏合裂纹表面。然而由于DCPD易挥发且易燃有毒,同时催化剂的价格往往较高难以形成工业化生产规模,不利于实际落地应用,因此该体系逐渐被其他体系所取代。

环氧树脂固化体系利用环氧树脂稳定、无毒且可与聚合物基体聚合的特点,成为微胶囊型修复涂层修复剂的优选。如图2所示,Yuan等[   YUAN L, HUANG S D, GU A J, et al. A cyanate ester/microcapsule system with low cure temperature and self-healing capacity[J]. Composites Science and Technology, 2013, 87: 111–117.
15
]
将环氧树脂填充的聚脲甲醛(PUF)微胶囊引入氰酸酯树脂(CE)体系后形成复合体系,并以4,4′–二氨基二苯砜作为固化剂,实现低温固化(<180 ℃)和自修复功能。Yi等[   YI H, DENG Y H, WANG C Y. Pickering emulsion-based fabrication of epoxy and amine microcapsules for dual core self-healing coating[J]. Composites Science and Technology, 2016, 133: 51–59.
16
]
基于Pickering乳液模板的一步界面聚合法,分别将环氧树脂(EP)和四乙烯五胺(TEPA)封装在聚脲(PU)壳中形成双核微胶囊,利用固体颗粒(SiO2、纳米粘土)稳定乳液,增强微胶囊热稳定性(TG热分解温度>250 ℃),涂层在高温或机械应力下仍保持修复能力。

图2     两种微胶囊的制备过程[   YUAN L, HUANG S D, GU A J, et al. A cyanate ester/microcapsule system with low cure temperature and self-healing capacity[J]. Composites Science and Technology, 2013, 87: 111–117.
15
]
Fig.2     Preparation of two microcapsules[   YUAN L, HUANG S D, GU A J, et al. A cyanate ester/microcapsule system with low cure temperature and self-healing capacity[J]. Composites Science and Technology, 2013, 87: 111–117.
15
]

1.1.2     中空纤维型自修复涂层

将修复剂或催/固化剂填充进中空纤维,分散在涂层成膜树脂中形成中空纤维网络,涂层受损时纤维破裂释放修复剂,通过化学反应或物理填充实现损伤区域的自修复。与微胶囊相比,中空纤维具有更大的核/壳比,受到损伤时,中空纤维可以释放更多的修复剂,提高修复效率[   AN S, LEE M W, YARIN A L, et al. A review on corrosion-protective extrinsic self-healing: Comparison of microcapsule-based systems and those based on core-shell vascular networks[J]. Chemical Engineering Journal, 2018, 344: 206–220.
17
]
。中空纤维自修复技术最早可追溯到20世纪90年代,1996年Dry[   DRY C. Procedures developed for self-repair of polymer matrix composite materials[J]. Composite Structures, 1996, 35(3): 263–269.
18
]
开发了一种基于中空纤维的被动自修复聚合物基复合材料,首次提出将中空纤维作为储存和释放修复剂的载体,通过纤维破裂触发修复。随后越来越多的研究人员关注到这一修复机制,并开展了一系列研究,他们基于中空纤维,结合微血管自愈系统,进一步制备了一种基于微血管网络的自修复材料。Postiglione等[   POSTIGLIONE G, ALBERINI M, LEIGH S, et al. Effect of 3D–printed microvascular network design on the self-healing behavior of cross-linked polymers[J]. ACS Applied Materials & Interfaces, 2017, 9(16): 14371–14378.
19
]
利用3D打印技术制备了具有双独立微血管网络的自修复聚合物,分别储存双组分修复剂/固化剂,通过扩散与反应实现裂纹修复。

1.2     本征型自修复涂层

本征型自修复涂层通过自身分子链间的可逆相互作用完成自愈的效果,不需要外加修复剂,即可实现多次重复修复损伤。在本征型自修复涂层包含的共价键和非共价键两种类型中,非共价键有分子链运动与重排、氢键、金属配位键、离子键等结构;共价键有酯键、双硫键、Diels-Alder双烯加成共价结构等。

1.2.1     动态共价键

动态共价键指能够在特定的外部条件下(加热、光照、pH变化等)断裂和重新成键的化学键,在涂层分子链中引入此类共价键以赋予涂层自修复的功能,当涂层受到机械损伤时,通过改变外界刺激使动态共价键重排进而修复损伤[   WANG S Y, URBAN M W. Self-healing polymers[J]. Nature Reviews Materials, 2020, 5(8): 562–583.
20
]

常见的动态共价键有Diels–Alder(DA)反应,它由呋喃环和马来酰亚胺基团双烯加成得到,在材料受热时,DA键断开,随着温度的降低而重新结合,从而赋予涂层自修复行为[   CHEN X X, DAM M A, ONO K, et al. A thermally re-mendable cross-linked polymeric material[J]. Science, 2002, 295(5560): 1698–1702.
21
]
。Behera等[   BEHERA P K, MONDAL P, SINGHA N K. Self-healable and ultrahydrophobic polyurethane–POSS hybrids by Diels–Alder “click” reaction: A new class of coating material[J]. Macromolecules, 2018, 51(13): 4770–4781.
22
]
以糠胺(FA)和糠基缩水甘油醚(FGE)为原料合成了新型扩链剂(FA–FGE),制备了含呋喃基团的聚氨酯功能化单体(FPU)。该单体通过DA反应接枝在马来酰亚胺功能化的多聚倍半硅氧烷(POSS maleimide isobutyl,POSS–m)上,得到一种新型的杂化材料。结果表明,FPU–POSS–M杂化材料的DA加合物的水接触角(WCA)由84°提高到141.3°。Diels–Alder加合物的热可逆性导致了杂化材料的自修复特性。这种自修复超疏水的FPU–POSS–M杂化材料可用于特种涂料应用。

此外二硫键也常用于本征型自修复涂层,在合适的温度下,体系达到双硫键的键离解能时这些键离解形成自由基并攻击相邻键,使新的S—S键形成。Li等[   LI C Y, WANG P, ZHANG D, et al. Near-infrared responsive smart superhydrophobic coating with self-healing and robustness enhanced by disulfide-bonded polyurethane[J]. ACS Applied Materials & Interfaces, 2022, 14(40): 45988–46000.
23
]
将双(2–羟乙基)二硫化物(HEDS)作为硬段制备了一系列含有动态二硫键的PU样品;随后通过室温搅拌法合成具有花状结构的ZnO颗粒,在ZnO上包覆聚多巴胺(PDA)和硬脂酸(SA)得到ZnO@PDA–SA复合颗粒。将二者复合制备具有光热性能的自修复涂层,PDA的光热效应可使涂层在808 nm激光照射下30 s内实现快速修复,同时由于具有3层结构使涂层接触角高达159.2°,因此涂层具有良好的耐腐蚀能力(图3)。

图3     PU/ZnO@PDA–SA涂层的自修复机制的示意图[   LI C Y, WANG P, ZHANG D, et al. Near-infrared responsive smart superhydrophobic coating with self-healing and robustness enhanced by disulfide-bonded polyurethane[J]. ACS Applied Materials & Interfaces, 2022, 14(40): 45988–46000.
23
]
Fig.3     Schematic illustration of self-healing mechanism of the PU/ZnO@PDA–SA coating[   LI C Y, WANG P, ZHANG D, et al. Near-infrared responsive smart superhydrophobic coating with self-healing and robustness enhanced by disulfide-bonded polyurethane[J]. ACS Applied Materials & Interfaces, 2022, 14(40): 45988–46000.
23
]

1.2.2     动态非共价键

通过动态非共价相互作用(如结晶、氢键、离子键和金属配位键)形成的聚合物比通过动态共价相互作用形成的聚合物更容易受到外部环境的影响。非共价键的键能更低,其断裂和重排的条件更加温和,因此,基于动态非共价相互作用形成的聚合物更有可能发展自我修复特性。

氢键相互作用由于其在高温下断裂,低温又重排的特性,被广泛应用于自修复材料中,键能较化学键低得多,更易实现自愈特性[   REN Y T, DONG X. Dynamic polymeric materials via hydrogen-bond cross-linking: Effect of multiple network topologies[J]. Progress in Polymer Science, 2024, 158: 101890.
  MONTARNAL D, CORDIER P, SOULIÉ-ZIAKOVIC C, et al. Synthesis of self-healing supramolecular rubbers from fatty acid derivatives, diethylene triamine, and urea[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2008, 46(24): 7925–7936.
24-25
]
。Gao等[   GAO F, CAO J C, WANG Q B, et al. Properties of UV–cured self-healing coatings prepared with PCDL–based polyurethane containing multiple H–bonds[J]. Progress in Organic Coatings, 2017, 113: 160–167.
26
]
通过6–甲基异胞嘧啶(MIS)与六亚甲基二异氰酸酯(HDI)反应,合成了一种含有四重氢键的UPy–NCO单体,并利用该单体合成含动态氢键的PU低聚物,随后引入甲基丙烯酸异氰基乙酯(ICEMA),赋予紫外固化能力。基于四重氢键的动态可逆网络,涂层在70 ℃下、2 min内可修复表面划痕,修复效率达98%。Wang等[   WANG X H, LI Y X, QIAN Y H, et al. Mechanically robust atomic oxygen-resistant coatings capable of autonomously healing damage in low earth orbit space environment[J]. Advanced Materials, 2018, 30(36): 1803854.
27
]
提出了在低氧环境下能够自主修复机械损伤的耐久耐氧涂层的制备方法。自修复抗原子氧涂层由2–脲醛–4[1H]–嘧啶酮(UPy)功能化的聚半硅氧烷(POSS)组成,形成氢键三维超分子聚合物。UPy–POSS超分子聚合物可以通过热压工艺方便地沉积在聚酰亚胺上。UPy–POSS聚合物涂层具有机械坚固性、热稳定性和透明性,并且对聚酰亚胺具有很强的附着力,能够经受反复的弯曲/不弯曲处理和热循环。UPy–POSS聚合物涂层在原子氧暴露后形成了表面SiO2层,因此具有良好的抗原子氧侵蚀性能。由于UPy基元之间的四氢键具备的可逆性,UPy–POSS聚合物涂层可以在80 ℃或近地轨道(LEO)环境下快速修复机械损伤(如裂纹)恢复其原有的抗原子氧功能,具有良好的航天空间环境应用潜力。

