Cross-Scale Damage Mechanism of Epoxy Resin Matrix of Skirt on Solid Rocket Motor During Hot-Humid Aging
Citations
WEI Aonan, LI Jing, YU Zhifei, et al. Cross-scale damage mechanism of epoxy resin matrix of skirt on solid rocket motor during hot-humid aging[J]. Aeronautical Manufacturing Technology, 2025, 68(15): 104–112, 129.
1.School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing210094, China
2.Inner Mongolia Power Machinery Research Institute, Hohhot010000, China
3.School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing210094, China
Citations
WEI Aonan, LI Jing, YU Zhifei, et al. Cross-scale damage mechanism of epoxy resin matrix of skirt on solid rocket motor during hot-humid aging[J]. Aeronautical Manufacturing Technology, 2025, 68(15): 104–112, 129.
Abstract
The composite structure comprising case and skirt of a solid rocket motor (SRM) undergoes aging over prolonged periods of storage, consequently compromising reliability of the case structure of SRM. This study conducted an accelerated hot-humid aging test on typical materials of the skirt composite structure to assess its mechanical properties throughout the aging process. Additionally, microstructure parameters of the epoxy resin material presenting at the interface of the composite structure, i.e., the vulnerable spot, were characterized. Subsequent to the test, a cross-scale comparative analysis was performed to evaluate material damage at the composite structure’s interface. The results revealed that during accelerated aging, the epoxy resin matrix exhibited a gradual transition to a gully-shaped surface, with increasing surface damage severity correlated with the aging duration. The continuous rise in three-dimensional surface roughness contributed to material embrittlement and diminished toughness, resulting in a decline in the mechanical properties at interface of the composite structure. Analysis through Fourier transform infrared spectroscopy testing and X-ray photoelectron spectroscopy analysis further elucidated molecular-level damage to the epoxy resin matrix. As aging progressed, chemical reactions among the elemental groups were observed, reflecting potential oxidative crosslinking or decomposition reactions. Finally, a correlation analysis involving macroscopic and microscopic parameters was conducted to explain the cross-scale damage mechanism at the interface of the case composite structure.
