Study on Mechanical Properties and Energy Absorption Characteristics of Bistable Mechanical Metamaterials
Citations
SHANG Rongwei, LIU Tengfei, WU Lingling, et al. Study on mechanical properties and energy absorption characteristics of bistable mechanical metamaterials[J]. Aeronautical Manufacturing Technology, 2025, 68(15): 92–102.
State Key Laboratories for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an710049, China
Citations
SHANG Rongwei, LIU Tengfei, WU Lingling, et al. Study on mechanical properties and energy absorption characteristics of bistable mechanical metamaterials[J]. Aeronautical Manufacturing Technology, 2025, 68(15): 92–102.
Abstract
High performance energy absorbing materials are urgently needed in the aerospace field. However, traditional energy-absorbing materials rely on plastic deformation and have the disadvantage of low reuse rate. In order to solve the above problems, this paper analyzes and studies the typical bistable metamaterial with strong reusable properties. Three types of mechanical metamaterial, namely sinusoidal beam element, articulated shell element and petal paper-cut element, are selected as the research objects, and parametric scanning method is adopted. The relationship of bistable characteristics, energy absorption characteristics and geometric parameters of metamaterial element is obtained by finite element simulation software. Three kinds of metamaterial units were prepared by additive manufacturing technology, and the simulation results were verified by mechanical compression tests. It provides a basis for the application of mechanical energy absorption in precision instruments and personnel protection.
随着科技的发展,社会对吸能材料的需求日益增加,如从航空航天或载具等大规模领域的应用[ FU J, LIU Q, LIUFU K M, et al. Design of bionic-bamboo thin-walled structures for energy absorption[J]. Thin-Walled Structures, 2019, 135: 400–413. SUN G Y, WANG Z, YU H, et al. Experimental and numerical investigation into the crashworthiness of metal-foam-composite hybrid structures[J]. Composite Structures, 2019, 209: 535–547. WANG H B, YANG J L, LIU H, et al. Internally nested circular tube system subjected to lateral impact loading[J]. Thin-Walled Structures, 2015, 91: 72–81. 1-3]到运动器材、头盔、运动鞋和易碎物品包装等小规模领域的应用。研究人员探索发现了多种吸能方式,并将其应用于吸能材料的发明与生产。在学术和工程领域,吸能结构根据其可重复利用性,通常被划分为单次抗冲击吸能结构和多次抗冲击吸能结构。传统的单次抗冲击吸能结构的吸能原理基于航空航天、金属[ YUEN S C K, NURICK G N. The energy-absorbing characteristics of tubular structures with geometric and material modifications: An overview[J]. Applied Mechanics Reviews, 2008, 61(2): 020802. 