1.School of Aerospace Engineering, Tsinghua University, Beijing100084, China
2.Beijing OptFuture Technology Co., Ltd, Beijing100176, China
3.State Key Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing100084, China
Citations
CHEN Xueqian, REN Hongyuan, ZHANG Haixi, et al. Topology optimization design of mechanical–thermal multifunctional metamaterials based on fixed grid method and multi level lattice filling[J]. Aeronautical Manufacturing Technology, 2025, 68(15): 82–91.
Abstract
Targeting the complex geometric shapes and multi-level characteristics of metamaterials, a simulation and topology optimization method based on fixed grid techniques is proposed. Users do not need to manually partition finite element meshes which conform to geometric shapes, thereby significantly reducing preprocessing time. By employing quadtree/octree based local adaptive refinement, the accuracy of structural analysis can be ensured without increasing finite element analysis computational costs. And higher resolution topology optimization results can be generated. Based on the proposed method, a multifunctional metamaterial topology optimization model considering both load bearing and heat conduction was established. Numerical implementation and verification were conducted using a triply periodic minimal surface (TPMS) composite rib-reinforced structure as the optimization object. The proposed method has been implemented in OptFuture, a domestically developed and fully autonomous CAX industrial software. In addition, to address the multi-level weight reduction requirements of metamaterial structures, OptFuture is used to achieve multi-level lattice design and filling of metamaterials, thereby further expanding the potential for lightweight design of metamaterials.
超材料一般是指通过人工微结构设计而非化学组分设计组成的复合材料或结构,通常能实现传统材料无法或很难具有的属性[ 胡更开, 刘晓宁. 弹性超材料设计与波动控制[M]. 北京: 科学出版社, 2024.HU Gengkai, LIU Xiaoning. Design and fluctuation control of elastic metamaterials[M]. Beijing: Science Press, 2024. 1](例如轻质高承载[ EVANS A G, HUTCHINSON J W, FLECK N A, et al. The topological design of multifunctional cellular metals[J]. Progress in Materials Science, 2001, 46(3–4): 309–327. 2]、吸能抗冲击[ 程乾, 尹剑飞, 温激鸿, 等. 极小曲面力学超材料抗冲吸能特性分析[J]. 动力学与控制学报, 2023, 21(7): 43–50.CHENG Qian, YIN Jianfei, WEN Jihong, et al. Impact resistance and energy absorption of mechanical metamaterials with minimal surfaces[J]. Journal of Dynamics and Control, 2023, 21(7): 43–50. LI X W, YU X, ZHAI W. Additively manufactured deformation-recoverable and broadband sound-absorbing microlattice inspired by the concept of traditional perforated panels[J]. Advanced Materials, 2021, 33(44): 2104552. 