超表面电磁增透技术研究进展

基金项目

国家重点研发计划(2022YFB3806200);陕西省重点科技创新团队(2023CXTD48);国家科技区域创新发展联合基金(U24A20224)。

中图分类号:

V2TB3

文献标识码:

A

通信作者

王甲富,教授,博士,研究方向为超材料与超表面。

编辑

责编 :晓月

引文格式

李铁夫, 楚遵天, 韩亚娟, 等. 超表面电磁增透技术研究进展[J]. 航空制造技术, 2025, 68(15): 63–81.

Research Progress of Metasurface–Electromagnetic–Anti–Reflection Technologies

Citations

LI Tiefu, CHU Zuntian, HAN Yajuan, et al. Research progress of metasurface-electromagnetic-anti-reflection technologies[J]. Aeronautical Manufacturing Technology, 2025, 68(15): 63–81.

航空制造技术    第68卷    第15期    63-81
Aeronautical Manufacturing Techinology    Vol.68    No.15 : 63-81
DOI: 10.16080/j.issn1671-833x.2025.15.063
论坛 >> 超材料(FORUM >> Metamaterials)

超表面电磁增透技术研究进展

  • 李铁夫 1,2
  • 楚遵天 1
  • 韩亚娟 1,2
  • 杨杰 1
  • 丁畅 1,2
  • 贾宇翔 1,2
  • 富新民 1
  • 柳兆堂 2
  • 冯存前 1
  • 王甲富 1,2
1.空军工程大学西安 710051
2.苏州实验室苏州 215004

通信作者

王甲富,教授,博士,研究方向为超材料与超表面。

基金项目

国家重点研发计划(2022YFB3806200);陕西省重点科技创新团队(2023CXTD48);国家科技区域创新发展联合基金(U24A20224)。

中图分类号:

V2TB3

文献标识码:

A

引文格式

李铁夫, 楚遵天, 韩亚娟, 等. 超表面电磁增透技术研究进展[J]. 航空制造技术, 2025, 68(15): 63–81.

摘要

相控阵雷达等有源射频系统的辐射/接收前端往往需要装配天线罩或电磁窗,作为典型的结构–功能一体化器件,一方面要保护系统内部结构不受外界环境侵害;另一方面要确保在工作频段电磁波能够高效透过,从而保证射频系统正常工作。由于需要足够的刚度和强度,天线罩和电磁窗的介电常数一般较大,易造成透波性能下降和插入相移增大等问题。因此在传统技术逐渐难以满足实际应用需求的背景下,亟须探索基于新机理的电磁波透射率增强技术(简称电磁增透技术),在工作带宽和角域等方面提升传统材料的透波性能。超表面作为二维形式的超材料,具有多维度的电磁调控能力,且在几何属性上符合当今电磁设备的主要发展趋势,对于电磁增透技术具有重要应用价值。本文系统介绍了超表面电磁增透技术研究进展,首先扼要回顾了典型的传统电磁增透技术,后重点介绍了超表面电磁增透机理、设计思想和具体设计架构,并分析了各类电磁增透超表面的特点,最后对电磁增透技术领域亟须解决的关键问题及发展趋势进行了总结和展望。

关键词

超表面;电磁增透;各向异性;阻抗匹配;布儒斯特效应;惠更斯原理;多机理复合;

Research Progress of Metasurface–Electromagnetic–Anti–Reflection Technologies

  • LI Tiefu 1,2
  • CHU Zuntian 1
  • HAN Yajuan 1,2
  • YANG Jie 1
  • DING Chang 1,2
  • JIA Yuxiang 1,2
  • FU Xinmin 1
  • LIU Zhaotang 2
  • FENG Cunqian 1
  • WANG Jiafu 1,2
1.Air Force Engineering University, Xi’an 710051, China
2.Suzhou Laboratory, Suzhou 215004, China

Citations

LI Tiefu, CHU Zuntian, HAN Yajuan, et al. Research progress of metasurface-electromagnetic-anti-reflection technologies[J]. Aeronautical Manufacturing Technology, 2025, 68(15): 63–81.

Abstract

The radiation/receiving front end of active radio frequency (RF) systems such as phased array radars often needs to be equipped with the radome or electromagnetic (EM) window. As the typical structure-function integrated device, it protects systems’ internal structure from the external environment, and ensures EM waves can efficiently transmit in the working frequency band to ensure RF systems normally operate. Due to the need of sufficient stiffness and strength, the permittivity of radomes and EM windows is generally large, which is easy to reduce the wave-transparent performance and increase the insertion phase shift. Therefore, under the background that traditional technologies are gradually difficult to meet practical applications, it is urgent to explore EM anti-reflection (AR) technologies based on the new mechanism to improve the wave-transparent performance of traditional materials in the working bandwidth and angular domain. As two-dimensional metamaterials, metasurfaces have the ability of multi-dimensional EM regulation and conform to EM equipments’ mainstream development trend in geometric properties, which have important application value for EM AR technologies. This paper systematically introduces the research progress of metasurface EM AR technologies, first briefly reviews the typical traditional EM AR technologies, then mainly introduces the mechanism, design ideas and specific design architecture of metasurface EM AR technologies, and analyzes the characteristics of various EM AR metasurfaces, and finally summarizes and prospects the key problems and development trends in the field of EM AR technologies.