固体火箭发动机纤维缠绕复合材料壳体具有比强度、比刚度高,减振性能好,抗疲劳等优点,是为药柱提供贮存和燃烧的场所[ 侯晓, 张旭, 刘向阳, 等. 固体火箭发动机药柱结构完整性研究进展[J]. 宇航学报, 2023, 44(4): 566–579.HOU Xiao, ZHANG Xu, LIU Xiangyang, et al. Research progress on structural integrity of solid rocket motor grain[J]. Journal of Astronautics, 2023, 44(4): 566–579. 1]。纤维缠绕壳体作为固体火箭发动机的重要组件之一,在全寿命周期内会经历长时间的贮存,从而导致结构发生老化。壳体的裙部结构在贮存期内长期受到周围湿热环境影响,以及吊挂、翻转等交变载荷的作用,严重时会产生基体开裂、基体/纤维界面滑移、分层及纤维断裂等损伤,将严重劣化典型结构材料的力学性能[ 崔昭霞. 纤维缠绕壳体应力变形及损伤研究[D]. 哈尔滨: 哈尔滨工程大学, 2003.CUI Zhaoxia. A study on the stress and damage of fiber winding composite[D]. Harbin: Harbin Engineering University, 2003. 2]。为保障火箭的使用寿命及服役稳定性,必须确保固体火箭发动机系统在经历各种外部载荷及多次温度循环后,纤维壳体典型结构材料的老化(性能退化)控制在一定范围内。据分析,复合材料壳体在承受轴压时,裙连接区属于薄弱环节,率先发生失效破坏[ 侯晓, 秦谊, 丁文辉. 固体火箭发动机复合材料壳体承载力分析[J]. 复合材料学报, 2014, 31(5): 1343–1349.HOU Xiao, QIN Yi, DING Wenhui. Load-bearing capacity analysis of composite case structure of solid rocket motor[J]. Acta Materiae Compositae Sinica, 2014, 31(5): 1343–1349. 3],破坏形式主要包括界面粘接破坏、树脂基体损伤及裂纹迁移等复杂形态。因此,壳体裙部复合结构粘接界面部分基体的老化对连接区域的损伤和失效会产生极为重要的影响。
固体火箭发动机壳体裙部结构在贮存期间会受到温度、湿度及紫外线辐射等各种因素的影响,其中湿热环境是最重要的影响因素之一。裙部复合结构处的材料构成较为复杂,一般由纤维缠绕层、树脂胶粘层、金属界面层组成。对于裙部纤维/树脂粘接区域来说,由于纤维层材料的分子结构相对稳定,不易受湿热影响,胶粘层的树脂基体被认为是影响粘接界面湿热老化行为的主要成分。树脂基体的分子结构中含有大量的极性亲水基团(如羟基和胺基),使复合材料能够在炎热潮湿的环境中吸收水分[ LIU L L, XU K L, XU Y B, et al. Experimental study of quasi-static and dynamic tensile behavior of epoxy resin under cyclic hygrothermal aging[J]. Polymer Degradation and Stability, 2022, 200: 109940. 4]。因此,研究树脂基体在湿热环境中的老化行为,对于理解这种环境对裙部复合结构材料的影响具有重要意义。
环氧树脂具有优异的工艺性能、力学性能及稳定的化学性能,是制备高性能树脂基复合材料最常用的树脂基体之一[ 孙书, 李秀杰, 回天力, 等. 航天器用4211环氧树脂体系湿热老化试验与贮存寿命评估[J]. 载人航天, 2022, 28(6): 766–770.SUN Shu, LI Xiujie, HUI Tianli, et al. Hydrothermal aging test and storage life evaluation of 4211 epoxy resin system for spacecraft[J]. Manned Spaceflight, 2022, 28(6): 766–770. 5]。在实际环境中,环氧树脂材料的老化极其缓慢。为了缩短试验周期,尽快得到环氧树脂材料老化后的性能,国内外研究人员通常采用加速老化的方法,对环氧树脂湿热老化损伤特性进行理论和试验研究,并在宏观和微细观层面取得了一定的研究成果。根据Bahrololoumi等[ BAHROLOLOUMI A, MOROVATI V, SHAAFAEY M, et al. A multi-physics approach on modeling of hygrothermal aging and its effects on constitutive behavior of cross-linked polymers[J]. Journal of the Mechanics and Physics of Solids, 2021, 156: 104614. 6]的研究,湿热老化可被认为是由同时发生的热氧化和水解机制而积累的损伤结果;孙书等[ 孙书, 李秀杰, 回天力, 等. 航天器用4211环氧树脂体系湿热老化试验与贮存寿命评估[J]. 载人航天, 2022, 28(6): 766–770.SUN Shu, LI Xiujie, HUI Tianli, et al. Hydrothermal aging test and storage life evaluation of 4211 epoxy resin system for spacecraft[J]. Manned Spaceflight, 2022, 28(6): 766–770. 5]的研究证明了温/湿度对4211环氧树脂体系的拉伸性能影响较大,温/湿度越高,在经历老化试验后材料的拉伸强度下降越显著;李波[ 李波. 湿热老化对环氧树脂复合材料电学性能影响研究[D]. 