4]或陶瓷[ ZHAO R S, GUO S Y, WANG J, et al. Enhanced energy absorption and mechanical properties of porous Ti–6Al–4V alloys with gradient disordered cells fabricated by laser powder bed fusion[J]. Thin-Walled Structures, 2025, 206: 112632. 5]领域,吸能材料的应用至关重要,能够有效地吸收大量的冲击能量,使得单次抗冲击吸能结构得到了广泛应用,从而保护飞行器和宇航员的安全。目前,应用广泛的单次抗冲击吸能材料通常具有密度小、高强度和良好的能量吸收能力等优点,能够在受到冲击时迅速发生塑性形变进行能量的吸收并耗散,以减少对飞行器结构和人员的损伤,但这些吸能方式都存在可重复利用性差的缺陷。而传统的多次抗冲击吸能结构则基于吸能材料的黏弹性[ LIU T Z, LIN C, ZHANG Y L, et al. Viscoelastic negative stiffness metamaterial with multistage load bearing and programmable energy absorption ability[J]. International Journal of Smart and Nano Materials, 2025, 16(1): 1–23. 6](例如橡胶鞋底和汽车油活塞减震器),虽然传统的多次抗冲击吸能结构具有可重复利用性,但吸能原理对加载与卸载速率存在较强依赖性,且存在较大的工况限制性。因此,理想吸能材料应同时具备轻量化、可重复利用性高、吸能效率高、工况限制性小等优点。
机械超材料是一种新型的人工结构材料[ JIAO P C, MUELLER J, RANEY J R, et al. Mechanical metamaterials and beyond[J]. Nature Communications, 2023, 14(1): 6004. 7],其有效特性来源于结构构成,而不是其组成成分的材料属性。因此,通过调控超材料的几何结构获得指定的宏观机械性能可以显著拓宽结构材料的设计空间。且机械超材料拥有许多超常规的机械性能,比如负刚度[ TAN X J, WANG B, YAO Y T, et al. Programmable buckling-based negative stiffness metamaterial[J]. Materials Letters, 2020, 262: 127072. 8]、负泊松比[ ZHANG L J, YAN S, LIU W L, et al. Mechanical metamaterials with negative Poisson’s ratio: A review[J]. Engineering Structures, 2025, 329: 119838. 9]、负体积模量[ JEON J Y, HONG S H, CHOI E Y, et al. Intuitive understandings of negative bulk modulus of metamaterials composed of Helmholtz resonators[J]. Current Applied Physics, 2021, 29: 128–132. 10]和负热膨胀系数[ AKAMATSU D, MATSUSHIMA K, YAMADA T. Optimal design of cavity-free mechanical metamaterials exhibiting negative thermal expansion[J]. International Journal of Mechanical Sciences, 2024, 283: 109693. 11]等。这些超常规的机械性能在高端设备的创新设计上有较好的应用前景。
作为典型的机械超材料,因其可编程的双稳态单元组成的多稳态超材料可以产生丰富的力学特性和变形模式,从而引起了研究人员的兴趣。在一定的载荷加载条件下,超材料可以在多个稳态之间进行切换。双稳态超材料作为多稳态超材料体系中最基本的形式,其特征在于存在两种几何形状上不同的稳定状态。在系统从一个稳定状态过渡到另一个稳定状态的过程中,伴随有短时间内的较大位移,即弹跳通断(Snap-through)现象[ CAO Y T, DERAKHSHANI M, FANG Y H, et al. Bistable structures for advanced functional systems[J]. Advanced Functional Materials, 2021, 31(45): 2106231. 12]。这种结构的独特性使其在吸收、耗散以及储存破坏性机械能方面具有重要应用价值。双稳态超材料能够在两个能量稳态之间进行可逆切换,这是双稳态超材料最重要的特征之一。它们在受到破坏性冲击时,不仅能有效吸收并存储机械能,而且在一定载荷条件下能够将吸收的机械能再次释放,恢复至初始状态,实现吸能材料的可重复利用。这种特性显著降低了吸能材料的生产成本,且与可持续发展理念相契合。近年来,随着对双稳态超材料的深入研究,更多具有新奇几何形状的双稳态超材料不断被开发出来,为机械能的吸收提供了新途径。