3-4]、定制变形[ HAGHPANAH B, SALARI-SHARIF L, POURRAJAB P, et al. Multistable shape-reconfigurable architected materials[J]. Advanced Materials, 2016, 28(36): 7915–7920. FRENZEL T, KADIC M, WEGENER M. Three-dimensional mechanical metamaterials with a twist[J]. Science, 2017, 358(6366): 1072–1074. REN X, DAS R, TRAN P, et al. Auxetic metamaterials and structures: A review[J]. Smart Materials and Structures, 2018, 27(2): 023001. 5-7]、热性能可控[ PERALTA I, FACHINOTTI V D, ÁLVAREZ HOSTOS J C. A brief review on thermal metamaterials for cloaking and heat flux manipulation[J]. Advanced Engineering Materials, 2020, 22(2): 1901034. LI Y, LI W, HAN T C, et al. Transforming heat transfer with thermal metamaterials and devices[J]. Nature Reviews Materials, 2021, 6: 488–507. 8-9]、电磁隐身[ CHEN M J, PEI Y M, FANG D N. Design, fabrication, and characterization of lightweight and broadband microwave absorbing structure reinforced by two dimensional composite lattice[J]. Applied Physics A, 2012, 108(1): 75–80. 10]、声学降噪[ ZIGONEANU L, POPA B I, CUMMER S A. Three-dimensional broadband omnidirectional acoustic ground cloak[J]. Nature Materials, 2014, 13(4): 352–355. 11]等特性),在航空航天等复杂多物理场环境具有较高的应用潜力。
在超材料的设计方法方面,除了传统的经验式预设结构配置的调参设计方法、参数优化设计方法以及形状优化设计方法,近年来拓扑优化方法被越来越多地引入到超材料设计中。相较传统设计方法,拓扑优化因可以彻底改变结构的连接方式和构型从而提供了更大的灵活性和自由度。常见的拓扑优化方法主要有基于密度描述的方法、基于边界演化的方法,以及基于几何组件描述的方法。基于密度描述的方法是以每个单元或节点的密度为设计变量,通过材料的密度分布表征结构拓扑[ BENDSØE M P, SIGMUND O. Material interpolation schemes in topology optimization[J]. Archive of Applied Mechanics, 1999, 69(9): 635–654. SIGMUND O. A 99 line topology optimization code written in Matlab[J]. Structural and Multidisciplinary Optimization, 2001, 21(2): 120–127. 12-13];基于边界演化的方法中,结构边界通常通过低维平面切割高维曲面而形成,结构拓扑随着更高维度函数的变化而演变[ SETHIAN J A, WIEGMANN A. Structural boundary design via level set and immersed interface methods[J]. Journal of Computational Physics, 2000, 163(2): 489–528. WANG M Y, WANG X M, GUO D M. A level set method for structural topology optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(1–2): 227–246. 14-15];基于几何组件描述的方法是将结构分解成若干个离散构件,通过构件的移动、变形、消失和融合等形式实现结构拓扑的变化[ GUO X, ZHANG W S, ZHONG W L. Doing topology optimization explicitly and geometrically—A new moving morphable components based framework[J]. Journal of Applied Mechanics, 2014, 81(8): 081009. ZHANG W S, YUAN J, ZHANG J, et al. A new topology optimization approach based on moving morphable components (MMC) and the ersatz material model[J]. Structural and Multidisciplinary Optimization, 2016, 53(6): 1243–1260. 16-17]。
在具体超材料设计实现方面,近年的工作主要集中于3类:第1类是基于经验的调参式设计和验证。Zhang等[ ZHANG P, Biligetu, QI D X, et al. Mechanical design and energy absorption of 3D novel hybrid lattice metamaterials[J]. Science China Technological Sciences, 2021, 64(10): 2220–2228. 18]构建了不同类型的基本立方单元混合的梁系点阵超材料,研究结果表明,新型混合点阵的变形机制有助于提升致密应变和能量吸收效率,并获得了应变硬化和双线性特性。Wei等[ WEI Y L, YANG Q S, LIU X, et al. Multi-bionic mechanical metamaterials: A composite of FCC lattice and bone structures[J]. International Journal of Mechanical Sciences, 2022, 213: 106857. 19]通过仿生设计,将具有轻质和高比强度的面心对称结构与具有高韧性的同心圆结构相结合,通过调整硬相和软相材料的比例,使得吸能效果大幅提升。