武汉: 武汉理工大学, 2010.LI Bo. Study on the effect of hydrothermal on electrical properties of epoxy resin composite[D]. Wuhan: Wuhan University of Technology, 2010. 7]的研究表明,当环氧树脂基体吸湿量较大时,复合材料的玻璃化温度和储能模量显著下降;刘新等[ 刘新, 武湛君, 蔡永超, 等. 超低温处理对T700碳纤维/环氧复合材料拉–压疲劳性能的影响[J]. 宇航学报, 2014, 35(7): 850–856.LIU Xin, WU Zhanjun, CAI Yongchao, et al. Effect of cryogenic treatment on tension–compression fatigue properties of T700/epoxy composite[J]. Journal of Astronautics, 2014, 35(7): 850–856. 8]发现T700碳纤维/环氧树脂复合材料在经过液氮浸泡/室温循环后,由于碳纤维与环氧树脂在温度变化时变形不匹配,导致了二者之间的界面脱粘,从而产生明显的微裂纹损伤;Roggendorf等[ ROGGENDORF C, SCHNETTLER A. Accelerated hydrothermal aging of epoxy resin based syntactic foams with polymeric microspheres[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(3): 973–980. 9]发现在环氧树脂中加入聚合物微球结构,可以增强湿热老化后样品的击穿强度,介电常数随吸湿量的增加而增大;Dogan等[ DOGAN A, ATAS C. Variation of the mechanical properties of E-glass/epoxy composites subjected to hygrothermal aging[J]. Journal of Composite Materials, 2016, 50(5): 637–646. 10]发现环氧树脂在湿热老化过程中发生降解,其横向弹性模量变化最大,剪切模量变化最小。然而,这些研究更侧重于宏观性能的力学行为分析,对于微细观损伤机理的深入探讨及建立宏–细–微观联系的研究仍较匮乏。
对于高分子材料的加速老化微细观损伤检测方法,可以从以下相关研究中得到参考。李玥等[ 李玥, 叶林, 赵晓文. 碳纤维增强环氧树脂复合材料盐雾腐蚀行为及其老化分子机制[J]. 高分子材料科学与工程, 2023, 39(5): 91–97.LI Yue, YE Lin, ZHAO Xiaowen. Salt-spray corrosion behavior and aging molecular mechanism of carbon fiber reinforced epoxy resin composites[J]. Polymer Materials Science & Engineering, 2023, 39(5): 91–97. 11]研究了复合材料NOL环压板和层压板试样在高温、高浓度盐雾条件下的盐雾腐蚀行为,并通过力学性能测试、扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)测试、动态力学热分析(DMA)等,探究了其老化分子机理及界面损伤机制。郭亚林等[ 郭亚林, 崔红, 田建团, 等. 蒙脱土对炭/酚醛树脂复合材料性能的影响[J]. 宇航学报, 2009, 30(6): 2398–2402.GUO Yalin, CUI Hong, TIAN Jiantuan, et al. Effects of MMT on the properties of carbon/phenolic resin composites[J]. Journal of Astronautics, 2009, 30(6): 2398–2402. 12]采用蒙脱土(MMT)对炭/酚醛树脂复合材料进行了改性研究,通过X射线衍射(XRD)、透射电子显微镜及SEM等性能测试方法,分析了MMT对炭/酚醛树脂复合材料层间性能和烧蚀性能的影响。Cysne Barbosa等[ CYSNE BARBOSA A P, FULCO A P P, GUERRA E S S, et al. Accelerated aging effects on carbon fiber/epoxy composites[J]. Composites Part B: Engineering, 2017, 110: 298–306. 13]在可控温度、湿度和紫外线辐射的条件下,对碳/环氧树脂复合材料进行了加速老化,通过FTIR、DMA、层间剪切强度(ILSS)和抗压强度、SEM及质量变化来评估材料内部的变化。Beura等[ BEURA S, CHAKRAVERTY A P, PATI S N, et al. Effect of salinity and strain rate on sea water aged GFRP composite for marine applications[J]. Materials Today Communications, 2023, 34: 105056. 14]通过SEM、FTIR、ILSS等进行宏观与微细观测试分析,尝试系统评价海水浸泡玻璃纤维增强塑料(GFRP)复合材料在海水盐度和应变率变化方面的响应。