2015年,Shan等[ SHAN S C, KANG S H, RANEY J R, et al. Multistable architected materials for trapping elastic strain energy[J]. Advanced Materials, 2015, 27(29): 4296–4301. 13]提出了一种创新的双稳态超材料设计方案,该设计基于倾斜梁双稳态单元,能够实现显著的结构变形。这一结构利用了梁的双稳态特性,使得材料在两种稳定状态之间转换时能够吸收大量机械能。当施加的反向载荷达到一定阈值时,可以触发结构发生弹跳突变,从变形状态恢复至其原始的稳定状态,体现其可重复利用性。Restrepo等[ CORREA D M, KLATT T, CORTES S, et al. Negative stiffness honeycombs for recoverable shock isolation[J]. Rapid Prototyping Journal, 2015, 21(2): 193–200. RESTREPO D, MANKAME N D, ZAVATTIERI P D. Phase transforming cellular materials[J]. Extreme Mechanics Letters, 2015, 4: 52–60. 14-15]提出了一种基于正弦梁单元的多稳态超材料设计,这一周期性阵列结构在压缩的过程中呈现出周期性双稳态。在力学试验中,其加载与卸载曲线常呈现出锯齿状特征,这一现象反映了该结构在不同稳定状态间的连续弹跳突变,表明其在吸收多次连续冲击性机械能方面具有应用潜力。2016年,Haghpanah等[ HAGHPANAH B, SALARI-SHARIF L, POURRAJAB P, et al. Multistable shape-reconfigurable architected materials[J]. Advanced Materials, 2016, 28(36): 7915–7920. 16]提出了一种基于三角形单元的多稳态超材料设计,通过不同的阵列方式构造出不同的多稳态吸能结构。这一结构同样具有可重复利用性,具备优异的重复抗冲击吸能特性。
在双稳态超材料领域,双稳态超材料的设计主要集中在几何结构的创新和阵列结构的优化方面[ MA H Y, WANG K, ZHAO H F, et al. A reusable metastructure for tri-directional energy dissipation[J]. International Journal of Mechanical Sciences, 2022, 214: 106870. JU X, LI S Q, ZHANG Y, et al. Design of multi-stable metamaterial cell with improved and programmable energy trapping ability based on frame reinforced curved beams[J]. Thin-Walled Structures, 2024, 202: 112120. MAO J J, WANG S, TAN W, et al. Modular multistable metamaterials with reprogrammable mechanical properties[J]. Engineering Structures, 2022, 272: 114976. 17-19]。这一研究方向涉及复杂的拓扑和几何参数,旨在通过精细调控实现结构的双稳态特性。然而,相较于结构设计,对双稳态超材料单元双稳态特性和吸能效率的研究相对较少,对于双稳态特性和吸能效率影响因素的定性分析和优化策略仍需进一步深入。因此,未来研究需要更多地关注双稳态超材料在可重复利用性和吸能效率方面的表现,以实现这些高性能材料在工程应用中的最大化利用。本文针对3种典型的多稳态超材料单元的吸能特性开展研究,旨在探索其结构设计参数与双稳态特性及能量吸收效率之间的关系,并采用3D打印对结构进行制造,分析了其几何结构与力学响应及能量吸收之间的关系,确定了不同结构单元作为多次冲击吸能超材料的综合性能评价方式,可根据不同的应用场景筛选合适的双稳态构型及设计参数,提高了机械超材料在航空航天领域的防撞抗冲击等机械能量吸收方面的利用效率。
1 3种双稳态单元的有限元仿真
1.1 正弦梁单元的双稳态特性
如图1(a)所示的正弦梁单元[ QIU J, LANG J H, SLOCUM A H. A curved-beam bistable mechanism[J]. Journal of Microelectromechanical Systems, 2004, 13(2): 137–146. 20],其几何结构参数包括厚度t、跨度T、振幅h。其中,ω(x)表示梁上任意点与端点高度差。双稳态正弦梁的初始形态可描述为
(1)
图1 正弦梁单元双稳态特性的有限元仿真分析
Fig.1 Finite element simulation analysis of bistable characteristics of sinusoidal beam elements
有限元仿真得到的Q=3,5,6的正弦梁单元的力位移数据如图1(c)所示。本研究将位移和力归一化为S/Smax和F/Fmax(Smax为位移总量,F min为最大反向支反力,Fmax为最大正向支反力),方便3种不同Q值的正弦梁单元的双稳态特性对比。通过有限元仿真得出,当Q=3时,正弦梁单元不具备双稳态特性。随着Q值增大,当Q=5,6时,曲线出现负值区域,表明在正弦梁单元达到第二稳态后需要外界提供额外的能量以恢复第一稳态,从而实现吸能材料的可重复利用。仿真结果表明,随着Q值在[ WANG H B, YANG J L, LIU H, et al. Internally nested circular tube system subjected to lateral impact loading[J]. Thin-Walled Structures, 2015, 91: 72–81. 3, LIU T Z, LIN C, ZHANG Y L, et al. Viscoelastic negative stiffness metamaterial with multistage load bearing and programmable energy absorption ability[J]. International Journal of Smart and Nano Materials, 2025, 16(1): 1–23. 6]小范围区间内增大,正弦梁单元双稳态特性先从无到有,再由弱到强的特征变化明显,即第二稳态稳定性随Q值增大而增强,因此,Q可能是正弦梁单元双稳态特性的重要影响因素。