Keywords

Metasurface; Electromagnetic anti-reflection; Anisotropy; Impedance matching; Brewster effect; Huygens’ principle; Multi-mechanism recombination;



相控阵雷达和5G基站等有源射频系统在实际应用时,作为射频系统的保护装置,如要保证系统内部结构不受外界环境的侵害,往往需要在辐射/接收前端装配天线罩,同时还要确保电磁波在工作频段内能够高效透过,以保证射频系统的正常工作,因此天线罩也被称之为电磁窗,是典型的结构功能一体化器件。为有效保护内部结构天线罩和电磁窗,需要器件具备足够的刚度和强度,在一些特殊应用场景甚至需要器件具有抗腐蚀和耐高温等性能。然而根据自然材料的普遍规律,具备以上性能的材料往往介电常数也较高,而这会降低材料与空气之间的阻抗匹配程度,从而导致电磁透波性能下降和插入相移增大等问题。以雷达天线罩为例,大部分由陶瓷基复合(Ceramic matrix composite,CMC)材料制备,其相对介电常数一般在3.0~5.0之间[  Chawla K K. Ceramic matrix composites[M]. New York : Springer, 1987.
 SCHMIDT S, BEYER S, KNABE H, et al. Advanced ceramic matrix composite materials for current and future propulsion technology applications[J]. Acta Astronautica, 2004, 55(3–9): 409–420.
 CURTIN W A. Theory of mechanical properties of ceramic-matrix composites[J]. Journal of the American Ceramic Society, 1991, 74(11): 2837–2845.
1-3
]
。当电磁波入射时其与空气的波阻抗如图1所示,可以看出无论是在横电(Transverse electricity,TE)还是横磁(Transverse magnetic,TM)极化下,二者在不同角度下都有明显的阻抗失配[  LI T F, MA J C, CHU Z T, et al. Anti-reflection metasurface synergizing plasma and lattice modes: An efficient route to wideband electromagnetic transparency under extreme angles[J]. Journal of Physics D Applied Physics, 2024, 57(12): 125501.
4
]
,这种情况在TE极化下尤为严重,并会随着角度增大而进一步加剧。除雷达天线罩外,类似问题在通信、传感和探测等领域的其他应用中也常有出现,如光学镜头、光电探测器和太阳能电池等。因此,如何增强传统材料的电磁透波性能一直是电磁应用领域的重要研究课题,近些年来随着5G和6G通信技术的快速发展,该课题的受关注程度达到了顶峰,电磁透射率增强技术(简称电磁增透技术)也得到了较为广泛的研究和发展。

图1     CMC与空气在不同角度和极化状态下的波阻抗[  LI T F, MA J C, CHU Z T, et al. Anti-reflection metasurface synergizing plasma and lattice modes: An efficient route to wideband electromagnetic transparency under extreme angles[J]. Journal of Physics D Applied Physics, 2024, 57(12): 125501.
4
]
Fig.1     Wave impedance of CMC and air at different angles and polarization states[  LI T F, MA J C, CHU Z T, et al. Anti-reflection metasurface synergizing plasma and lattice modes: An efficient route to wideband electromagnetic transparency under extreme angles[J]. Journal of Physics D Applied Physics, 2024, 57(12): 125501.
4
]

增透膜[  PROFESSOR RAYLEIGH F R S. On reflection of vibrations at the confines of two media between which the transition is gradual[J]. Proceedings of the London Mathematical Society, 1879, s1–11(1): 51–56.
 TOWNSEND R J, HILL M, HARRIS N R, et al. Performance of a quarter-wavelength particle concentrator[J]. Ultrasonics, 2008, 48(6–7): 515–520.
 WITHAYACHUMNANKUL W, FISCHER B M, ABBOTT D. Quarter-wavelength multilayer interference filter for terahertz waves[J]. Optics Communications, 2008, 281(9): 2374–2379.
5-7
]
和渐变折射率增透层[  FAN P X, BAI B F, LONG J Y, et al. Broadband high-performance infrared antireflection nanowires facilely grown on ultrafast laser structured Cu surface[J]. Nano Letters, 2015, 15(9): 5988–5994.
 HU L, CHEN G. Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications[J]. Nano Letters, 2007, 7(11): 3249–3252.
 LOHMÜLLER T, HELGERT M, SUNDERMANN M, et al. Biomimetic interfaces for high-performance optics in the deep–UV light range[J]. Nano Letters, 2008, 8(5): 1429–1433.
 MUSKENS O L, RIVAS J G, ALGRA R E, et al. Design of light scattering in nanowire materials for photovoltaic applications[J]. Nano Letters, 2008, 8(9): 2638–2642.
8-11
]
是传统电磁增透技术的典型代表,二者分别基于反射相消和增强阻抗匹配程度提升电磁透射率,在很长一段时间内是电磁增透的主要技术手段。但是由于增透机理的限制,此技术存在外形笨重、难加工和工作范围有限等短板,并且随着技术的发展,小型化和可集成化成为电磁设备的主要发展趋势,传统电磁增透技术越来越难以满足电磁应用的实际需要,因此亟须探索基于新机理的电磁增透技术,从工作带宽和角域等方面提升传统材料的透波性能。