目前,大型复合材料壳体前后裙仍以金属材料为主,主要用于与弹体舱段连接,通过裙连接区共同承受在弹体立式储存或飞行过程中引起的各类外载荷[ 沈镇, 席近远, 杨东, 等. 分层缺陷对复合材料壳体裙连接区轴向承载性能影响分析[J]. 固体火箭技术, 2023, 46(6): 930–937.SHEN Zhen, XI Jinyuan, YANG Dong, et al. Study of delamination defects impact on axial load-bearing capacity of lap structure between skirt and composite case[J]. Journal of Solid Rocket Technology, 2023, 46(6): 930–937. 15]。固体火箭发动机燃烧室纤维缠绕壳体复合结构如图1所示,主要由纤维材料、聚合物材料、金属层等缠绕构成的复合材料结构所组成,其中裙部复合结构处的材料构成较为复杂,多为纤维/树脂环向、纵向交替缠绕,裙外缠绕层为纤维/树脂纵向铺层、环向缠绕。本研究主要针对裙内缠绕层与裙部粘接界面的树脂基胶层开展宏观与微细观的跨尺度损伤机理分析。
图1 固体火箭发动机燃烧室纤维缠绕壳体复合结构示意图
Fig.1 Schematic diagram of fiber-wound case composite structure in combustor of solid rocket motor
Fig.2 Failure characteristics of case skirt test article after tensile test
1.3 环氧树脂基材料的老化特性
针对复合材料壳体裙部连接区域的失效薄弱环节——纤维/树脂界面胶粘区的环氧树脂材料,制备了拉伸试样[ LIU J, LI X B, XU L K, et al. Investigation of aging behavior and mechanism of nitrile-butadiene rubber (NBR) in the accelerated thermal aging environment[J]. Polymer Testing, 2016, 54: 59–66. 16],采用高低温交变湿热试验箱对试样进行加速湿热老化试验。湿热加速老化条件为95 ℃、相对湿度95% RH,在该环境下持续老化245 d。为保证试验测试结果的完整性,规定每间隔一定时间,从试验箱中取出部分样品并冷却至环境温度,以此形成10组老化时间不同的对照试样。
老化时间对环氧树脂基材料抗拉强度的影响如图3所示。可以看出,在等温、等湿加速老化条件下,随着老化时间的延长,试样的抗拉强度下降,从62 MPa降至4 MPa。在初始老化期间(0~75 d),试样的抗拉强度快速下降,随着老化时间的延长(>75 d),下降程度逐渐减缓。推测在初始老化期间,抗拉强度快速下降可能是由相对湿度95% RH环境下材料的吸湿膨胀导致界面脱粘和分层引起的;而在后期老化过程中,抗拉强度的缓慢降低可能归因于环氧树脂基体材料的聚合物松弛效应[ LI H L, ZHANG K F, FAN X T, et al. Effect of seawater ageing with different temperatures and concentrations on static/dynamic mechanical properties of carbon fiber reinforced polymer composites[J]. Composites Part B: Engineering, 2019, 173: 106910. 17]。
图3 老化时间对环氧树脂基试样抗拉强度的影响
Fig.3 Effect of aging time on tensile strength of epoxy resin specimen
Fig.4 Three-dimensional LSCM microstructure of epoxy resin specimen at different aging time
将环氧树脂样品划分为上、中、下3部分,并于每部分取50 μm×50 μm区域进行三维表面粗糙度Sq的测定,取平均值作为最终结果,得到环氧树脂在不同老化时间下的三维表面粗糙度变化曲线,如图5所示。三维表面粗糙度Sq也称均方根高度,该参数将轮廓(线粗糙度)参数Rq扩展至三维,表示一个定义区域内Z(x,y)的均方根值。从图5可以看出,三维表面粗糙度从未老化的0.561 μm(0 d)增加到老化245 d后的1.599 μm,说明在湿热加速老化条件下,环氧树脂基体所受老化损伤程度随老化时间的增加而不断加深。结合图4可以推测,随着湿热循环的进行,环氧树脂表面首先出现小的冲沟、裂纹等表面缺陷;同时湿热循环产生的化学反应导致材料表面脆化、韧性降低,表面产生空洞并膨胀致破碎,该现象直接反映在沟壑数量增加及深度加深方面[ YAN H, WANG P L, LI R Q, et al. Aging behaviour of encapsulated assemblies of epoxy resin under accelerated thermal cycling[J]. International Journal of Polymer Analysis and Characterization, 2022, 27(3): 180–194. 18];此外,这些缺陷加速了拉伸时的断裂,降低了材料强度,是导致环氧树脂宏观力学性能衰退的重要因素之一。
图5 老化时间对环氧树脂试样三维表面粗糙度的影响
Fig.5 Effect of aging time on three-dimensional surface roughness of epoxy resin specimen
Fig.8 XPS spectra of epoxy resin specimen at different aging time