Li等[ LI D M, QIN R X, XU J X, et al. Improving mechanical properties and energy absorption of additive manufacturing lattice structure by struts’ node strengthening[J]. Acta Mechanica Solida Sinica, 2022, 35(6): 1004–1020. 20]针对梁系点阵结构在外荷载作用下的应力集中问题,提出添加圆角、圆弧过渡等策略;结果表明,优化后结构的变形模式从剪切破坏变为逐层坍塌,结构的力学性能改善显著。第2类是基于简单的参数优化的设计。Messner[ MESSNER M C. Optimal lattice-structured materials[J]. Journal of the Mechanics and Physics of Solids, 2016, 96: 162–183. 21]提出一种用于描述梁系点阵材料周期结构的参数化模型,并通过参数调整和优化得到了一种弹性各向同性且刚度最大的微结构。Berger等[ BERGER J B, WADLEY H G, MCMEEKING R M. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness[J]. Nature, 2017, 543(7646): 533–537. 22]采用启发式优化策略,提出了一种板系构型微结构,研究结果显示,该构型具有各向同性性质,且材料刚度能达到理论上界。第3类是基于拓扑优化的设计。Long等[ LONG K, DU X R, XU S Q, et al. Maximizing the effective Young’s modulus of a composite material by exploiting the Poisson effect[J]. Composite Structures, 2016, 153: 593–600. 23]提出了一种用于最大化且具有多材料的复合微结构的有效杨氏模量的超材料设计方法。Wang等[ WANG Y Q, LUO Z, ZHANG N, et al. Topological shape optimization of microstructural metamaterials using a level set method[J]. Computational Materials Science, 2014, 87: 178–186. 24]将均匀化方法与参数化水平集方法相结合,用于负泊松比超材料设计。Liu等[ LIU Y, WANG Y Z, REN H Y, et al. Ultrastiff metamaterials generated through a multilayer strategy and topology optimization[J]. Nature Communications, 2024, 15(1): 2984. 25]采用边界惩罚法,提出了多层壳系超材料设计与优化策略,超材料单胞的优化结果可以自动形成梁、板、壳形式的综合体结构,并能获得逼近理论极限的材料刚度。
针对以上困难和不足,本文提出了基于固定网格技术的超材料仿真分析和拓扑优化方法。固定网格法是将经典的有限单元法和虚拟域方法结合,将复杂的物理域嵌入到一个规则的扩展域中,在扩展域上进行网格划分及结构分析[ DÜSTER A, PARVIZIAN J, YANG Z, et al. The finite cell method for three-dimensional problems of solid mechanics[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(45–48): 3768–3782. 26]。由于扩展域是规则的矩形或立方体,因此网格划分几乎是无成本的,从而可实现复杂结构的高效分析。此外,为了高精度的计算边界单元积分,固定网格法中采用基于四叉树(对于二维问题)或八叉树(对于三维问题)的局部自适应加密技术,将边界单元细分为子域。该类细分策略并不会引入新的自由度,即不会导致有限元分析计算量的增加,可较好的平衡计算精度和效率。同时,细分后的子域可自然的作为拓扑优化的设计变量,从而实现在不增加有限元分析计算量的前提下获得更高分辨率的拓扑优化结果。基于所发展的固定网格技术,本文建立了同时考虑传力与散热的多功能超材料拓扑优化模型并进行了数值实现和验证,上述方法已在国产全自主版权的CAX工业软件OptFuture中实现落地。此外,面向超材料结构的多级减重需求,依托OptFuture软件,对拓扑优化后的结构进行了多级晶格设计填充,进一步提升了轻量化设计水平。
Fig.4 Comparison of displacement solved by fixed grid method and Abaqus
表1 固定网格模型与Abaqus贴体网格模型的网格生成及分析效率对比
Table 1 Comparison of mesh generation and analysis efficiency between fixed grid model and Abaqus body fitted mesh model
特征
单元类型
单元平均尺寸/mm
单元数量
节点数量
合位移最大值/mm
网格划分用时/s
有限元求解用时/s
网格划分与有限元求解总用时/s
固定网格法
二阶六面体
0.5
111926
621885
1.419e-3
1.97
129
130.97
Abaqus
二阶四面体
0.5
655735
1052415
1.383e-3
540
105
645
二阶四面体
0.2
4665056
7058888
1.386e-3
1800
2195
3995
图5 贴体网格与固定网格划分流程和用时对比
Fig.5 Comparison of the process and time consumption for Abaqus body fitted and fixedgrid mesh generation
1.2 基于固定网格法的结构传力–散热多功能一体化拓扑优化
本文考虑体积约束下的结构静力与传热多工况优化问题,基于固定网格法的拓扑优化数学列式为
(11)