超表面作为一种特殊的二维超材料,一般由亚波长尺度的人工结构单元按照特定的二维序列周期性排布构成,不仅保持了超材料独特的电磁特性和电磁调控能力,还克服了其体积大,难加工和难集成等缺点[  YU N F, CAPASSO F. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13(2): 139–150.
 MA X L, PU M B, LI X, et al. All-metallic wide-angle metasurfaces for multifunctional polarization manipulation[J]. Opto–Electronic Advances, 2019, 2(3): 18002301–18002306.
 YU N F, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333–337.
12-14
]
。超表面独特的电磁和几何属性既赋予了材料丰富的电磁增透机理,也使其能顺应当前电磁设备的主要发展趋势。因此,超表面在电磁增透技术领域具有极其重要的应用价值,超表面电磁增透也得到了广泛的研究,其中包括超表面增透膜[  CHEN H T, ZHOU J F, O’HARA J F, et al. A numerical investigation of metamaterial antireflection coatings[J]. Terahertz Science and Technology , 2010, 3(2): 66-73.
 ZHANG B Y, HENDRICKSON J, NADER N, et al. Metasurface optical antireflection coating[J]. Applied Physics Letters, 2014, 105(24): 241113.
 HUANG L, CHANG C C, ZENG B B, et al. Bilayer metasurfaces for dual- and broadband optical antireflection[J]. ACS Photonics, 2017, 4(9): 2111–2116.
 LI X J, ZHENG W A, ZHANG W H, et al. Broadband bilayer antireflective coating with metasurfaces and Chebyshev transformer[J]. Physical Review Applied, 2022, 18(5): 054057.
15-18
]
、布儒斯特超表面[  LUO J, CHU H C, PENG R W, et al. Ultra-broadband reflectionless Brewster absorber protected by reciprocity[J]. Light, Science & Applications, 2021, 10(1): 89.
 FAN H Y, LI J, LAI Y, et al. Optical Brewster metasurfaces exhibiting ultrabroadband reflectionless absorption and extreme angular asymmetry[J]. Physical Review Applied, 2021, 16(4): 044064.
 LAVIGNE G, CALOZ C. Generalized Brewster effect using bianisotropic metasurfaces[J]. Optics Express, 2021, 29(7): 11361–11370.
19-21
]
和惠更斯超表面等[  GRADY N K, HEYES J E, CHOWDHURY D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138): 1304–1307.
 PFEIFFER C, EMANI N K, SHALTOUT A M, et al. Efficient light bending with isotropic metamaterial Huygens’ surfaces[J]. Nano Letters, 2014, 14(5): 2491–2497.
 DERAFSHI I, KOMJANI N. A new high aperture efficiency transmitarray antenna based on Huygens metasurfaces[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(7): 5458–5467.
 HASSANFIROOZI A, CHENG Y C, HUANG S H, et al. Toroidal-assisted generalized Huygens’ sources for highly transmissive plasmonic metasurfaces[J]. Laser & Photonics Reviews, 2022, 16(6): 2100525.
22-25
]
。本文系统介绍了超表面电磁增透技术研究进展,首先扼要回顾典型的传统电磁增透技术,然后重点介绍超表面电磁增透机理、设计思想和具体设计架构,并分析各类电磁增透超表面的特点,最后对超表面电磁增透技术领域亟须解决的关键问题及发展趋势进行总结和展望。