从图8还可以看出,在湿热加速老化过程中没有出现新的特征峰。将C—O与C=O的谱图振动特征峰面积对加速老化时间作图(图9),可以观察到C—O的特征峰面积由2318.63005减小到1922.63980,呈下降趋势;C=O的特征峰面积由187.57525增大到240.96955,呈上升趋势。此现象在表1所示的元素及官能团含量变化中也得到了印证,因此可以判定环氧树脂在湿热老化过程中发生了氧化反应,C—O经化学反应被氧化成了C=O[ LIU J, LI X B, XU L K, et al. Investigation of aging behavior and mechanism of nitrile-butadiene rubber (NBR) in the accelerated thermal aging environment[J]. Polymer Testing, 2016, 54: 59–66. 16]。结合试验数据与表1可以得到,环氧树脂中C和O元素的结合能在老化20 d、75 d、245 d后保持不变,分别为284.1 eV和531.1 eV;同时,随着湿热加速老化时间的增加,C元素的原子百分比减小,而O元素的原子百分比略有增加,说明在加速老化过程中可能发生了氧化交联或氧化分解反应。进一步分析不同老化阶段对应样品的O/C相对含量(图10),可以观察到O/C值从老化初期的0.2531增加到老化末期的0.3038,推测环氧树脂表面形成了新的含氧物质,说明其化学键受到了老化影响。上述变化及分析与FTIR所得结论一致。
图9 加速老化后环氧树脂样品的化学键特征峰面积变化
Fig.9 Variation in characteristic peak area of epoxy resin specimen after accelerated aging
表1 不同老化时间下环氧树脂样品中元素原子百分比和结合能的变化
Table 1 Variation in element atomic percentage and group binding energy of epoxy resin specimen at different aging time
元素/基团
结合能/eV
原子百分比/%
20 d
75 d
245 d
C
284.1
79.8
77.2
76.7
O
531.1
20.2
22.8
23.3
C—C/C—H
284.8
61.63
62.16
57.21
C—O
286.3
38.81
34.69
33.46
C=O
288.8
3.67
3.98
4.38
图10 不同老化时间下环氧树脂样品的O/C相对含量
Fig.10 O/C relative content of epoxy resin specimen at different aging time
在高温环境中,水分子进入环氧树脂,引起一系列化学和物理老化反应[ SHI X Q, ZHANG Y L, ZHOU W, et al. Effect of hygrothermal aging on interfacial reliability of silicon/underfill/FR–4 assembly[J]. IEEE Transactions on Components and Packaging Technologies, 2008, 31(1): 94–103. KIILUNEN J, FRISK L. Hygrothermal aging of an ACA attached PET flex-on-board assembly[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2014, 4(2): 181–189. 谭忠阳. 碳纤维布增强聚醚酰亚胺树脂基复合材料的制备与研究[D]. 长春: 吉林大学, 2015.TAN Zhongyang. Preparation and study of carbon fiber cloth reinforced polyetherimide resin matrix composites[D]. Changchun: Jilin University, 2015. 20-22]。化学老化主要是环氧树脂化学结构的变化,包括水解导致的材料断键、解交联等化学过程,会对材料产生不可恢复的永久性破坏。物理老化主要包括溶胀作用、刚度下降、裂纹或其他形态变化、环氧基体的破坏等,其中溶胀作用使系统自由体积增大,加速吸湿,且增大了材料分子间距,使得环氧树脂基体塑化,材料刚度下降;水分子扩散过程中,会引发裂纹或其他形态变化,加速吸湿;裂纹的产生使得水分子与环氧树脂基体充分接触,致使基体破坏。
研究表明,在湿热环境中发生的水解反应最有可能引发环氧树脂链的断裂[ JEFFERSON G D, FARAH B, HEMPOWICZ M L, et al. Influence of hygrothermal aging on carbon nanofiber enhanced polyester material systems[J]. Composites Part B: Engineering, 2015, 78: 319–323. 23]。对湿热老化后的材料进行分子级化学结构检测,发现C=O和—OH的特征峰变化明显;吸水后,环氧树脂内部生成C—O和N—CO—N键且主链发生断裂。在湿热老化样品中,1722 cm–1处的吸收峰显著增强,可能归因于羰基C=O的形成,表明老化引发氧化反应,导致形成“深陷阱”。Soles等[ SOLES C L, YEE A F. A discussion of the molecular mechanisms of moisture transport in epoxy resins[J]. Journal of Polymer Science Part B: Polymer Physics, 2000, 38(5): 792–802. 24]发现极性羟基与氢键的形成有关,在不含氨基的环氧基团中,氢键形成有两种可能的途径:(1)羟基与最临近醚基中的氧形成氢键(O…HO);(2)两个羟基形成氢键(OH…OH)。