式中,xi表示第i个子域的设计变量(即伪密度),而不是第i个胞元的设计变量,这是与传统变密度拓扑优化不同之处,即在结构分析计算量不变的情况下,可大幅增加设计变量的数量,从而提高拓扑优化的分辨率;n为子域的数量;w1和w2分别为给定的静力工况和传热工况的权系数;和分别为结构静柔度与热柔度;和分别为结构优化前的静柔度和热柔度;目标函数定义为无量纲化后的静柔度和热柔度的加权组合;V为结构初始总体积;Vi为第i个子域的体积;vf为给定的体积分数。应用固体各向同性材料惩罚模型(Solid isotropic material with penalization,SIMP),第i个子域的弹性模量及导热系数与设计变量的插值模型为
(8)判断结果是否收敛。如果不收敛,利用移动渐近线法[ SVANBERG K. The method of moving asymptotes—A new method for structural optimization[J]. International Journal for Numerical Methods in Engineering, 1987, 24(2): 359–373. 27]更新设计变量,然后转到步骤(4),进行新一轮的优化设计。如果收敛,则结束流程,将优化后的结构边界光滑化[ REN H Y, XIA B, WANG W R, et al. AMRTO: Automated CAD model reconstruction of topology optimization result[J]. Computer Methods in Applied Mechanics and Engineering, 2025, 435: 117673. 28]并输出目标函数值。
Fig.7 Initial design domain and load conditions of TPMS metamaterial unit cell
3 优化结果及讨论
不同权系数下的拓扑优化结果如图8和表2所示。其中,权系数组合(1,0)和(0,1)分别为静力单工况和传热单工况。静力单工况下,优化构型呈现出显著的载荷定向聚集效应,使得主承载方向(Z方向)的十字加筋结构得以完整保留。并且为了有效抑制X/Y方向的位移分量,底部保留了呈对称分布的斜交加强肋,整体呈现梁、板、壳形式的综合体结构,与文献[ LIU Y, WANG Y Z, REN H Y, et al. Ultrastiff metamaterials generated through a multilayer strategy and topology optimization[J]. Nature Communications, 2024, 15(1): 2984. 25]所得结论一致。传热单工况下,结构呈现出大量不规则的分叉形式,通过构建大量导热通路,可实现更强的导热性能。由于不考虑静力性能,因此破坏了构型的十字加筋结构,导致其静柔度值大幅增加。多工况优化结果既保留了十字加筋结构以保证结构刚度,同时也具有大量导热通路以保证导热性能。并且随着静力权系数w1的降低,传热权系数w2的增加,静柔度逐渐增大,热柔度逐渐降低。此外,由图8可观察到,单工况优化结果虽然在设计工况下可以获得最佳性能,但在非设计工况下性能呈现显著劣化(静柔度增幅1350%,热柔度增幅370%),难以适应复杂应用场景下的多功能设计要求。相较而言,多工况协同优化方法通过有限度的性能折损(静柔度与热柔度增幅均在60%以内),实现了多工况条件下结构响应的均衡性。
图8 不同权系数下优化所得结构静柔度与热柔度
Fig.8 Static compliance and thermal compliance of optimized structures fordifferent weight coefficients
表2 不同权系数下的拓扑优化结果
Table 2 Topology optimization results of different weight coefficients
Fig.10 Re-simulation verification corresponding to the optimization result of weight coefficient combination(1,0)
表3 权系数组合(1,0)对应优化结果的模型重建参数与仿真验证
Table 3 Model reconstruction parameters and simulation verification of the optimization result corresponding to theweight coefficient combination (1,0)
胡更开, 刘晓宁. 弹性超材料设计与波动控制[M]. 北京: 科学出版社, 2024. HUGengkai, LIUXiaoning. Design and fluctuation control of elastic metamaterials[M]. Beijing: Science Press, 2024.
[2]
EVANSA G, HUTCHINSONJ W, FLECKN A, et al. The topological design of multifunctional cellular metals[J]. Progress in Materials Science, 2001, 46(3–4): 309–327.
[3]
程乾, 尹剑飞, 温激鸿, 等. 极小曲面力学超材料抗冲吸能特性分析[J]. 动力学与控制学报, 2023, 21(7): 43–50. CHENGQian, YINJianfei, WENJihong, et al. Impact resistance and energy absorption of mechanical metamaterials with minimal surfaces[J]. Journal of Dynamics and Control, 2023, 21(7): 43–50.
[4]
LIX W, YUX, ZHAIW. Additively manufactured deformation-recoverable and broadband sound-absorbing microlattice inspired by the concept of traditional perforated panels[J]. Advanced Materials, 2021, 33(44): 2104552.
FRENZELT, KADICM, WEGENERM. Three-dimensional mechanical metamaterials with a twist[J]. Science, 2017, 358(6366): 1072–1074.