1.2 铰接式壳体单元的双稳态特性
如图2(a)所示的铰接式壳体单元[ YU T. Bistability and equilibria of creased annular sheets and strips[J]. International Journal of Solids and Structures, 2022, 246: 111588. SOBOTA P M, SEFFEN K A. Bistable polar-orthotropic shallow shells[J]. Royal Society Open Science, 2019, 6(8): 190888. YU T, ANDRADE-SILVA I, DIAS M A, et al. Cutting holes in bistable folds[J]. Mechanics Research Communications, 2022, 124: 103700. 21-23],其几何结构参数包括壳体单元母线倾斜角θ;壳体单元上部厚度t;铰接处厚度g;壳体单元下端厚度tm(tm=2)和壳体底面半径r。其中,θ、t可能对铰接式壳体单元的双稳态特性具有显著影响。
图2 铰接式壳体单元双稳态特性的有限元仿真分析
Fig.2 Finite element simulation analysis of bistable characteristics of articulated shell elements
如图3(a)所示的花瓣状剪纸单元[ WU L L, LU Y Y, LI P H, et al. Mechanical metamaterials for handwritten digits recognition[J]. Advanced Science, 2024, 11(10): 2308137. 24],其几何结构参数包括铰接处倾斜角α,铰接处水平长度L,花瓣半径R。其中,α和L可能对剪纸单元的双稳态特性具有显著影响。
图3 剪纸单元双稳态特性的有限元仿真分析
Fig.3 Finite element simulation analysis of bistable characteristics of kirigami element
本次研究采用3D打印技术,实现了双稳态单元的一体化制造。相比于传统制造工艺,3D打印在生产制造过程中不仅节约了能源与材料,提高了材料利用率,还实现了结构设计的优化[ 杨德安. 3D打印材料产业发展现状及建议[J]. 现代工业经济和信息化, 2023, 13(2): 29–31.YANG De’an. 3D printing materials industry development status and suggestions[J]. Modern Industrial Economy and Informationization, 2023, 13(2): 29–31. 邹镅钫. 3D打印技术及其产业发展前景分析[J]. 决策探索(中), 2019(4): 85.ZOU Meifang. 3D printing technology and its industrial development prospect analysis[J]. Policy Research & Exploration, 2019(4): 85. 25-26]。特别是具有复杂几何形态和精密尺寸的超材料,传统制造工艺难以进行生产制备,3D打印技术通过逐层堆叠材料的方式,摆脱了对模具制造的依赖,实现了自由制造,解决了复杂几何结构零件的成形问题。
通过对不同比厚度Q的正弦梁单元进行力学压缩试验,得到了如图6(a)所示的F/Fmax–S/Smax曲线。结合图6(b)对比分析,力学试验结果与有限元仿真结果吻合较好。随着Q值在[ WANG H B, YANG J L, LIU H, et al. Internally nested circular tube system subjected to lateral impact loading[J]. Thin-Walled Structures, 2015, 91: 72–81. 3, LIU T Z, LIN C, ZHANG Y L, et al. Viscoelastic negative stiffness metamaterial with multistage load bearing and programmable energy absorption ability[J]. International Journal of Smart and Nano Materials, 2025, 16(1): 1–23. 6]区间内的增大,k值呈现出一个增大的趋势,正弦梁单元第二稳态经历了一个相对不稳定到相对稳定的过程。综上所述,Q是决定正弦梁单元双稳态特性k的一个重要因素。
图6 双稳态单元的仿真分析与力学试验分析
Fig.6 Simulation analysis and mechanical experiment analysis of bistable element
FUJ, LIUQ, LIUFUK M, et al. Design of bionic-bamboo thin-walled structures for energy absorption[J]. Thin-Walled Structures, 2019, 135: 400–413.