因此,如图14所示,环氧树脂在湿热环境中的跨尺度失效机理可概述为:水分首先通过渗透作用进入材料内部,与材料发生化学反应,破坏了环氧树脂中的聚合物链,发生主链的断裂和重组,导致环氧树脂材料逐渐产生微裂纹;之后,水分在内外压差的作用下大量进入材料内部(并且远多于渗透作用吸收的水分),而且内部裂纹的存在会给水分提供存储空间;随着含水量的增大,水分子优先与环氧亲水基团结合形成氢键,水分子与环氧树脂链之间的相互作用增加,致使基体抵抗变形的能力不断下降,裂纹在原有基础上继续发展,不断增多、变宽、加深[ 刘玉. 湿热环境中环氧树脂的老化特性研究[D]. 重庆: 重庆大学, 2018.LIU Yu. Research on the aging properties of epoxy resin in hygrothermal environment[D]. Chongqing: Chongqing University, 2018. 25];最终环氧树脂基体材料出现大量裂纹,宏观力学性能不断退化,进而导致材料失效。
图14 环氧树脂基体加速老化过程中的跨尺度损伤机理
Fig.14 Cross-scale damage mechanism of epoxy resin matrix during accelerated aging process
侯晓, 张旭, 刘向阳, 等. 固体火箭发动机药柱结构完整性研究进展[J]. 宇航学报, 2023, 44(4): 566–579. HOUXiao, ZHANGXu, LIUXiangyang, et al. Research progress on structural integrity of solid rocket motor grain[J]. Journal of Astronautics, 2023, 44(4): 566–579.
[2]
崔昭霞. 纤维缠绕壳体应力变形及损伤研究[D]. 哈尔滨: 哈尔滨工程大学, 2003. CUIZhaoxia. A study on the stress and damage of fiber winding composite[D]. Harbin: Harbin Engineering University, 2003.
[3]
侯晓, 秦谊, 丁文辉. 固体火箭发动机复合材料壳体承载力分析[J]. 复合材料学报, 2014, 31(5): 1343–1349. HOUXiao, QINYi, DINGWenhui. Load-bearing capacity analysis of composite case structure of solid rocket motor[J]. Acta Materiae Compositae Sinica, 2014, 31(5): 1343–1349.
[4]
LIUL L, XUK L, XUY B, et al. Experimental study of quasi-static and dynamic tensile behavior of epoxy resin under cyclic hygrothermal aging[J]. Polymer Degradation and Stability, 2022, 200: 109940.
[5]
孙书, 李秀杰, 回天力, 等. 航天器用4211环氧树脂体系湿热老化试验与贮存寿命评估[J]. 载人航天, 2022, 28(6): 766–770. SUNShu, LIXiujie, HUITianli, et al. Hydrothermal aging test and storage life evaluation of 4211 epoxy resin system for spacecraft[J]. Manned Spaceflight, 2022, 28(6): 766–770.
[6]
BAHROLOLOUMIA, MOROVATIV, SHAAFAEYM, et al. A multi-physics approach on modeling of hygrothermal aging and its effects on constitutive behavior of cross-linked polymers[J]. Journal of the Mechanics and Physics of Solids, 2021, 156: 104614.
[7]
李波. 湿热老化对环氧树脂复合材料电学性能影响研究[D]. 武汉: 武汉理工大学, 2010. LIBo. Study on the effect of hydrothermal on electrical properties of epoxy resin composite[D]. Wuhan: Wuhan University of Technology, 2010.
[8]
刘新, 武湛君, 蔡永超, 等. 超低温处理对T700碳纤维/环氧复合材料拉–压疲劳性能的影响[J]. 宇航学报, 2014, 35(7): 850–856. LIUXin, WUZhanjun, CAIYongchao, et al. Effect of cryogenic treatment on tension–compression fatigue properties of T700/epoxy composite[J]. Journal of Astronautics, 2014, 35(7): 850–856.