1     传统电磁增透技术

增透膜和渐变折射率增透层是传统电磁增透技术的典型代表,在很长一段时间内是电磁增透的主要技术手段。二者外形相似,但在内部结构和增透机理上存在很大差别。其中增透膜是由同种材料组成的简单单层结构,通过具有特定折射率和厚度的原材料,使来自于膜上下界面的反射能量彼此干涉相消从而达到减反增透的目的[  PROFESSOR RAYLEIGH F R S. On reflection of vibrations at the confines of two media between which the transition is gradual[J]. Proceedings of the London Mathematical Society, 1879, s1–11(1): 51–56.
 TOWNSEND R J, HILL M, HARRIS N R, et al. Performance of a quarter-wavelength particle concentrator[J]. Ultrasonics, 2008, 48(6–7): 515–520.
 WITHAYACHUMNANKUL W, FISCHER B M, ABBOTT D. Quarter-wavelength multilayer interference filter for terahertz waves[J]. Optics Communications, 2008, 281(9): 2374–2379.
5-7
]
。由于对加工工艺的要求不高,增透膜得到了较为广泛的实际应用,但由于增透机理的限制,其有效工作带宽和角域都十分有限。而渐变折射率增透层由多层不同种材料或具备特殊微观结构的同种材料构成,其独特的结构可以改善界面上的波阻抗突变从而抑制电磁反射,最终实现对透射的增强[  FAN P X, BAI B F, LONG J Y, et al. Broadband high-performance infrared antireflection nanowires facilely grown on ultrafast laser structured Cu surface[J]. Nano Letters, 2015, 15(9): 5988–5994.
 HU L, CHEN G. Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications[J]. Nano Letters, 2007, 7(11): 3249–3252.
 LOHMÜLLER T, HELGERT M, SUNDERMANN M, et al. Biomimetic interfaces for high-performance optics in the deep–UV light range[J]. Nano Letters, 2008, 8(5): 1429–1433.
 MUSKENS O L, RIVAS J G, ALGRA R E, et al. Design of light scattering in nanowire materials for photovoltaic applications[J]. Nano Letters, 2008, 8(9): 2638–2642.
8-11
]
。从理论上来说,该技术的有效工作角域和频带相比于前者更宽,理想情况下甚至可以实现全波段、全角域的完美透射,但渐变折射率增透层对加工工艺的要求极高,实际加工起来十分困难。本节将介绍以上2种技术的增透机理和具体设计架构,并进一步对比分析两者各自的优缺点。

1.1     增透膜

增透膜是目前使用最为广泛的电磁增透技术,其具体增透机理如下:如图2所示,现假设电磁波从折射率为n1的空气垂直入射,被增透对象为折射率为n2且具有无限厚度的基材。此时在空气和基材之间加载一层折射率为na且厚度为d的增透膜,在空间中形成空气–增透膜和增透膜–基材2个界面,分别将其命名为界面1和2,并设定λ为自由空间中的电磁波长,m为任意奇数。基于多重干涉理论[  BORN M, WOLF E. Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light[M]. Amsterdam: Elsevier, 1999.
26
]
,当增透膜同时满足条件na=n1n2,当n1<na<n2d=m[λ/4na]时,空气中来自于界面1和2的反射波将具有完全相等的振幅和相反的相位,二者将发生相消干涉,反射能量因此受到抑制。此时根据能量守恒定律,在吸收能量保持不变的前提下,透射能量将得到增强[  PROFESSOR RAYLEIGH F R S. On reflection of vibrations at the confines of two media between which the transition is gradual[J]. Proceedings of the London Mathematical Society, 1879, s1–11(1): 51–56.
 TOWNSEND R J, HILL M, HARRIS N R, et al. Performance of a quarter-wavelength particle concentrator[J]. Ultrasonics, 2008, 48(6–7): 515–520.
 WITHAYACHUMNANKUL W, FISCHER B M, ABBOTT D. Quarter-wavelength multilayer interference filter for terahertz waves[J]. Optics Communications, 2008, 281(9): 2374–2379.
5-7
]
。由于增透膜的厚度通常被设计为λ/4na,因此也被称为四分之一波长增透膜。值得一提的是,雷达天线罩在设计过程中经常通过罩体厚度提升其在工作波段的电磁透射率,该技术被称为半波壁或厚度谐振[  SHI Y, ZHANG C, ZHANG H, et al. Low (Sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape[J]. Science, 2000, 288(5463): 119–122.
 CAI Z W, HE X D, SUN J, et al. Deep learning with low precision by half-wave Gaussian quantization[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 5406–5414.
 CRISTAL E G, FRANKEL S. Hairpin-line and hybrid hairpin-line/half-wave parallel-coupled-line filters[J]. IEEE Transactions on Microwave Theory and Techniques, 1972, 20(11): 719–728.
 DING F, WANG Z X, HE S L, et al. Broadband high-efficiency half-wave plate: A supercell-based plasmonic metasurface approach[J]. ACS Nano, 2015, 9(4): 4111–4119.
27-30
]
,在机理上与增透膜相同。

图2     增透膜与渐变折射率增透层工作机理示意图
Fig.2     Schematic diagram of the working mechanism of the anti-reflection (AR) film and graded refractive index AR layer

增透膜是由同种材料构成的简单单层结构,对加工工艺要求较低,因而得到了广泛的实际应用。但是由于增透机理的限制,在应用中也存在一些重要短板: (1)增透膜仅能针对单一界面实现电磁透射增强,实际应用时需要同时加载于天线罩等装置的两侧,并且由于其自身具有一定厚度,对射频系统整体会增加额外的重量和体积,十分不利于航空航天等领域的应用,该情况在低频段尤为严重; (2)技术的核心——增透机理,依赖于反射波的相位,导致其有效工作角域和频带十分有限,且会随着角度的增大而缩减,因此大部分设计仅针对垂直入射; (3)技术的实现需要使用具有特定折射率的材料,众所周知自然界中材料的种类是有限的,无法保证任何基材都能找到合适的材料。曾有研究者通过混合多种材料制备具有合适折射率的材料,试图以此解决增透膜的材料需求问题。但是试验验证表明,这种方法调节折射率的精度并不准确,以此制作的增透膜在实际应用中误差也较大[  STETTER F, ESSELBORN R, HARDER N, et al. New materials for optical thin films[J]. Applied Optics, 1976, 15(10): 2315–2317.
 WALHEIM S, SCHAFFER E, MLYNEK J, et al. Nanophase-separated polymer films as high-performance antireflection coatings[J]. Science, 1999, 283(5401): 520–522.
31-32
]