[2]
SUNG Y, WANGZ, YUH, et al. Experimental and numerical investigation into the crashworthiness of metal-foam-composite hybrid structures[J]. Composite Structures, 2019, 209: 535–547.
[3]
WANGH B, YANGJ L, LIUH, et al. Internally nested circular tube system subjected to lateral impact loading[J]. Thin-Walled Structures, 2015, 91: 72–81.
[4]
YUENS C K, NURICKG N. The energy-absorbing characteristics of tubular structures with geometric and material modifications: An overview[J]. Applied Mechanics Reviews, 2008, 61(2): 020802.
[5]
ZHAOR S, GUOS Y, WANGJ, et al. Enhanced energy absorption and mechanical properties of porous Ti–6Al–4V alloys with gradient disordered cells fabricated by laser powder bed fusion[J]. Thin-Walled Structures, 2025, 206: 112632.
[6]
LIUT Z, LINC, ZHANGY L, et al. Viscoelastic negative stiffness metamaterial with multistage load bearing and programmable energy absorption ability[J]. International Journal of Smart and Nano Materials, 2025, 16(1): 1–23.
[7]
JIAOP C, MUELLERJ, RANEYJ R, et al. Mechanical metamaterials and beyond[J]. Nature Communications, 2023, 14(1): 6004.
ZHANGL J, YANS, LIUW L, et al. Mechanical metamaterials with negative Poisson’s ratio: A review[J]. Engineering Structures, 2025, 329: 119838.
[10]
JEONJ Y, HONGS H, CHOIE Y, et al. Intuitive understandings of negative bulk modulus of metamaterials composed of Helmholtz resonators[J]. Current Applied Physics, 2021, 29: 128–132.
[11]
AKAMATSUD, MATSUSHIMAK, YAMADAT. Optimal design of cavity-free mechanical metamaterials exhibiting negative thermal expansion[J]. International Journal of Mechanical Sciences, 2024, 283: 109693.
[12]
CAOY T, DERAKHSHANIM, FANGY H, et al. Bistable structures for advanced functional systems[J]. Advanced Functional Materials, 2021, 31(45): 2106231.
MAH Y, WANGK, ZHAOH F, et al. A reusable metastructure for tri-directional energy dissipation[J]. International Journal of Mechanical Sciences, 2022, 214: 106870.
[18]
JUX, LIS Q, ZHANGY, et al. Design of multi-stable metamaterial cell with improved and programmable energy trapping ability based on frame reinforced curved beams[J]. Thin-Walled Structures, 2024, 202: 112120.
[19]
MAOJ J, WANGS, TANW, et al. Modular multistable metamaterials with reprogrammable mechanical properties[J]. Engineering Structures, 2022, 272: 114976.
[20]
QIUJ, LANGJ H, SLOCUMA H. A curved-beam bistable mechanism[J]. Journal of Microelectromechanical Systems, 2004, 13(2): 137–146.
[21]
YUT. Bistability and equilibria of creased annular sheets and strips[J]. International Journal of Solids and Structures, 2022, 246: 111588.
[22]
SOBOTAP M, SEFFENK A. Bistable polar-orthotropic shallow shells[J]. Royal Society Open Science, 2019, 6(8): 190888.
[23]
YUT, ANDRADE-SILVAI, DIASM A, et al. Cutting holes in bistable folds[J]. Mechanics Research Communications, 2022, 124: 103700.
[24]
WUL L, LUY Y, LIP H, et al. Mechanical metamaterials for handwritten digits recognition[J]. Advanced Science, 2024, 11(10): 2308137.
[25]
杨德安. 3D打印材料产业发展现状及建议[J]. 现代工业经济和信息化, 2023, 13(2): 29–31. YANGDe’an. 3D printing materials industry development status and suggestions[J]. Modern Industrial Economy and Informationization, 2023, 13(2): 29–31.
[26]
邹镅钫. 3D打印技术及其产业发展前景分析[J]. 决策探索(中), 2019(4): 85. ZOUMeifang. 3D printing technology and its industrial development prospect analysis[J]. Policy Research & Exploration, 2019(4): 85.