此外,金属配位、离子键也常被用于构筑动态可逆网络赋予材料自修复特性。Burnworth等[   BURNWORTH M, TANG L M, KUMPFER J R, et al. Optically healable supramolecular polymers[J]. Nature, 2011, 472(7343): 334–337.
28
]
通过La3+、Zn2+金属离子与2,6–双(1–甲基苯并咪唑基)吡啶之间的金属配位相互作用制备了自修复超分子聚合物。这种新型的金属纳米超分子可以通过光照进行修复,修复效率可达100%。Wu等[   WU B, YUAN A Q, XIAO Y, et al. Study on a polyacrylate-based waterborne coating: Facile preparation, convenient self-healing behavior and photoluminescence properties[J]. Journal of Materials Chemistry C, 2020, 8(36): 12638–12647.
29
]
通过一种简单、环保的方法成功合成了由离子键和氢键结合的水性聚丙烯酸酯共聚物,合成的涂层具有优异的透明度和良好的力学性能。其中离子键可以形成离子聚集,离子聚集体可以构建一个稳定而动态的(由水触发的)网络,而灵活的侧链可以提高链的迁移率。因此,该涂层在室温下,且在水的帮助下,能够有效且可重复地修复表面划痕、机械损伤和透明度。一旦被划伤,涂层可以立即恢复91.6%的透明度(550 nm)且最终恢复的透明度高达97.0%,自修复材料的抗拉强度可恢复到2.96 MPa。

1.3     两种修复机理对比

自修复涂层通过多样化的愈合机理,为航空航天领域提供了从微观裂纹修复到宏观形变恢复的解决方案。表1比较了两种修复机理的优缺点及发展方向,外援型涂层优势在于高响应速度,可以在高强度、高模量基体中实现功能与修复的兼容,但由于微胶囊或中空纤维等修复基元的不可逆破损,从而无法多次修复,进而影响其修复效率和功能表现;本征型涂层则通过可逆化学键实现了多次修复,但因受制于涂层基体自身化学键重排的速率,难以做到迅速响应。未来,随着纳米技术与智能材料的融合,自修复涂层将向更高效、更耐用的方向发展,有望成为空天装备长寿命与高可靠性的核心保障。

表1     外援型与本征型自修复涂层的优缺点
Table 1     Advantages and disadvantages of external vs. intrinsic self-healing coatings
修复机理 类型 优势 劣势 应用场景 发展方向
外援型 微胶囊、中空纤维 响应迅速、适用场景广泛 无法重复修复、分散性会影响涂层性能 汽车、建筑等外部涂层,可保护漆面完整性 开发多级结构实现多次修复
本征型 动态共价键 双硫键、Diels–Alder键等 可多次修复、涂层强度较高 触发可逆反应条件较苛刻(高温、紫外等) 柔性电子器件中保护设备正常运行 结合共价键的高强度与非共价键的快速修复
动态非共价键 氢键、离子键、金属配位键等 较共价键修复条件更加温和 涂层强度较低、极端环境难以维持性能 生物医药领域

2     自修复功能复合涂层

在航空航天领域,传统自修复涂层以单一防护功能为主,但飞行器面临的复杂服役环境(如高温、腐蚀、辐射、电磁干扰等)要求材料具备多任务协同能力。单纯的自修复性能已无法满足新一代空天装备对轻量化、智能化与长寿命的严苛需求,功能化集成成为必然发展方向[   MONTEMOR M F. Functional and smart coatings for corrosion protection: A review of recent advances[J]. Surface and Coatings Technology, 2014, 258: 17–37.
  GOHARSHENAS MOGHADAM S, PARSIMEHR H, EHSANI A. Multifunctional superhydrophobic surfaces[J]. Advances in Colloid and Interface Science, 2021, 290: 102397.
  CHENG M, FU Q, TAN B, et al. Build a bridge from polymeric structure design to engineering application of self-healing coatings: A review[J]. Progress in Organic Coatings, 2022, 167: 106790.
30-32
]

2.1     防腐–自修复涂层

金属(如钢铁、铝材)、混凝土等材料在潮湿、盐雾、酸碱等环境中易发生腐蚀,导致结构破坏。防腐涂料通过隔绝腐蚀介质,可显著延缓材料劣化。而防腐与自修复两者相辅相成,防腐功能可减少涂层损伤,自修复涂层又能提高防腐效果。因此,防腐功能是自修复涂层最广泛应用之一[   YIMYAI T, CRESPY D, ROHWERDER M. Corrosion-responsive self-healing coatings[J]. Advanced Materials, 2023, 35(47): 2300101.
33
]
。Yabuki等[   YABUKI A, URUSHIHARA W, KINUGASA J, et al. Self-healing properties of TiO2 particle-polymer composite coatings for protection of aluminum alloys against corrosion in seawater[J]. Materials and Corrosion, 2011, 62(10): 907–912.
34
]
在乙烯基酯聚合物涂层体系中引入TiO2纳米粒子,研究铝合金基板聚合物涂层在海水中的防腐性能。当涂层被腐蚀并产生损伤时,二氧化钛颗粒附近的局部酸碱度增加将促进双酚A从二氧化钛颗粒表面的释放。释放的双酚A逐渐扩散到裸露的铝合金基底上,形成阻隔膜,从而修复缺陷。阻隔膜的形成归因于乙烯基酯聚合物中双酚A的溶解,双酚A起着抑制剂的作用。其次是由于氧的阴极反应导致局部酸碱度的增加。最终涂层在满足自修复性能同时,又具有防腐功能。Ren等[   REN S H, ZHOU W J, SONG K, et al. Robust, self-healing, anti-corrosive waterborne polyurethane urea composite coatings enabled by dynamic hindered urea bonds[J]. Progress in Organic Coatings, 2023, 180: 107571.
35
]
将受阻脲(TBEU)二羟甲基丙酸(DMPA)作为扩链剂,通过界面聚合形成动态受阻脲键,并中和羧酸基团分散于水中,得到稳定的水性分散体(WPUU)。在Tris–HCl缓冲液中,令多巴胺在CNTs表面自聚合形成PDA层,之后将PDA@CNTs与WPUU分散体混合,得到防腐自修复涂层。添加PDA修饰的PDA@CNTs后,涂层的屈服强度得到显著提升,达到13.1 MPa。受阻脲键的动态可逆型赋予材料重读自愈能力,受损涂层经修复后,防腐蚀性能接近原始状态,该涂层使低碳钢的腐蚀电位(Ecorr)从–0.60 V升至–0.50 V,腐蚀电流(Icorr)降低至6.84×10–9 A·cm–2

石墨烯为二维层状结构,将其均匀分散在树脂体系中,可以阻止腐蚀物质的渗透,形成一种“阻隔层”,提高复合材料防腐效果。Fan等[   FAN F, ZHOU C Y, WANG X, et al. Layer-by-layer assembly of a self-healing anticorrosion coating on magnesium alloys[J]. ACS Applied Materials & Interfaces, 2015, 7(49): 27271–27278.
36
]
通过层层自组装技术以支化聚醚酰亚胺(PEI)与聚丙烯酸(PAA)为树脂体系,GO为填料体系,制备聚电解质涂层,研究其在镁合金上防腐自修复性能。经研究表明,聚电解质涂层产生后,在水环境下,PEI/PAA体系由于吸水膨胀实现了划痕闭合,并在分子链运动重排作用下,10 min实现宽度10 μm划痕完全修复。此外,GO填料在涂层中可以阻止腐蚀电解质的渗透,充当缓蚀剂和阻挡层的作用。最终,该体系涂层在PEI/PAA聚电解质树脂体系和GO填料体系的双重作用下,表现出优异的防腐自修复行为。

聚苯胺(PANI)作为一种导电高分子材料,在金属防腐领域展现出独特的优势,尤其在绿色环保、长效防护和多功能性方面具有显著潜力。PANI的氧化态(翠绿亚胺盐态)可将金属表面氧化,形成致密的氧化膜,从而抑制金属的阳极氧化[   BEYGISANGCHIN M, ABDUL RASHID S, SHAFIE S, et al. Preparations, properties, and applications of polyaniline and polyaniline thin films—A review[J]. Polymers, 2021, 13(12): 2003.
37
]
。将PANI与自修复聚合物复合制备兼有防腐和自愈功能的防腐修复涂料,成为当下研究热点。Ali等[   ALI SYED J, TANG S C, MENG X K. Intelligent saline enabled self-healing of multilayer coatings and its optimization to achieve redox catalytically provoked anti-corrosion ability[J]. Applied Surface Science, 2016, 383: 177–190.
38
]
以PANI和聚丙烯酸的复合材料为核心,结合聚醚酰亚胺(PEI),通过旋转组装(Spin assembly)技术制备多层涂层(PANI–PAA/PEI)。盐水(质量分数3.5%的NaCl)作为外部刺激,触发PEI层中可逆的非共价相互作用,促进损伤区域快速愈合。由于PANI的存在,涂层能够在金属表面诱导形成钝化层,在盐水中浸泡120 h,仍保持高阻抗,显著抑制腐蚀。Li等[   FENG Y Y, CUI Y X, ZHANG M J, et al. Preparation of tung oil-loaded PU/PANI microcapsules and synergetic anti-corrosion properties of self-healing epoxy coatings[J]. Macromolecular Materials and Engineering, 2021, 306(2): 2000581.
39
]
利用桐油作为单组份修复剂,制备负载桐油的聚氨酯微胶囊,在此基础上通过原位聚合沉积导电PANI,形成PU/PANI双层壳结构微胶囊(图4)。将该微胶囊与环氧树脂混合得到自修复环氧涂料。涂层的破损可通过桐油释放氧化成膜进行修复,同时PANI通过氧化还原反应形成钝化层,双重保护金属基底。