1.2     渐变折射率增透层

根据Snell定律,电磁波在界面产生反射的根本原因是介质波阻抗的突变[  KWAN A, DUDLEY J, LANTZ E. Who really discovered Snell’s law?[J]. Physics World, 2002, 15(4): 64.
 SHIRLEY J W. An early experimental determination of Snell’s law[J]. American Journal of Physics, 1951, 19(9): 507–508.
33-34
]
。而渐变折射率增透层通过自身特殊结构可以改善界面两侧的阻抗突变,从而抑制电磁波在界面上的反射,以此达到增强透射的目的。其具体增透机理如下:与增透膜不同,渐变折射率增透层的折射率并非一个常数,而是一个随厚度渐变的变量。如图2所示,在电磁波入射方向上,增透层的折射率nan1逐渐过渡到n2[  SOUTHWELL W H. Gradient-index antireflection coatings[J]. Optics Letters, 1983, 8(11): 584–586.
 XI J Q, SCHUBERT M F, KIM J K, et al. Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection[J]. Nature Photonics, 2007, 1: 176–179.
35-36
]
。由于大部分的自然材料都是非磁性材料,所以材料的折射率在一定程度上可等效其波阻抗,因此,界面1和2上的波阻抗突变得到改善,电磁波的反射被抑制,透射被增强[  SELJ J H, MONGSTAD T T, SØNDENÅ R, et al. Reduction of optical losses in colored solar cells with multilayer antireflection coatings[J]. Solar Energy Materials and Solar Cells, 2011, 95(9): 2576–2582.
 CHHAJED S, SCHUBERT M F, KIM J K, et al. Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics[J]. Applied Physics Letters, 2008, 93(25): 251108.
 PARK M S, LEE Y, KIM J K. One-step preparation of antireflection film by spin-coating of polymer/solvent/nonsolvent ternary system[J]. Chemistry of Materials, 2005, 17(15): 3944–3950.
 EGERTON A. Lord Rayleigh, 1875—1947[J]. Royal Society, 1987, 6(18):502-538.
 WOLF E. Progress in Optics:Vol.5 [M]. North-Holland: Elsevier,1966.
37-41
]

1.2.1     多层渐变增透层

最早的渐变折射率增透层由多层不同种材料组成,这些材料具有呈渐变关系的折射率,并按照折射率渐变的序列沿电磁波入射方向堆叠,从而使增透层整体的折射率具有上述渐变特性,根据架构特点该类设计在此被统称为多层渐变增透层。多层渐变增透层的设计思想并不复杂,且相比于增透膜,其在理论上有更宽的有效工作角域和频带,在理想情况下甚至可实现全角域、全频带的完美电磁透射。但该技术复杂的多层结构对于加工工艺的要求极高,也导致其工作性能对于加工误差十分敏感[  SELJ J H, MONGSTAD T T, SØNDENÅ R, et al. Reduction of optical losses in colored solar cells with multilayer antireflection coatings[J]. Solar Energy Materials and Solar Cells, 2011, 95(9): 2576–2582.
 CHHAJED S, SCHUBERT M F, KIM J K, et al. Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics[J]. Applied Physics Letters, 2008, 93(25): 251108.
 PARK M S, LEE Y, KIM J K. One-step preparation of antireflection film by spin-coating of polymer/solvent/nonsolvent ternary system[J]. Chemistry of Materials, 2005, 17(15): 3944–3950.
37-39
]
。并且由于需要多种折射率与理论设计值相同的材料,该技术的实现更加受限于自然界材料种类的有限性,另外,多层渐变增透层也仅能针对单一界面实现电磁增透,但相比于增透膜普遍有更大的厚度。