[7]
RENX, DASR, TRANP, et al. Auxetic metamaterials and structures: A review[J]. Smart Materials and Structures, 2018, 27(2): 023001.
[8]
PERALTAI, FACHINOTTIV D, ÁLVAREZ HOSTOSJ C. A brief review on thermal metamaterials for cloaking and heat flux manipulation[J]. Advanced Engineering Materials, 2020, 22(2): 1901034.
[9]
LIY, LIW, HANT C, et al. Transforming heat transfer with thermal metamaterials and devices[J]. Nature Reviews Materials, 2021, 6: 488–507.
[10]
CHENM J, PEIY M, FANGD N. Design, fabrication, and characterization of lightweight and broadband microwave absorbing structure reinforced by two dimensional composite lattice[J]. Applied Physics A, 2012, 108(1): 75–80.
[11]
ZIGONEANUL, POPAB I, CUMMERS A. Three-dimensional broadband omnidirectional acoustic ground cloak[J]. Nature Materials, 2014, 13(4): 352–355.
[12]
BENDSØEM P, SIGMUNDO. Material interpolation schemes in topology optimization[J]. Archive of Applied Mechanics, 1999, 69(9): 635–654.
[13]
SIGMUNDO. A 99 line topology optimization code written in Matlab[J]. Structural and Multidisciplinary Optimization, 2001, 21(2): 120–127.
[14]
SETHIANJ A, WIEGMANNA. Structural boundary design via level set and immersed interface methods[J]. Journal of Computational Physics, 2000, 163(2): 489–528.
[15]
WANGM Y, WANGX M, GUOD M. A level set method for structural topology optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(1–2): 227–246.
[16]
GUOX, ZHANGW S, ZHONGW L. Doing topology optimization explicitly and geometrically—A new moving morphable components based framework[J]. Journal of Applied Mechanics, 2014, 81(8): 081009.
[17]
ZHANGW S, YUANJ, ZHANGJ, et al. A new topology optimization approach based on moving morphable components (MMC) and the ersatz material model[J]. Structural and Multidisciplinary Optimization, 2016, 53(6): 1243–1260.
[18]
ZHANGP, Biligetu, QID X, et al. Mechanical design and energy absorption of 3D novel hybrid lattice metamaterials[J]. Science China Technological Sciences, 2021, 64(10): 2220–2228.
[19]
WEIY L, YANGQ S, LIUX, et al. Multi-bionic mechanical metamaterials: A composite of FCC lattice and bone structures[J]. International Journal of Mechanical Sciences, 2022, 213: 106857.
[20]
LID M, QINR X, XUJ X, et al. Improving mechanical properties and energy absorption of additive manufacturing lattice structure by struts’ node strengthening[J]. Acta Mechanica Solida Sinica, 2022, 35(6): 1004–1020.
[21]
MESSNERM C. Optimal lattice-structured materials[J]. Journal of the Mechanics and Physics of Solids, 2016, 96: 162–183.
[22]
BERGERJ B, WADLEYH G, MCMEEKINGR M. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness[J]. Nature, 2017, 543(7646): 533–537.
[23]
LONGK, DUX R, XUS Q, et al. Maximizing the effective Young’s modulus of a composite material by exploiting the Poisson effect[J]. Composite Structures, 2016, 153: 593–600.
[24]
WANGY Q, LUOZ, ZHANGN, et al. Topological shape optimization of microstructural metamaterials using a level set method[J]. Computational Materials Science, 2014, 87: 178–186.
[25]
LIUY, WANGY Z, RENH Y, et al. Ultrastiff metamaterials generated through a multilayer strategy and topology optimization[J]. Nature Communications, 2024, 15(1): 2984.
[26]
DÜSTERA, PARVIZIANJ, YANGZ, et al. The finite cell method for three-dimensional problems of solid mechanics[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(45–48): 3768–3782.
[27]
SVANBERGK. The method of moving asymptotes—A new method for structural optimization[J]. International Journal for Numerical Methods in Engineering, 1987, 24(2): 359–373.
[28]
RENH Y, XIAB, WANGW R, et al. AMRTO: Automated CAD model reconstruction of topology optimization result[J]. Computer Methods in Applied Mechanics and Engineering, 2025, 435: 117673.