图4     桐油负载PU/PANI微胶囊环氧涂料的自愈及防腐机理[   FENG Y Y, CUI Y X, ZHANG M J, et al. Preparation of tung oil-loaded PU/PANI microcapsules and synergetic anti-corrosion properties of self-healing epoxy coatings[J]. Macromolecular Materials and Engineering, 2021, 306(2): 2000581.
39
]
Fig.4     Self-healing and anti-corrosion mechanism of epoxy coating containing tung oil-loaded PU/PANI microcapsules[   FENG Y Y, CUI Y X, ZHANG M J, et al. Preparation of tung oil-loaded PU/PANI microcapsules and synergetic anti-corrosion properties of self-healing epoxy coatings[J]. Macromolecular Materials and Engineering, 2021, 306(2): 2000581.
39
]

2.2     超疏水–自修复涂层

通常,超疏水表面被定义为水接触角大于150°,滚动角小于10°的表面。水接触角指液滴固液界面与气液界面的夹角;滚动角指液滴滑动时与水平面的最小倾角[   LI Z J, GUO Z G. Self-healing system of superhydrophobic surfaces inspired from and beyond nature[J]. Nanoscale, 2023, 15(4): 1493–1512.
40
]
。两个具有相似接触角的表面可能具有完全不同的滚动角,因此不能仅仅靠水接触角来判断超疏水表面。然而在实际应用中超疏水表面耐久性较差,当表面的微结构被破坏时,疏水性能会大打折扣,从而降低了涂层的使用寿命。因此,将超疏水性与自修复功能结合制备超疏水自修复涂层,使涂层具备自清洁能力同时兼具损伤愈合功能延长涂层使用寿命,这类新型的智能涂料被广泛应用于有防污、减阻、自清洁需求的领域[   RAHMAN A U, KABEB S M, ZULFKIFLI F H. Functional hydrophobic coatings: Insight into mechanisms and industrial applications[J]. Progress in Organic Coatings, 2025, 203: 109187.
41
]

随着超疏水自修复涂层概念的提出和发展,目前构筑兼有超疏水、修复特性的表层大致可分为两种路径:(1)将疏水成分储存在纳米微球或毛细纤维中,当表面受到损伤时,疏水成分被释放出来迁移至破损处从而完成自愈过程;(2)通过微/纳结构的再生使损伤部位重新获得疏水性能[   SAM E K, SAM D K, LV X M, et al. Recent development in the fabrication of self-healing superhydrophobic surfaces[J]. Chemical Engineering Journal, 2019, 373: 531–546.
  CHEN K L, LIU H, ZHOU J L, et al. Polyurethane blended with silica-nanoparticle-modified graphene as a flexible and superhydrophobic conductive coating with a self-healing ability for sensing applications[J]. ACS Applied Nano Materials, 2022, 5(1): 615–625.
42-43
]

Zhang等[   ZHANG L B, TANG B, WU J B, et al. Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating[J]. Advanced Materials, 2015, 27(33): 4889–4894.
44
]
通过在不锈钢网聚合吡咯单体,形成了具有微结构的PPy涂层,采用化学气相(CVD)对PPy涂层进行氟烷基硅烷(POST)表面修饰,赋予材料高疏水性,在等离子体对其造成表面损伤后,接触角降至0°,常温下6 h或光照下1 h即可恢复疏水性。这种修复特性归因于储存在PPy涂层内的氟烷基硅烷分子向表面的迁移,进一步PPy赋予涂层良好的光热转换效率,在光照下加速分子扩撒,提高修复效率,涂层经过多次等离子体破坏–光照修复循环仍能恢复初始疏水性(接触角≈140°),不锈钢网的机械与化学耐久性进一步增强了涂层的整体耐久性。除此之外,研究人员还利用光照刺激制备处具有光响应超疏水修复涂层,Chen等[   CHEN K L, ZHOU S X, YANG S, et al. Fabrication of all-water-based self-repairing superhydrophobic coatings based on UV–responsive microcapsules[J]. Advanced Functional Materials, 2015, 25(7): 1035–1041.
45
]
首次提出将微胶囊与改性SiO2/TiO2的微纳粗糙结构相结合得到UV响应型微胶囊,并加入水性聚硅氧烷树脂形成水基涂料。该UV响应型微胶囊呈经典核壳结构,芯层为具有修复能力的氟烷基硅烷(FAS12),壳层由苯乙烯–二乙烯基苯共聚物组成,在其表面覆盖有SiO2/TiO2纳米颗粒。涂层经UV照射后,由于TiO2的光催化性使微胶囊分解释放内部的FAS12,激活的超疏水性接触角达到152°,滚动角<6°,且在不同基底(纸张、玻璃、金属等)均具有类似的超疏水特性。该涂层还具备良好的耐候性和稳定性,涂层经过720 h的UV连续照射后其接触角仍保持>150°,户外测试中经过约90 d的暴露测试后涂层仍维持着良好的超疏水性,此外12次的抗油污循环测试表明涂层经UV照射后超疏水性能未衰减。Zhao等[   ZHAO X, WEI J F, LI B C, et al. A self-healing superamphiphobic coating for efficient corrosion protection of magnesium alloy[J]. Journal of Colloid and Interface Science, 2020, 575: 140–149.
46
]
采用低表面能全氟癸基三乙氧基硅烷和正硅酸四乙酯对纳米二氧化硅(PF–POS@SiO2)进行改性(图5),由于含PF–POS@SiO2涂层的表面非常粗糙,表面上有大量的全氟癸基基团,这可能会大大降低表面能,从而使环氧涂层表现出超疏水功能。纯环氧涂层具有一定亲水性,质量分数3.5%的NaCl溶液可润湿涂层表面后,其接触角为89°。而在含PF–POS@SiO2填料的环氧涂层上,3.5% NaCl溶液可以从上向下滚落,且不会留下任何痕迹,接触角提高至165.8°。由于PF–POS@SiO2通过减少涂层与液体之间的接触面积和接触时间,可以明显减少3.5% NaCl溶液和其他腐蚀性液体作用在涂层上的机会,修复后的涂层在48盐雾暴露后,表面依然保持原有状态。将该涂层涂覆在镁合金表面,因环氧树脂体系的形状记忆和PF–POS@SiO2的超双疏水的协同作用,从而赋予镁合金基体优异的防腐蚀、超疏水和自修复功能。

图5     自修复环氧树脂基超双疏水涂层疏水机理[   ZHAO X, WEI J F, LI B C, et al. A self-healing superamphiphobic coating for efficient corrosion protection of magnesium alloy[J]. Journal of Colloid and Interface Science, 2020, 575: 140–149.
46
]
Fig.5     Hydrophobic mechanism of self-healing epoxy resin-based superdouble hydrophobic coatings[   ZHAO X, WEI J F, LI B C, et al. A self-healing superamphiphobic coating for efficient corrosion protection of magnesium alloy[J]. Journal of Colloid and Interface Science, 2020, 575: 140–149.
46
]

通过引入动态键使涂层能够在受到损伤后重构表面微纳形貌,达到自修复和超疏水有机结合的目的[   BEHERA P K, MONDAL P, SINGHA N K. Self-healable and ultrahydrophobic polyurethane–POSS hybrids by Diels–Alder “click” reaction: A new class of coating material[J]. Macromolecules, 2018, 51(13): 4770–4781.
22
]
。Li等[   LI D Y, ZHANG Y H, YUAN L, et al. Superhydrophobic and self-healable tri-layered composites with great thermal resistance and electrothermal ability[J]. Composites Communications, 2020, 21: 100397.
47
]
基于动态双硫键的自修复环氧树脂设计,组装了一种具有3层结构的复合材料,引入CNT和经全氟癸酸改性的纳米铜粉末,使材料具有电热功能和微纳米粗糙结构(接触角154°、滚动角5°),实现除冰去冰效果。动态交联网络的断裂–重构使该材料能够在完全切断的情况下通过160 ℃加热1 h“再植”恢复完整结构并保持良好超疏水性能。Zhu等[   ZHU K, LI Z T, CHENG F, et al. Preparation of durable superhydrophobic composite coatings with photothermal conversion precisely targeted configuration self-healability and great degradability[J]. Composites Science and Technology, 2021, 213: 108926.
48
]
通过在含有交联动态亚胺键的聚亚胺薄膜表面喷涂含氟环氧和Fe3O4@SiO2 NPs后,经固化形成有机–无机复合涂层。如图6所示[   ZHU K, LI Z T, CHENG F, et al. Preparation of durable superhydrophobic composite coatings with photothermal conversion precisely targeted configuration self-healability and great degradability[J]. Composites Science and Technology, 2021, 213: 108926.
48
]
,通过调控纳米颗粒含量优化表面粗糙度(其中样品PIF–80水接触角高达161°,滚动角低至2°),含氟环氧能够有效保护纳米颗粒,并增强了耐久性以抵抗动态冲击。涂层能够在完全断裂后通过Fe3O4的光热效应将光能转化为热能,通过局部加热激活基底薄膜中的动态亚胺键进行交换,从而修复微观结构和润湿性,经过6次的断裂–修复循环涂层仍保持>159°的接触角。此外,该涂层还可以通过多种降解途径实现涂层的可控回收,解决了传统超疏水材料难以回收的环境问题。