1.2.2     渐变增透结构

多层架构在实现上的困难导致渐变折射率增透层在被提出80年之后才首次实现[  EGERTON A. Lord Rayleigh, 1875—1947[J]. Royal Society, 1987, 6(18):502-538.
 WOLF E. Progress in Optics:Vol.5 [M]. North-Holland: Elsevier,1966.
40-41
]
,因此对该技术的研究与发展造成严重阻碍。然而,人们在后期的探索中发现,具有特殊微观结构的同种材料同样可以具备渐变的折射率,极大地降低了渐变折射率增透层的实现难度,这类微观结构被统称为渐变增透结构。20世纪六七十年代,瑞士科学家Bernhard等[  BERNHARD C G, GEMNE G, SÄLLSTRÖM J. Comparative ultrastructure of corneal surface topography in insects with aspects on phylogenesis and function[J]. Zeitschrift Für Vergleichende Physiologie, 1970, 67(1): 1–25.
42
]
发现蛾眼的表面上有一层周期性排布的尖锥结构,这使蛾眼视网膜的折射率具有了随厚度渐变的特性,大幅度提高了光波从外界到蛾眼视网膜的透射率。该结构后被命名为蛾眼结构,作为最早的渐变增透结构,蛾眼结构在电磁增透技术领域得到了广泛的研究[  HAN G, NGUYEN T B, PARK S, et al. Moth-eye mimicking solid slippery glass surface with icephobicity, transparency, and self-healing[J]. ACS Nano, 2020, 14(8): 10198–10209.
 JU S, CHOI J Y, CHAE D, et al. Fabrication of high-transmittance and low-reflectance meter-scale moth-eye film via roll-to-roll printing[J]. Nanotechnology, 2020, 31(50): 505301.
43-44
]
。2020年Han等[  HAN G, NGUYEN T B, PARK S, et al. Moth-eye mimicking solid slippery glass surface with icephobicity, transparency, and self-healing[J]. ACS Nano, 2020, 14(8): 10198–10209.
43
]
利用石蜡特定的仿生形态和固有特性设计了类似于蛾眼的石蜡纳米柱结构,由此结构构成的增透层在可见光频段对硅基板有良好的电磁增透性能,并且能够从阳光的腐蚀中恢复(图3(a))。同年,Ju等[  JU S, CHOI J Y, CHAE D, et al. Fabrication of high-transmittance and low-reflectance meter-scale moth-eye film via roll-to-roll printing[J]. Nanotechnology, 2020, 31(50): 505301.
44
]
利用“卷对卷”工艺加工出了一种均匀蛾眼膜,其厚度仅为170 nm,可在400~700 nm波段内将基材的平均透射率提高3.2%(图3(b))。

图3     蛾眼结构相关研究
Fig.3     Research on the moth-eye structures

研究表明,蛾眼结构具有渐变折射率的根本原因是其外形的尺寸具有随厚度渐变的特性,因此理论上其他尺寸具有渐变特性的外形也可以用于渐变增透结构的设计[  SAI H, FUJII H, ARAFUNE K, et al. Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks[J]. Applied Physics Letters, 2006, 88(20): 201116.
 SOUTHWELL W H. Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces[J]. Journal of the Optical Society of America A, 1991, 8(3): 549–553.
 KANAMORI Y, ROY E, CHEN Y. Antireflection sub-wavelength gratings fabricated by spin-coating replication[J]. Microelectronic Engineering, 2005, 78: 287–293.
45-47
]
。2021年Jeon等[  JEON B J, KIM S J. Metasurface modeled as Chebyshev impedance transformer for super-broadband anti-reflection of visible and near infrared light[J]. IEEE Photonics Journal, 2021, 13(3): 2200310.
48
]
设计了具有精细垂直刻蚀精度的纳米棱锥结构,由其构成的增透膜层可在400~1100 nm波段内使基材在目标波段内的整体反射率小于3%(图4(a))。另外,特殊形状的孔洞同样具有渐变尺寸特性,2022年Ghiasvand等[  GHIASVAND F, HEIDAR H, KAZEROONI M, et al. A frequency-independent inhomogeneous planar radome with high angular stability based on permittivity manipulating[J]. AEU–International Journal of Electronics and Communications, 2022, 151: 154214.
49
]
通过在介质上打孔的方式设计了一种非均匀的平面天线罩,该天线罩在3~18 GHz频段内具有极高的电磁透射率,且其透波性能具有很好的角度稳定性(图4(b))。

图4     基于其他外形的渐变增透结构研究
Fig.4     Research on gradient-dimension AR films based on other shapes

渐变增透结构的发现与研究使渐变折射率增透层在设计思想上从“渐变材料”延伸至“渐变尺寸”,在根本上解决了传统多层结构对于特殊原材料的需求问题。但是此类设计依然对于加工工艺有过高的要求,也因此相比于增透膜渐变折射率增透层,此结构至今得到的实际应用较少。

2     超表面电磁增透技术

由于增透机理的限制,传统电磁增透技术在工作性能上存在着几乎无法克服的短板,并且随着技术水平的不断提高,小型化和可集成化成为新一代电磁设备的主要发展趋势,外形笨重的传统电磁增透技术更加难以满足电磁应用的实际需要。因此亟须探索新增透机理,发展性能与架构更加优异的电磁增透技术。