[9]
ROGGENDORFC, SCHNETTLERA. Accelerated hydrothermal aging of epoxy resin based syntactic foams with polymeric microspheres[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(3): 973–980.
[10]
DOGANA, ATASC. Variation of the mechanical properties of E-glass/epoxy composites subjected to hygrothermal aging[J]. Journal of Composite Materials, 2016, 50(5): 637–646.
郭亚林, 崔红, 田建团, 等. 蒙脱土对炭/酚醛树脂复合材料性能的影响[J]. 宇航学报, 2009, 30(6): 2398–2402. GUOYalin, CUIHong, TIANJiantuan, et al. Effects of MMT on the properties of carbon/phenolic resin composites[J]. Journal of Astronautics, 2009, 30(6): 2398–2402.
[13]
CYSNE BARBOSAA P, FULCOA P P, GUERRAE S S, et al. Accelerated aging effects on carbon fiber/epoxy composites[J]. Composites Part B: Engineering, 2017, 110: 298–306.
[14]
BEURAS, CHAKRAVERTYA P, PATIS N, et al. Effect of salinity and strain rate on sea water aged GFRP composite for marine applications[J]. Materials Today Communications, 2023, 34: 105056.
[15]
沈镇, 席近远, 杨东, 等. 分层缺陷对复合材料壳体裙连接区轴向承载性能影响分析[J]. 固体火箭技术, 2023, 46(6): 930–937. SHENZhen, XIJinyuan, YANGDong, et al. Study of delamination defects impact on axial load-bearing capacity of lap structure between skirt and composite case[J]. Journal of Solid Rocket Technology, 2023, 46(6): 930–937.
[16]
LIUJ, LIX B, XUL K, et al. Investigation of aging behavior and mechanism of nitrile-butadiene rubber (NBR) in the accelerated thermal aging environment[J]. Polymer Testing, 2016, 54: 59–66.
[17]
LIH L, ZHANGK F, FANX T, et al. Effect of seawater ageing with different temperatures and concentrations on static/dynamic mechanical properties of carbon fiber reinforced polymer composites[J]. Composites Part B: Engineering, 2019, 173: 106910.
[18]
YANH, WANGP L, LIR Q, et al. Aging behaviour of encapsulated assemblies of epoxy resin under accelerated thermal cycling[J]. International Journal of Polymer Analysis and Characterization, 2022, 27(3): 180–194.
[19]
张欢, 许文, 邹士文, 等. 环氧胶粘剂及其胶接界面热氧老化机理研究[J]. 材料导报, 2017, 31(12): 104–108. ZHANGHuan, XUWen, ZOUShiwen, et al. Thermal-oxidative aging mechanism of epoxy adhesive and its interface[J]. Materials Review, 2017, 31(12): 104–108.
[20]
SHIX Q, ZHANGY L, ZHOUW, et al. Effect of hygrothermal aging on interfacial reliability of silicon/underfill/FR–4 assembly[J]. IEEE Transactions on Components and Packaging Technologies, 2008, 31(1): 94–103.
[21]
KIILUNENJ, FRISKL. Hygrothermal aging of an ACA attached PET flex-on-board assembly[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2014, 4(2): 181–189.
[22]
谭忠阳. 碳纤维布增强聚醚酰亚胺树脂基复合材料的制备与研究[D]. 长春: 吉林大学, 2015. TANZhongyang. Preparation and study of carbon fiber cloth reinforced polyetherimide resin matrix composites[D]. Changchun: Jilin University, 2015.
[23]
JEFFERSONG D, FARAHB, HEMPOWICZM L, et al. Influence of hygrothermal aging on carbon nanofiber enhanced polyester material systems[J]. Composites Part B: Engineering, 2015, 78: 319–323.
[24]
SOLESC L, YEEA F. A discussion of the molecular mechanisms of moisture transport in epoxy resins[J]. Journal of Polymer Science Part B: Polymer Physics, 2000, 38(5): 792–802.
[25]
刘玉. 湿热环境中环氧树脂的老化特性研究[D]. 重庆: 重庆大学, 2018. LIUYu. Research on the aging properties of epoxy resin in hygrothermal environment[D]. Chongqing: Chongqing University, 2018.