图6     自愈超疏水PIF–80样品的制备过程及其自愈能力示意图[   ZHU K, LI Z T, CHENG F, et al. Preparation of durable superhydrophobic composite coatings with photothermal conversion precisely targeted configuration self-healability and great degradability[J]. Composites Science and Technology, 2021, 213: 108926.
48
]
Fig.6     Schematic diagram of the preparation process of self-healing superhydrophobic PIF–80 samples and their self-healing ability[   ZHU K, LI Z T, CHENG F, et al. Preparation of durable superhydrophobic composite coatings with photothermal conversion precisely targeted configuration self-healability and great degradability[J]. Composites Science and Technology, 2021, 213: 108926.
48
]

2.3     润滑低阻–自修复涂层

在航空航天、汽车工业等重工业领域不可避免地会涉及到机械构件间的互相摩擦,过多的摩擦可能会导致不必要的发热,易出现磨损、开裂甚至失效等问题,严重威胁设备正常运行。润滑低阻涂层通过降低摩擦系数、阻隔热化学侵蚀,可延长部件使用周期,同时在轻量化趋势下,采用涂层技术可有效减少能耗,提高燃油效率[   CUI X, LI C H, ZHANG Y B, et al. Comparative assessment of force, temperature, and wheel wear in sustainable grinding aerospace alloy using biolubricant[J]. Frontiers of Mechanical Engineering, 2022, 18(1): 3.
49
]
。耐摩擦自修复涂层通过微胶囊或动态化学键赋予涂层可修复的性能,但进一步增强其适应性,是目前研究的热点之一。

Khun等[   KHUN N W, SUN D W, HUANG M X, et al. Wear resistant epoxy composites with diisocyanate-based self-healing functionality[J]. Wear, 2014, 313(1–2): 19–28.
50
]
采用微胶囊策略,通过制备填充有六亚甲基二异氰酸酯(HDI)的微胶囊,并与环氧树脂(Epolam 5015)复配固化形成复合材料。随着体系中微胶囊含量的增加,摩擦系数从0.72降至0.66,在涂层受到磨损后微胶囊破裂释放HDI,与空气中水分反应生成聚脲,使得磨损宽度和深度显著减小达到表面修复的效果,同时,液态HDI起到一定润滑作用进一步减少摩擦,最终实现自润滑与自修复双重功能。Li等[   LI Z K, LI K K, LI X, et al. Preparation of linseed oil-loaded porous glass bubble/wax microcapsules for corrosion-and wear-resistant difunctional coatings[J]. Chemical Engineering Journal, 2022, 437: 135403.
51
]
设计了一种双壳层微胶囊,将多孔玻璃泡浸渍于亚麻籽油,利用真空辅助渗透,获得油负载达71.9%的胶囊内核,之后用熔融石蜡包裹多孔玻璃泡形成外壳层。双壳胶囊加入环氧树脂中固化形成涂层,使复合涂层摩擦系数降低87.9%,磨损量减少96.3%。外层的蜡层提供物理密封和润滑功能,而芯部的亚麻籽油形成油膜则具有自修复特性。

Zhou等[   ZHOU S Q, JIA X H, LI S, et al. Epoxy/polytetrafluoro-wax composite coatings demonstrate remarkable wear resistance, offering rapid and durable cyclic self-healing capabilities facilitated by the “sweating” behavior of polytetrafluoro-wax[J]. Progress in Organic Coatings, 2024, 188: 108227.
52
]
采用不同的策略,将环氧树脂与聚四氟乙烯蜡(PFW)物理共混制备EP/PFW复合涂层。PFW在120 ℃下发生相变,迁移至涂层受损部位,从而修复涂层。根据基材导热性的不同,平均修复时间仅为77 s,最短45 s。复合涂层摩擦系数由纯EP的0.5153降至0.1084,降低了79%,磨损系数降低64.8%,这是因为相变迁移的PFW形成润滑转移膜,减少了金属–聚合物直接接触,摩擦过程转变为聚合物–聚合物或固–液摩擦。PFW作为外源自修复剂,通过相变迁移实现快速修复,且不消耗特性支持多次循环修复。同样的,该团队在上述体系中进一步添加了由多巴胺包覆的碳纳米管PDA/CNTs,增加其在EP树脂中的分散性并赋予光热转换能力[   SHAN Z Q, JIA X H, LI S, et al. Self-lubricating and wear-resistant epoxy resin coatings based on the “soft-hard” synergistic mechanism for rapid self-healing under photo-thermal conditions[J]. Chemical Engineering Journal, 2024, 481: 148664.
53
]
。如图7所示[   SHAN Z Q, JIA X H, LI S, et al. Self-lubricating and wear-resistant epoxy resin coatings based on the “soft-hard” synergistic mechanism for rapid self-healing under photo-thermal conditions[J]. Chemical Engineering Journal, 2024, 481: 148664.
53
]
,该涂层修复机制同样是由PFW的相变迁移带来的,但由于PDA/CNTs构筑的导热网络,加速了热传导,使涂层在光热条件下修复效率进一步提升20.7%(相比EP/PFW)。涂层摩擦系数降至0.074,磨损率降低32.7%,在PFW润滑膜的基础上,PDA/CNTs可看作“微观轴承”滚动摩擦降低了摩擦系数,增强了涂层承载能力,抑制了塑性变形,减少了磨损。

图7     C–EP/PFW涂层的制备及修复性能示意图[   SHAN Z Q, JIA X H, LI S, et al. Self-lubricating and wear-resistant epoxy resin coatings based on the “soft-hard” synergistic mechanism for rapid self-healing under photo-thermal conditions[J]. Chemical Engineering Journal, 2024, 481: 148664.
53
]
Fig.7     Schematic diagram of the preparation and repair performance of C–EP/PFW coating[   SHAN Z Q, JIA X H, LI S, et al. Self-lubricating and wear-resistant epoxy resin coatings based on the “soft-hard” synergistic mechanism for rapid self-healing under photo-thermal conditions[J]. Chemical Engineering Journal, 2024, 481: 148664.
53
]

2.4     导电–自修复涂层

导电自修复涂层通过将“自修复”与“导电功能”相结合,不仅解决了传统材料在耐久性、环境适应性等方面的局限,还为航空航天和电子设备的高性能化、智能化提供了创新路径[   ZHANG Q, LIU L B, PAN C G, et al. Review of recent achievements in self-healing conductive materials and their applications[J]. Journal of Materials Science, 2018, 53(1): 27–46.
54
]
。银纳米线(Ag NWs)作为重要的导电材料之一,因其良好的导电性和长径比,使其能够形成导电网络,在自修复材料中具有潜在的应用前景。Li等[   LI Y, CHEN S S, WU M C, et al. Rapid and efficient multiple healing of flexible conductive films by near-infrared light irradiation[J]. ACS Applied Materials & Interfaces, 2014, 6(18): 16409–16415.
55
]
通过在PCL/PVA复合薄膜上沉积Ag NWs来制备近红外光致自修复、高导电性和柔性薄膜(可反复弯曲)。采用PVPON修饰Ag NWs与PVA的羟基反应形成氢键,从而使其在基体中附着力强,分散效果好,进而提高自修复效率,自修复率达94%。Ag NWs的随机取向产生的网状Ag NWs膜,具有高密度的线缠结结构,通过四点探针电阻法测量的导电自修复涂层电阻低至0.25 Ω·sq–1,表明此结构具备优异的导电性,使其在电子器件领域具有可观的应用前景。Gong等[   GONG C K, LIANG J J, HU W, et al. A healable, semitransparent silver nanowire-polymer composite conductor[J]. Advanced Materials, 2013, 25(30): 4186–4191.
56
]
利用Ag NWs作为导体,并在Diels–Alder基可愈合网络聚合物表面嵌入一层Ag NWs,成功制备了可愈合的导电聚合物薄膜(图8)。Ag NWs渗透网络是通过将Ag NWs分散体滴注到预清洗的玻璃基板上形成的。将DA聚合物滴铸到Ag NWs网络上,并剥离复合膜,获得了自修复的导电复合膜。复合导体的表面电阻显示出高导电性,低至9.5 Ω·sq–1。此外,经过1000次弯曲–不弯曲试验后,复合材料的电导率仅下降了5.7%,表明复合薄膜具有较高的柔韧性。当使用外科手术刀在薄膜上切割时,通过在110 ℃条件下加热复合薄膜,可以快速有效地愈合裂缝。同时,由于DA聚合物矩阵的重整使银纳米线聚合在一起,可使复合导体的表面电导率在5 min内恢复到原来的97%。

图8     基于Ag NWs和DA基共聚物的可修复复合导体[   GONG C K, LIANG J J, HU W, et al. A healable, semitransparent silver nanowire-polymer composite conductor[J]. Advanced Materials, 2013, 25(30): 4186–4191.
56
]
Fig.8     Repairable composite conductors based on Ag NWs and DA–based copolymers[   GONG C K, LIANG J J, HU W, et al. A healable, semitransparent silver nanowire-polymer composite conductor[J]. Advanced Materials, 2013, 25(30): 4186–4191.
56
]