超表面作为超材料的特殊二维版本,一般由按照特定序列周期性排布的亚波长人工结构单元组成。与传统三维超材料相同的是,超表面同样具有自然材料所不具有的独特电磁特性,且可从相位[  MEINZER N, BARNES W L, HOOPER I R. Plasmonic meta-atoms and metasurfaces[J]. Nature Photonics, 2014, 8: 889–898.
 PFEIFFER C, ZHANG C, RAY V, et al. High performance bianisotropic metasurfaces: Asymmetric transmission of light[J]. Physical Review Letters, 2014, 113(2): 023902.
 FAN R H, ZHOU Y, REN X P, et al. Freely tunable broadband polarization rotator for terahertz waves[J]. Advanced Materials, 2015, 27(7): 1201–1206.
50-52
]
、振幅[  PFEIFFER C, GRBIC A. Millimeter-wave transmitarrays for wavefront and polarization control[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(12): 4407–4417.
 ZHU R C, WANG J F, QIU T S, et al. Remotely mind-controlled metasurface via brainwaves[J]. eLight, 2022, 2(1): 10.
53-54
]
和极化[  NI X J, EMANI N K, KILDISHEV A V, et al. Broadband light bending with plasmonic nanoantennas[J]. Science, 2012, 335(6067): 427.
 SUN S L, HE Q, XIAO S Y, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11(5): 426–431.
 KILDISHEV A V, BOLTASSEVA A, SHALAEV V M. Planar photonics with metasurfaces[J]. Science, 2013, 339(6125): 1232009.
55-57
]
等多个维度调控电磁波。但不同的是,超表面的厚度极小,相对于波长可以忽略的,同时也克服了传统超材料体积大,难加工和难集成的短板。

在电磁增透技术领域,超表面独特的电磁属性被赋予了多样的增透机理。首先,厚度极薄的超表面可被看作是一层具有电磁调控功能的表面,将其加载到介质界面上可调控电磁波在界面的传播相位与传播系数[  CHEN H T, ZHOU J F, O’HARA J F, et al. Antireflection coating using metamaterials and identification of its mechanism[J]. Physical Review Letters, 2010, 105(7): 073901.
 HAO T, ZHENG W A, WANG W Q, et al. Electrically thin metasurface for broadband transmission enhancement by manipulating the amplitude and phase of the reflection coefficients[J]. Journal of Applied Physics, 2019, 126(2): 025303.
 HAO T, ZHENG W A, HE W C, et al. Air-ground impedance matching by depositing metasurfaces for enhanced GPR detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6): 4061–4075.
58-60
]
,另外超表面也可以看作是一层具有特殊电磁参数的材料,将其加载到其他材料中可以调节基材整体的电磁参数[  HE Y C, ELEFTHERIADES G V. Anisotropic metamaterial as an antireflection layer at extreme angles[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(8): 4102–4114.
 HE Y C, ELEFTHERIADES G V. Magnetoelectric uniaxial metamaterials as wide-angle polarization-insensitive matching layers[J]. Physical review, B. Covering condensed matter and materials physics, 2018, 98(20): 205404.
61-62
]
;其次超表面结构单元可对入射电磁波产生响应,从而激发表面电流和磁流,并以此弥补界面上场分布的不连续性[  SCHELKUNOFF S A. Some equivalence theorems of electromagnetics and their application to radiation problems[J]. Bell System Technical Journal, 1936, 15(1): 92–112.
 HOLLOWAY C L, MOHAMED M A, KUESTER E F, et al. Reflection and transmission properties of a metafilm: With an application to a controllable surface composed of resonant particles[J]. IEEE Transactions on Electromagnetic Compatibility, 2005, 47(4): 853–865.
 SELVANAYAGAM M, ELEFTHERIADES G V. Discontinuous electromagnetic fields using orthogonal electric and magnetic currents for wavefront manipulation[J]. Optics Express, 2013, 21(12): 14409–14429.
63-65
]
。同时超表面二维的几何属性更加适应当前电磁设备的主要发展趋势,因此超表面对电磁增透技术具有极其重要的应用价值,超表面电磁增透技术也得到了广泛的研究与发展,如超表面增透膜、布儒斯特超表面和惠更斯超表面等,其中的部分设计已经在雷达、透镜和隐身等领域得到了实际应用。本节将详细介绍各类电磁增透超表面的增透机理、设计思想和具体设计架构,并对比分析不同类型超表面的优缺点。

2.1     单界面超表面电磁增透技术

基于超表面的独特电磁属性,部分研究者选择将其与增透膜和渐变折射率增透层相结合,以改善二者在性能、外形和工艺要求等方面的短板。因此,与上述2种传统电磁增透技术相同,此类设计也只能实现电磁波在单一界面上的透射率增强,故在此被统称为单界面超表面电磁增透技术[  SOUTHWELL W H. Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces[J]. Journal of the Optical Society of America A, 1991, 8(3): 549–553.
 KANAMORI Y, ROY E, CHEN Y. Antireflection sub-wavelength gratings fabricated by spin-coating replication[J]. Microelectronic Engineering, 2005, 78: 287–293.
 JEON B J, KIM S J. Metasurface modeled as Chebyshev impedance transformer for super-broadband anti-reflection of visible and near infrared light[J]. IEEE Photonics Journal, 2021, 13(3): 2200310.
 GHIASVAND F, HEIDAR H, KAZEROONI M, et al. A frequency-independent inhomogeneous planar radome with high angular stability based on permittivity manipulating[J]. AEU–International Journal of Electronics and Communications, 2022, 151: 154214.
 MEINZER N, BARNES W L, HOOPER I R. Plasmonic meta-atoms and metasurfaces[J]. Nature Photonics, 2014, 8: 889–898.
 PFEIFFER C, ZHANG C, RAY V, et al. High performance bianisotropic metasurfaces: Asymmetric transmission of light[J]. Physical Review Letters, 2014, 113(2): 023902.
 FAN R H, ZHOU Y, REN X P, et al. Freely tunable broadband polarization rotator for terahertz waves[J]. Advanced Materials, 2015, 27(7): 1201–1206.
 PFEIFFER C, GRBIC A. Millimeter-wave transmitarrays for wavefront and polarization control[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(12): 4407–4417.
 ZHU R C, WANG J F, QIU T S, et al. Remotely mind-controlled metasurface via brainwaves[J]. eLight, 2022, 2(1): 10.
 NI X J, EMANI N K, KILDISHEV A V, et al. Broadband light bending with plasmonic nanoantennas[J]. Science, 2012, 335(6067): 427.
 SUN S L, HE Q, XIAO S Y, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11(5): 426–431.
46-56
]