除导电金属填料外,碳纳米管(CNTs)也常用作导电填料,在赋予复合材料导电功能的同时,又能提高材料的机械性能。Yang等[   YANG W, SONG J, WU X T, et al. High-efficiency self-healing conductive composites from HPAMAM and CNTs[J]. Journal of Materials Chemistry A, 2015, 3(23): 12154–12158.
57
]
采用超支化聚胺(HPAMAM)作为聚合物基体,与CNTs复合组装成独特的寿司状结构,制备了一种新型自修复导电复合材料。寿司状结构有效降低了CNTs的体积分数,从而实现满足导电性能的同时具有良好的自愈能力。受到外部损伤时,断裂表面的CNTs层一旦接触即可重叠在一起,导电通道实现够快速重构。Fu等[   FU G H, YUAN L, LIANG G Z, et al. Heat-resistant polyurethane films with great electrostatic dissipation capacity and very high thermally reversible self-healing efficiency based on multi-furan and liquid multi-maleimide polymers[J]. Journal of Materials Chemistry A, 2016, 4(11): 4232–4241.
58
]
合成了含多呋喃环的线性聚氨酯(FPU)和富含马来酰亚胺基团的超支化多马来酰亚胺聚硅氧烷(HSiNCM),将二者共混后加入酸化多壁碳纳米管(aCNTs),利用DA反应实现交联,赋予材料热可自愈性。130 ℃下5 min表面裂纹即可闭合,修复效率达92.54%。除良好的自修复性能外,aCNTs的加入使其形成导电网络,显著提升电荷耗散能力(表面电阻为3.094×108 Ω,静电衰减半衰期仅0.07 s,电导率为4.116×10–8 Scm–1),满足抗静电材料标准(106~109 Ω),在航空航天、电子设备等对耐热、抗静电和自修复需求高的邻域具有极大的应用潜力。

近年来多种纳米导电填料也被开发构筑导电网络制备导电–自修复涂层。Zhang等[   ZHANG H, YI L H, NI Y Z, et al. Preparation of self-healing MXene/chitosan/benzaldehyde-polyurethane flexible conductive coating for dual-mode sensing applications[J]. Composites Part B: Engineering, 2024, 287: 111875.
59
]
利用硫醇–烯点击反应合成含苯甲醛的二醇单体,并以此制备含动态亚胺键VPU,进一步引入壳聚糖(CS)以增加亚胺键密度。导电网络由表面羟基改性的MXene构成,三者复合后利用热压工艺涂敷于弹性氨纶织物表面,形成柔性导电涂层。基于动态亚胺键和氢键的协同作用,涂层修复效率可达96%。当MXene质量分数为8%时,涂层电阻率最低,分散良好的导电网络赋予涂层双模传感的能力,可检测应变和压力。

2.5     电磁干扰屏蔽–自修复涂层

航空航天器依赖高精度导航、通信及雷达系统,而复杂电磁干扰(如雷电、军用雷达波、太空辐射)可能导致信号失真甚至设备损毁[   WANG M, TANG X H, CAI J H, et al. Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review[J]. Carbon, 2021, 177: 377–402.
60
]
。电磁屏蔽涂层是保障航空航天装备安全运行的核心技术之一,通过导电/导磁材料构建电磁屏障,能够有效保护精密电子设备,同时轻量化的涂层也符合飞行器减重的要求[   HE X L, CUI C Q, CHEN Y, et al. MXene and polymer collision: Sparking the future of high-performance multifunctional coatings[J]. Advanced Functional Materials, 2024, 34(51): 2409675.
61
]
。然而传统电磁屏蔽涂层因机械磨损或热应力产生裂纹后,会产生明显的电磁泄漏进而引发电子系统故障,极大地影响了涂层的使用寿命,限制其使用场景。通过微胶囊或动态化学键等涂层可在微裂纹产生后自动修复,恢复屏蔽效能,避免因损伤而导致电磁屏蔽失效。

Zou等[   ZOU L H, LAN C T, ZHANG S L, et al. Near-instantaneously self-healing coating toward stable and durable electromagnetic interference shielding[J]. Nano-Micro Letters, 2021, 13(1): 190.
62
]
设计并开发了一种具有电磁屏蔽性能的复合涂层,将聚吡咯(PPy)作为导电层,并在其上涂覆疏水性材料1H,1H,2H,2H–全氟辛基三乙氧基硅烷(POTS)作为疏水保护层PPy@POTS。其中,PPy@POST在X波段(8.2~12.4 GHz)有良好的屏蔽效果,平均屏蔽效能为24.7 dB,并可通过吸收损耗减少电磁反射污染。由于PPy的微波吸收能力,受损的POST层能够在4 s内被加热至130 ℃,从而实现近乎瞬时的修复效果,屏蔽效能恢复率可达96%以上。该微波加热触发自修复策略可推广至其他电磁屏蔽材料,进一步拓宽应用范围。

聚酰亚胺PI因其优异的耐候性和机械柔韧性也常被作为金属颗粒沉积的优良衬底,而被应用于电磁屏蔽领域。Dong等[   DONG L J, ZHANG P, XIAO C, et al. Preparing efficient self-healing polyimide coating for enhancing stability of electromagnetic interference shielding film[J]. Journal of Alloys and Compounds, 2025, 1010: 177045.
63
]
将1,4–二氨基二苯醚(ODA)、对苯二醛(TA)与1,2,4,5–苯二甲酸二苯醚(PMDA)反应,引入动态亚胺键,制备了一种新型的热固性自修复PI膜(SHPI)(图9)。将SHPI前驱体溶液涂覆于镀铝聚酰亚胺(PI/Al)电磁屏蔽膜表面,高温固化形成3层结构(PI/Al/SHPI),拉伸强度可达72 MPa。动态亚胺键的存在赋予材料自愈的能力,在切割或划痕后经200 ℃热压2 h,拉伸强度恢复率能达到92%以上,这归功于动态亚胺键在高温下的断裂–重组,进而分子链迁移重构聚合物网络。SHPI涂层有效阻隔酸性环境(浓度为10%的硝酸)对PI/Al膜铝层的腐蚀,浸泡30 min后电磁屏蔽效能(SE)仍保持44.5 dB(原PI/Al为50 dB)。优异的力学强度和电磁屏蔽性能,及在高温下的可修复性,使得该材料在航空航天领域具有极大的应用潜力。

图9     PI/Al/SHPI的制备工艺示意图[   DONG L J, ZHANG P, XIAO C, et al. Preparing efficient self-healing polyimide coating for enhancing stability of electromagnetic interference shielding film[J]. Journal of Alloys and Compounds, 2025, 1010: 177045.
63
]
Fig.9     Schematic diagram of preparation process of PI/Al/SHPI[   DONG L J, ZHANG P, XIAO C, et al. Preparing efficient self-healing polyimide coating for enhancing stability of electromagnetic interference shielding film[J]. Journal of Alloys and Compounds, 2025, 1010: 177045.
63
]

还原氧化石墨烯(rGO)和MXene凭借独特的结构和性能,在电磁屏蔽领域同样展现出巨大潜力,被广泛应用在精密电子仪器、航空航天、电磁吸波等领域。Hu的团队利用可再生蓖麻油作为生物基多元醇,2,2–二氨基二苯二硫醚作为扩链,通过引入动态共价键(二硫键),制备了可自修复水性聚氨酯(ADWPU),后将Ti3C2Tx Mxene纳米片加入ADWPU乳液中均匀共混,形成具有隔离结构的复合薄膜(ADWPU–T)[   LU J Y, ZHANG Y, TAO Y J, et al. Self-healable castor oil-based waterborne polyurethane/MXene film with outstanding electromagnetic interference shielding effectiveness and excellent shape memory performance[J]. Journal of Colloid and Interface Science, 2021, 588: 164–174.
64
]
。凭借Mxene的金属导电性和隔离结构,ADWPU–7%T薄膜的EMI屏蔽效能达51.37 dB(X波段),MXene与WPU通过自组装形成隔离导电网络,增加了电磁波的反射路径,从而显著提升屏蔽效率,材料在200次弯曲或80 ℃老化5 d后,屏蔽效能几乎无衰减。动态键的加入赋予材料自修复能力,60 ℃加热5 min后划痕完全愈合,还使材料具有良好的形状记忆性能,45 ℃热处理下材料可回复初始状态,回复率达100%。Menon等[   MENON A V, MADRAS G, BOSE S. Ultrafast self-healable interfaces in polyurethane nanocomposites designed using Diels-alder “click” as an efficient microwave absorber[J]. ACS Omega, 2018, 3(1): 1137–1146.
65
]
也采用相似的策略,通过在含有动态共价键(DA键)交联网络的自修复聚氨酯中加入负载Fe3O4纳米颗粒的rGO和MWCNTs,制备出具有优异电磁屏蔽性能和快速自修复能力(900 W微波加热10 min)的复合薄膜,其中MWCNTs形成导电网络,rGO/Fe3O4提供磁损耗和界面极化,协同增强微波吸收,屏蔽效率>99.7%。

3     自修复功能涂层在航空领域的应用前景

随着自修复涂层的提出与发展,其作为智能涂层的重要分支,在学术界引起了广泛关注,且其功能化设计呈现多元化发展趋势。然而,面对更加极端复杂的航天领域,由于缺乏验证场景与条件,难以将涂层置于真实的航天环境下表征,因此SHFCs还处在前期研究阶段。通常所指的空天环境存在巨大的温差、来自太阳和宇宙射线的强辐照、高度真空、高速飘飞的微小尘埃和微流星体,针对这一环境就需要涂层有着良好的强度并在受到原子氧的侵蚀、尘埃撞击后能够有效自我修复以保证部件的完整性以延长使用寿命,同时兼有电磁屏蔽、抗辐照、静电耗散等功能以便更好地适应空天环境(表2[   CHEN Y J, SUI Z H, DU J. Review on aviation intelligent self-healing anti-corrosion coating[J]. Anti-Corrosion Methods and Materials, 2025, 72(2): 170–177.
66
]

表2     自修复功能涂层航空领域应用
Table 2     Self-healing functional coatings for aerospace applications
树脂体系 修复机理 修复类型 修复方式 功能化 应用前景 文献
PU 本征型 二硫键 808 nm激光 30 s 光热响应/防腐 飞行器防护涂层 [   LI C Y, WANG P, ZHANG D, et al. Near-infrared responsive smart superhydrophobic coating with self-healing and robustness enhanced by disulfide-bonded polyurethane[J]. ACS Applied Materials & Interfaces, 2022, 14(40): 45988–46000.
23
]
UPy–POSS 本征型 氢键 80 ℃、2 min 高强度/透明/抗原子氧 飞行器防护涂层 [   WANG X H, LI Y X, QIAN Y H, et al. Mechanically robust atomic oxygen-resistant coatings capable of autonomously healing damage in low earth orbit space environment[J]. Advanced Materials, 2018, 30(36): 1803854.
27
]
WPUU 本征型 受阻脲键 70 ℃、2 h 防腐/导电 飞机机身 [   REN S H, ZHOU W J, SONG K, et al. Robust, self-healing, anti-corrosive waterborne polyurethane urea composite coatings enabled by dynamic hindered urea bonds[J]. Progress in Organic Coatings, 2023, 180: 107571.
35
]
EP 外援型 微胶囊(PU/PANI) 微胶囊破裂释放桐油 防腐 飞行器防护涂层 [   FENG Y Y, CUI Y X, ZHANG M J, et al. Preparation of tung oil-loaded PU/PANI microcapsules and synergetic anti-corrosion properties of self-healing epoxy coatings[J]. Macromolecular Materials and Engineering, 2021, 306(2): 2000581.
39
]
硅树脂(CSM1) 外援型 微胶囊(SiO2/TiO2 UV照射 紫外响应/超疏水 飞机机翼/挡风玻璃/飞行器防护涂层 [   CHEN K L, ZHOU S X, YANG S, et al. Fabrication of all-water-based self-repairing superhydrophobic coatings based on UV–responsive microcapsules[J]. Advanced Functional Materials, 2015, 25(7): 1035–1041.
45
]
EP 外援型 微胶囊(亚麻籽油@玻璃泡/石蜡双壳胶囊) 微胶囊破裂释放石蜡 防腐蚀/润滑 轴承/机械构件 [   LI Z K, LI K K, LI X, et al. Preparation of linseed oil-loaded porous glass bubble/wax microcapsules for corrosion-and wear-resistant difunctional coatings[J]. Chemical Engineering Journal, 2022, 437: 135403.
51
]
FPU/HSiNCM 本征型 DA键 130 ℃、5 min 导电/静电耗散 损伤传感器/太空服 [   FU G H, YUAN L, LIANG G Z, et al. Heat-resistant polyurethane films with great electrostatic dissipation capacity and very high thermally reversible self-healing efficiency based on multi-furan and liquid multi-maleimide polymers[J]. Journal of Materials Chemistry A, 2016, 4(11): 4232–4241.
58
]
PI 本征型 亚胺键 200 ℃、2 h 电磁屏蔽/高强度 飞控系统/电子仪器 [   DONG L J, ZHANG P, XIAO C, et al. Preparing efficient self-healing polyimide coating for enhancing stability of electromagnetic interference shielding film[J]. Journal of Alloys and Compounds, 2025, 1010: 177045.
63
]
EP 本征型 氢键 30 ℃、>1000 s 高强度/导电 飞行器防护涂层 [   GUADAGNO L, VERTUCCIO L, NADDEO C, et al. Functional structural nanocomposites with integrated self-healing ability[J]. Materials Today: Proceedings, 2021, 34: 243–249.
69
]
PDMS 本征型 氢键/亚胺键 室温热压1 h 透明/抗辐射 卫星太阳帆板 [   YILMAZ D, FRAYSSEIX M D, LEWANDOWSKI S, et al. Self-healing transparent poly(dimethyl)siloxane with tunable mechanical properties: Toward enhanced aging materials for space applications[J]. ACS Applied Materials & Interfaces, 2024.
71
]

航天飞行器的壳层,作为与空天环境直接接触的部分,一般需要外壳防护涂层具有高强度、抗冲击、防腐蚀、耐辐照防原子氧侵蚀等功能,与自修复性能进行耦合,能够有效维持涂层完整性使原本功能得以延长寿命[   PAOLILLO S, BOSE R K, SANTANA M H, et al. Intrinsic self-healing epoxies in polymer matrix composites (PMCs) for aerospace applications[J]. Polymers, 2021, 13(2): 201.
67
]
。Pulikkalparambil等[   PULIKKALPARAMBIL H, SIENGCHIN S, PARAMESWARANPILLAI J. Corrosion protective self-healing epoxy resin coatings based on inhibitor and polymeric healing agents encapsulated in organic and inorganic micro and nanocontainers[J]. Nano-Structures & Nano-Objects, 2018, 16: 381–395.
68
]
设计了一种环氧纳米复合材料,并使用纳米封装的愈合剂研究了其自愈效果。采用自修复环氧纳米复合材料作为涂层保护表面免受损伤。Guadagno等[   GUADAGNO L, VERTUCCIO L, NADDEO C, et al. Functional structural nanocomposites with integrated self-healing ability[J]. Materials Today: Proceedings, 2021, 34: 243–249.
69
]
通过配体接枝的方法功能化CNTs,赋予其氢键供体/受体特性,并利用超声分散CNTs至环氧树脂中,形成复合涂层。该涂层玻璃化转变温度(Tg)最高达195 ℃,满足航空材料高温需求,功能化CNTs丰富的氢键网络实现了涂层的自主修复。针对航天飞行器材料微裂纹引起的腐蚀老化等安全问题,Özada等[   ÖZADA Ç, ÜNAL M, KUZU ŞAHIN E, et al. Development and characterization of self-healing microcapsules, and optimization of production parameters for microcapsule diameter and core content[J]. Multidiscipline Modeling in Materials and Structures, 2022, 18(6): 1049–1077.
70
]
采用原位合成方法开发了含环氧树脂填充脲醛微胶囊的自修复防腐涂层,结合热像仪图像分析与压缩试验对其自愈效果进行了系统评估。除腐蚀外,抗辐照老化也是飞行器不可避免且需要解决的问题,Yilmaz等[   YILMAZ D, FRAYSSEIX M D, LEWANDOWSKI S, et al. Self-healing transparent poly(dimethyl)siloxane with tunable mechanical properties: Toward enhanced aging materials for space applications[J]. ACS Applied Materials & Interfaces, 2024.
71
]
制备了一种兼有脲与亚胺的透明PDMS弹性体,通过调整脲与亚胺的摩尔比例,形成不同的动态网络结构。结合氢键和动态亚胺键,能够在室温下快速自愈,此外,以太空应用为导向优化,弹性体在质子辐照后无裂纹,光学降解率(46%)远低于传统PDMS(92%),为解决传统材料在太空环境下易老化开裂问题提供新的思路。Li等[   LI P H, ZOU G F, CHANG L, et al. UV–stimulated self-healing SiO2/CeO2 microcapsule with excellent UV-blocking capability in epoxy coating[J]. Bulletin of Materials Science, 2023, 46(3): 159.
72
]
将CeO2纳米颗粒引入SiO2壳层介孔中,制备载有修复剂的SiO2/CeO2复合微胶囊,该微胶囊在紫外区域(200~400 nm)表现出强吸收效果,能够有效阻挡紫外线穿透。添加进环氧树脂中形成的复合涂层,划痕能够在24 h UV照射下完全修复,在太空强紫外环境下,有一定的应用潜力。

太空服的制造作为航空航天领域不可或缺的部分,在航天工业中有着十分重要的地位,早期的太空服笨重且功能单一,破损后便无法使用,已不能适应现代的航天任务,将自修复概念引入太空服中,能够有效延长使用寿命更适合进行出舱等飞行任务[   WEISS P, MOHAMED M P, GOBERT T, et al. Advanced materials for future lunar extravehicular activity space suit[J]. Advanced Materials Technologies, 2020, 5(9): 2000028.
73
]
。Pernigoni等[   PERNIGONI L, LAFONT U, GRANDE A M. Self-healing polymers for space: A study on autonomous repair performance and response to space radiation[J]. Acta Astronautica, 2023, 210: 627–634.
74
]
通过将不同比例的PU–6000和PU–4000预聚物交联,形成含芳香二硫键和氢键的网络结构,并与DGEBA环氧热固成型得到超分子聚合物(HN–50),随后将自修复聚合物与芳纶或硅胶弹性体结合得到双层结构。此结构能够在穿刺损伤后实现自我修复,弹性体回弹加速伤口闭合从而促进自修复,填补现有太空服缺乏自主修复能力的空白。然而该材料在受到辐照后,修复性能明显下降,与辐照后化学键的断裂,修复能力与抗辐射性能存在平衡问题。

自修复功能涂料的工业化生产还处于初级阶段,需要考虑技术可行性、经济成本、市场需求等多种综合因素。现有修复机制中微胶囊修复技术相对成熟,已有商业化产品应用于汽车、建筑等领域。然而本征型修复仍处于实验室阶段,这是因为含有动态键的聚合物树脂合成工艺复杂且放大生产可能面临反应均一性问题。成本方面,微胶囊体系多依赖胶囊壳层材料和修复剂价格,本征型体系聚合单体价格较高且合成工期较长,影响产能;市场方面,自修复功能涂层这类智能能涂层多用于有明确需求的高端应用场景(如航空航天、电子等),可接受较高溢价,但民用领域现有产品价格较高,市场窗口有待进一步扩宽。

自修复功能树脂的工业化需分阶段推进,技术、成本与市场需协同突破,未来在特定高端领域具备明确商业化前景。

4     结论与展望

功能涂层在航空航天领域有着不可或缺的地位,能够极大保证轻量化的同时满足飞行器在各类工况下的应用需求。然而,由于飞行器工作环境的特殊性,飞行稳定性受多方面因素影响,极易因机械冲击或疲劳、燃料氧化剂或盐雾的腐蚀、构件磨损、电磁干扰等导致功能失效,从而威胁飞行器的正常工作。自修复涂层因具有独特的修复性能,可以使受损部位重新愈合恢复原有功能,提高涂层使用寿命。根据修复机理的不同,可分为外援型(微胶囊、中空纤维)和本征型(动态共价键、动态非共价键)自修复涂层,通过采用不同的策略将特殊功能基元与自修复树脂基底耦合,形成兼有修复能力和多功能的智能化功能涂层。

目前将自修复涂层应用于航空航天领域仍然存在不少问题。(1)目前,SHFCs直接面向航空航天应用的案例并不多,大多还停留在较为温和的使用场景下,对于极端条件下保持良好的修复效率和重复修复性仍是困扰其真正落地应用的原因。(2)自修复涂层对高分子化学结构的要求与涂层性能功能对结构的要求存在矛盾之处。各类自修复机制的引入要求结构具有一定的化学活性或较好的运动能力,因此对涂层的使用性能与功能产生影响。(3)功能填料的引入会影响涂层自修复能力,阻碍涂层分子运动,使得性能–功能–智能的平衡难以充分满足。(4)涂层修复工艺的简化也是需要解决的问题,长时间的整体加热难以满足实际工程应用要求,且会造成其他材料老化。(5)将涂层应用于航空航天领域时,应当考虑与航空常用材料(如铝合金、镁合金、钛合金等)的附着力、热膨胀系数匹配性,然而现阶段自修复功能涂层的研究大多未对以上性能做定量测试(如划格法或拉拔法),多数还是采用破坏–恢复循环的方式侧面佐证涂层的附着力,并且涂层缺乏真实服役环境下的性能测试。

针对现有自修复涂层所存在的这些问题,未来应进一步优化分子结构与动态键设计,开发出具有低键能和高重排活性的动态化学键体系以提高修复响应效率,多种修复机制应当加强耦合,采用多重修复体系协同增强涂层的机械强度和修复能力;加强涂层修复的能量传递,实现局部精准修复,引入光热、电/磁等基元,能够仅在涂层受损处传递修复所需能量,提高修复效率,降低对其他材料的影响;增强功能填料与树脂基体的相互作用,在填料/基体界面修饰动态键,提高裂纹扩展路径上的动态重组效率,良好显示功能填料本征性能的同时,保证涂层修复能力。尽管如此,功能化与自修复性能的有机结合仍是主要的发展道路,多功能协同有机–无机复合涂层将逐步使涂层从“附加功能层”升级为“飞行器智能皮肤”,并在局部高附加值涂层领域率先使用,填补自修复功能涂层在真实服役环境下稳定性研究的空白。

在航空装备向高可靠性、长寿命周期发展的趋势下,自修复功能材料的技术突破将聚焦于极端环境适应性与多功能集成化两大核心方向。亟待开发多机制协同修复体系,将微胶囊缓释修复、动态键自愈合与电磁、微波、光响应修复相结合,随着新型空天飞行器对热防护、隐身、抗侵蚀等性能要求的叠加,自修复涂层不再局限于单一损伤修复,而是朝着损伤响应智能化、功能恢复多元化的方向演进。

作者介绍



李明玮 博士研究生,研究方向为智能高分子。

参考文献

[1]

ZHANG F, JU P F, PAN M Q, et al. Self-healing mechanisms in smart protective coatings: A review[J]. Corrosion Science, 2018, 144: 7488.

[2]

UTRERA-BARRIOS S, VERDEJO R, LÓPEZ-MANCHADO M A, et al. Evolution of self-healing elastomers, from extrinsic to combined intrinsic mechanisms: A review[J]. Materials Horizons, 2020, 7(11): 28822902.

[3]

ZHANG Z P, RONG M Z, ZHANG M Q. Self-healable functional polymers and polymer-based composites[J]. Progress in Polymer Science, 2023, 144: 101724.

[4]

WEN N, SONG T T, JI Z H, et al. Recent advancements in self-healing materials: Mechanicals, performances and features[J]. Reactive and Functional Polymers, 2021, 168: 105041.

[5]

KAUSAR A, AHMAD I, MAAZA M, et al. Self-healing nanocomposites—Advancements and aerospace applications[J]. Journal of Composites Science, 2023, 7(4): 148.

[6]

KUMAR E K, PATEL S S, KUMAR V, et al. State of art review on applications and mechanism of self-healing materials and structure[J]. Archives of Computational Methods in Engineering, 2023, 30(2): 10411055.

[7]

AN Z W, XUE R, YE K, et al. Recent advances in self-healing polyurethane based on dynamic covalent bonds combined with other self-healing methods[J]. Nanoscale, 2023, 15(14): 65056520.

[8]

LI Z L, YU R, GUO B L. Shape-memory and self-healing polymers based on dynamic covalent bonds and dynamic noncovalent interactions: Synthesis, mechanism, and application[J]. ACS Applied Bio Materials, 2021, 4(8): 59265943.

[9]

THAKUR V K, KESSLER M R. Self-healing polymer nanocomposite materials: A review[J]. Polymer, 2015, 69: 369383.

[10]

WHITE S R, CARUSO M M, MOORE J S. Autonomic healing of polymers[J]. MRS Bulletin, 2008, 33(8): 766769.

[11]

ZHANG M Q, RONG M Z. Design and synthesis of self-healing polymers[J]. Science China Chemistry, 2012, 55(5): 648676.

[12]

YE K X, BI Z X, CUI G, et al. External self-healing coatings in anticorrosion applications: A review[J]. Corrosion:The Journal of Science and Engineering, 2020, 76(3): 279298.

[13]

KARTSONAKIS I A, KONTIZA A, KANELLOPOULOU I A. Advanced micro/nanocapsules for self-healing coatings[J]. Applied Sciences, 2024, 14(18): 8396.

[14]

WHITE S R, SOTTOS N R, GEUBELLE P H, et al. Autonomic healing of polymer composites[J]. Nature, 2001, 409: 794797.

[15]

YUAN L, HUANG S D, GU A J, et al. A cyanate ester/microcapsule system with low cure temperature and self-healing capacity[J]. Composites Science and Technology, 2013, 87: 111117.

[16]

YI H, DENG Y H, WANG C Y. Pickering emulsion-based fabrication of epoxy and amine microcapsules for dual core self-healing coating[J]. Composites Science and Technology, 2016, 133: 5159.

[17]

AN S, LEE M W, YARIN A L, et al. A review on corrosion-protective extrinsic self-healing: Comparison of microcapsule-based systems and those based on core-shell vascular networks[J]. Chemical Engineering Journal, 2018, 344: 206220.

[18]

DRY C. Procedures developed for self-repair of polymer matrix composite materials[J]. Composite Structures, 1996, 35(3): 263269.

[19]

POSTIGLIONE G, ALBERINI M, LEIGH S, et al. Effect of 3D–printed microvascular network design on the self-healing behavior of cross-linked polymers[J]. ACS Applied Materials & Interfaces, 2017, 9(16): 1437114378.

[20]

WANG S Y, URBAN M W. Self-healing polymers[J]. Nature Reviews Materials, 2020, 5(8): 562583.

[21]

CHEN X X, DAM M A, ONO K, et al. A thermally re-mendable cross-linked polymeric material[J]. Science, 2002, 295(5560): 16981702.

[22]

BEHERA P K, MONDAL P, SINGHA N K. Self-healable and ultrahydrophobic polyurethane–POSS hybrids by Diels–Alder “click” reaction: A new class of coating material[J]. Macromolecules, 2018, 51(13): 47704781.

[23]

LI C Y, WANG P, ZHANG D, et al. Near-infrared responsive smart superhydrophobic coating with self-healing and robustness enhanced by disulfide-bonded polyurethane[J]. ACS Applied Materials & Interfaces, 2022, 14(40): 4598846000.

[24]

REN Y T, DONG X. Dynamic polymeric materials via hydrogen-bond cross-linking: Effect of multiple network topologies[J]. Progress in Polymer Science, 2024, 158: 101890.

[25]

MONTARNAL D, CORDIER P, SOULIÉ-ZIAKOVIC C, et al. Synthesis of self-healing supramolecular rubbers from fatty acid derivatives, diethylene triamine, and urea[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2008, 46(24): 79257936.

[26]

GAO F, CAO J C, WANG Q B, et al. Properties of UV–cured self-healing coatings prepared with PCDL–based polyurethane containing multiple H–bonds[J]. Progress in Organic Coatings, 2017, 113: 160167.

[27]

WANG X H, LI Y X, QIAN Y H, et al. Mechanically robust atomic oxygen-resistant coatings capable of autonomously healing damage in low earth orbit space environment[J]. Advanced Materials, 2018, 30(36): 1803854.

[28]

BURNWORTH M, TANG L M, KUMPFER J R, et al. Optically healable supramolecular polymers[J]. Nature, 2011, 472(7343): 334337.

[29]

WU B, YUAN A Q, XIAO Y, et al. Study on a polyacrylate-based waterborne coating: Facile preparation, convenient self-healing behavior and photoluminescence properties[J]. Journal of Materials Chemistry C, 2020, 8(36): 1263812647.

[30]

MONTEMOR M F. Functional and smart coatings for corrosion protection: A review of recent advances[J]. Surface and Coatings Technology, 2014, 258: 1737.

[31]

GOHARSHENAS MOGHADAM S, PARSIMEHR H, EHSANI A. Multifunctional superhydrophobic surfaces[J]. Advances in Colloid and Interface Science, 2021, 290: 102397.

[32]

CHENG M, FU Q, TAN B, et al. Build a bridge from polymeric structure design to engineering application of self-healing coatings: A review[J]. Progress in Organic Coatings, 2022, 167: 106790.

[33]

YIMYAI T, CRESPY D, ROHWERDER M. Corrosion-responsive self-healing coatings[J]. Advanced Materials, 2023, 35(47): 2300101.

[34]

YABUKI A, URUSHIHARA W, KINUGASA J, et al. Self-healing properties of TiO2 particle-polymer composite coatings for protection of aluminum alloys against corrosion in seawater[J]. Materials and Corrosion, 2011, 62(10): 907912.

[35]

REN S H, ZHOU W J, SONG K, et al. Robust, self-healing, anti-corrosive waterborne polyurethane urea composite coatings enabled by dynamic hindered urea bonds[J]. Progress in Organic Coatings, 2023, 180: 107571.

[36]

FAN F, ZHOU C Y, WANG X, et al. Layer-by-layer assembly of a self-healing anticorrosion coating on magnesium alloys[J]. ACS Applied Materials & Interfaces, 2015, 7(49): 2727127278.

[37]

BEYGISANGCHIN M, ABDUL RASHID S, SHAFIE S, et al. Preparations, properties, and applications of polyaniline and polyaniline thin films—A review[J]. Polymers, 2021, 13(12): 2003.

[38]

ALI SYED J, TANG S C, MENG X K. Intelligent saline enabled self-healing of multilayer coatings and its optimization to achieve redox catalytically provoked anti-corrosion ability[J]. Applied Surface Science, 2016, 383: 177190.

[39]

FENG Y Y, CUI Y X, ZHANG M J, et al. Preparation of tung oil-loaded PU/PANI microcapsules and synergetic anti-corrosion properties of self-healing epoxy coatings[J]. Macromolecular Materials and Engineering, 2021, 306(2): 2000581.

[40]

LI Z J, GUO Z G. Self-healing system of superhydrophobic surfaces inspired from and beyond nature[J]. Nanoscale, 2023, 15(4): 14931512.

[41]

RAHMAN A U, KABEB S M, ZULFKIFLI F H. Functional hydrophobic coatings: Insight into mechanisms and industrial applications[J]. Progress in Organic Coatings, 2025, 203: 109187.

[42]

SAM E K, SAM D K, LV X M, et al. Recent development in the fabrication of self-healing superhydrophobic surfaces[J]. Chemical Engineering Journal, 2019, 373: 531546.

[43]

CHEN K L, LIU H, ZHOU J L, et al. Polyurethane blended with silica-nanoparticle-modified graphene as a flexible and superhydrophobic conductive coating with a self-healing ability for sensing applications[J]. ACS Applied Nano Materials, 2022, 5(1): 615625.

[44]

ZHANG L B, TANG B, WU J B, et al. Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating[J]. Advanced Materials, 2015, 27(33): 48894894.

[45]

CHEN K L, ZHOU S X, YANG S, et al. Fabrication of all-water-based self-repairing superhydrophobic coatings based on UV–responsive microcapsules[J]. Advanced Functional Materials, 2015, 25(7): 10351041.

[46]

ZHAO X, WEI J F, LI B C, et al. A self-healing superamphiphobic coating for efficient corrosion protection of magnesium alloy[J]. Journal of Colloid and Interface Science, 2020, 575: 140149.

[47]

LI D Y, ZHANG Y H, YUAN L, et al. Superhydrophobic and self-healable tri-layered composites with great thermal resistance and electrothermal ability[J]. Composites Communications, 2020, 21: 100397.

[48]

ZHU K, LI Z T, CHENG F, et al. Preparation of durable superhydrophobic composite coatings with photothermal conversion precisely targeted configuration self-healability and great degradability[J]. Composites Science and Technology, 2021, 213: 108926.

[49]

CUI X, LI C H, ZHANG Y B, et al. Comparative assessment of force, temperature, and wheel wear in sustainable grinding aerospace alloy using biolubricant[J]. Frontiers of Mechanical Engineering, 2022, 18(1): 3.

[50]

KHUN N W, SUN D W, HUANG M X, et al. Wear resistant epoxy composites with diisocyanate-based self-healing functionality[J]. Wear, 2014, 313(1–2): 1928.

[51]

LI Z K, LI K K, LI X, et al. Preparation of linseed oil-loaded porous glass bubble/wax microcapsules for corrosion-and wear-resistant difunctional coatings[J]. Chemical Engineering Journal, 2022, 437: 135403.

[52]

ZHOU S Q, JIA X H, LI S, et al. Epoxy/polytetrafluoro-wax composite coatings demonstrate remarkable wear resistance, offering rapid and durable cyclic self-healing capabilities facilitated by the “sweating” behavior of polytetrafluoro-wax[J]. Progress in Organic Coatings, 2024, 188: 108227.

[53]

SHAN Z Q, JIA X H, LI S, et al. Self-lubricating and wear-resistant epoxy resin coatings based on the “soft-hard” synergistic mechanism for rapid self-healing under photo-thermal conditions[J]. Chemical Engineering Journal, 2024, 481: 148664.

[54]

ZHANG Q, LIU L B, PAN C G, et al. Review of recent achievements in self-healing conductive materials and their applications[J]. Journal of Materials Science, 2018, 53(1): 2746.

[55]

LI Y, CHEN S S, WU M C, et al. Rapid and efficient multiple healing of flexible conductive films by near-infrared light irradiation[J]. ACS Applied Materials & Interfaces, 2014, 6(18): 1640916415.

[56]

GONG C K, LIANG J J, HU W, et al. A healable, semitransparent silver nanowire-polymer composite conductor[J]. Advanced Materials, 2013, 25(30): 41864191.

[57]

YANG W, SONG J, WU X T, et al. High-efficiency self-healing conductive composites from HPAMAM and CNTs[J]. Journal of Materials Chemistry A, 2015, 3(23): 1215412158.

[58]

FU G H, YUAN L, LIANG G Z, et al. Heat-resistant polyurethane films with great electrostatic dissipation capacity and very high thermally reversible self-healing efficiency based on multi-furan and liquid multi-maleimide polymers[J]. Journal of Materials Chemistry A, 2016, 4(11): 42324241.

[59]

ZHANG H, YI L H, NI Y Z, et al. Preparation of self-healing MXene/chitosan/benzaldehyde-polyurethane flexible conductive coating for dual-mode sensing applications[J]. Composites Part B: Engineering, 2024, 287: 111875.

[60]

WANG M, TANG X H, CAI J H, et al. Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review[J]. Carbon, 2021, 177: 377402.

[61]

HE X L, CUI C Q, CHEN Y, et al. MXene and polymer collision: Sparking the future of high-performance multifunctional coatings[J]. Advanced Functional Materials, 2024, 34(51): 2409675.

[62]

ZOU L H, LAN C T, ZHANG S L, et al. Near-instantaneously self-healing coating toward stable and durable electromagnetic interference shielding[J]. Nano-Micro Letters, 2021, 13(1): 190.

[63]

DONG L J, ZHANG P, XIAO C, et al. Preparing efficient self-healing polyimide coating for enhancing stability of electromagnetic interference shielding film[J]. Journal of Alloys and Compounds, 2025, 1010: 177045.

[64]

LU J Y, ZHANG Y, TAO Y J, et al. Self-healable castor oil-based waterborne polyurethane/MXene film with outstanding electromagnetic interference shielding effectiveness and excellent shape memory performance[J]. Journal of Colloid and Interface Science, 2021, 588: 164174.

[65]

MENON A V, MADRAS G, BOSE S. Ultrafast self-healable interfaces in polyurethane nanocomposites designed using Diels-alder “click” as an efficient microwave absorber[J]. ACS Omega, 2018, 3(1): 11371146.

[66]

CHEN Y J, SUI Z H, DU J. Review on aviation intelligent self-healing anti-corrosion coating[J]. Anti-Corrosion Methods and Materials, 2025, 72(2): 170177.

[67]

PAOLILLO S, BOSE R K, SANTANA M H, et al. Intrinsic self-healing epoxies in polymer matrix composites (PMCs) for aerospace applications[J]. Polymers, 2021, 13(2): 201.

[68]

PULIKKALPARAMBIL H, SIENGCHIN S, PARAMESWARANPILLAI J. Corrosion protective self-healing epoxy resin coatings based on inhibitor and polymeric healing agents encapsulated in organic and inorganic micro and nanocontainers[J]. Nano-Structures & Nano-Objects, 2018, 16: 381395.

[69]

GUADAGNO L, VERTUCCIO L, NADDEO C, et al. Functional structural nanocomposites with integrated self-healing ability[J]. Materials Today: Proceedings, 2021, 34: 243249.

[70]

ÖZADA Ç, ÜNAL M, KUZU ŞAHIN E, et al. Development and characterization of self-healing microcapsules, and optimization of production parameters for microcapsule diameter and core content[J]. Multidiscipline Modeling in Materials and Structures, 2022, 18(6): 10491077.

[71]

YILMAZ D, FRAYSSEIX M D, LEWANDOWSKI S, et al. Self-healing transparent poly(dimethyl)siloxane with tunable mechanical properties: Toward enhanced aging materials for space applications[J]. ACS Applied Materials & Interfaces, 2024.

[72]

LI P H, ZOU G F, CHANG L, et al. UV–stimulated self-healing SiO2/CeO2 microcapsule with excellent UV-blocking capability in epoxy coating[J]. Bulletin of Materials Science, 2023, 46(3): 159.

[73]

WEISS P, MOHAMED M P, GOBERT T, et al. Advanced materials for future lunar extravehicular activity space suit[J]. Advanced Materials Technologies, 2020, 5(9): 2000028.

[74]

PERNIGONI L, LAFONT U, GRANDE A M. Self-healing polymers for space: A study on autonomous repair performance and response to space radiation[J]. Acta Astronautica, 2023, 210: 627634.

目录