2.1.1     界面调控超表面增透膜

图5所示,设电磁波以角度θ1从空气(介质1)入射,被增透对象为具有无限厚度的基材,并在基材和空气之间加载增透膜,此时在空间中形成“空气–增透膜”和“增透膜–基材”2个界面,将其分别命名为界面1和界面2。并用介质1、介质2和介质3分别代表空气、增透膜和基材。当电磁波从介质i传播至介质j时,设定rijtij分别为电磁波在界面的反射系数与透射系数;αijβij分别为相应的反射相位与透射相位;φ为增透膜整体厚度引起的延迟相位。根据多重干涉理论,此时总反射率r˜与总透射率t˜可分别表示为式(1)和(2)。基于超表面的电磁调控能力,可将其加载于界面1或界面2处,以调节公式中对应的rijtijαijβij,从而降低|r˜|增高|t˜|,达到减反增透的目的,基于上述增透机理和架构的设计可被统称为界面调控超表面增透膜[  CHEN H T, ZHOU J F, O’HARA J F, et al. Antireflection coating using metamaterials and identification of its mechanism[J]. Physical Review Letters, 2010, 105(7): 073901.
 HAO T, ZHENG W A, WANG W Q, et al. Electrically thin metasurface for broadband transmission enhancement by manipulating the amplitude and phase of the reflection coefficients[J]. Journal of Applied Physics, 2019, 126(2): 025303.
58-59
 HE Y C, ELEFTHERIADES G V. Anisotropic metamaterial as an antireflection layer at extreme angles[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(8): 4102–4114.
 HE Y C, ELEFTHERIADES G V. Magnetoelectric uniaxial metamaterials as wide-angle polarization-insensitive matching layers[J]. Physical review, B. Covering condensed matter and materials physics, 2018, 98(20): 205404.
61-62
]

r˜=r21eiα12r23ei(2φ+α12+α21+α23)1r21r23ei(2φ+α21+α23)
(1)

t˜=t12t23ei(φ+β12+β23)1r21r23ei(2φ+α21+α23)
(2)

图5     多重干涉理论示意图
Fig.5     Schematic diagram of multiple interference theory

2010年,Chen等[  CHEN H T, ZHOU J F, O’HARA J F, et al. Antireflection coating using metamaterials and identification of its mechanism[J]. Physical Review Letters, 2010, 105(7): 073901.
58
]
首次提出了界面调控超表面增透膜的设计思想,如图6(a)所示,该团队所提出的设计由聚酰亚胺介质隔板和加载于隔板两侧的金属分裂环和金属网栅组成,可显著提高GaAs在0.2~2.0 THz波段的电磁透过率,且在TE和TM极化下都有明显效果。自该设计被提出之后,界面调控超表面增透膜得到了广泛研究[  HAO T, ZHENG W A, WANG W Q, et al. Electrically thin metasurface for broadband transmission enhancement by manipulating the amplitude and phase of the reflection coefficients[J]. Journal of Applied Physics, 2019, 126(2): 025303.
 HAO T, ZHENG W A, HE W C, et al. Air-ground impedance matching by depositing metasurfaces for enhanced GPR detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6): 4061–4075.
59-60
]
。2019年,Hao等[  HAO T, ZHENG W A, WANG W Q, et al. Electrically thin metasurface for broadband transmission enhancement by manipulating the amplitude and phase of the reflection coefficients[J]. Journal of Applied Physics, 2019, 126(2): 025303.
59
]
发现在单层介质隔板两侧加载分裂环谐振器的架构后一般均可实现对于基材透射率的增强,极大简化了此类增透膜的设计过程。如图6(b)所示,基于上述发现,2020年该团队设计了由双层闭环谐振器和单层介质隔板组成的增透膜,可增强电磁波从空气到地下的透射率,因此在探地雷达领域有广阔的应用前景[  HAO T, ZHENG W A, HE W C, et al. Air-ground impedance matching by depositing metasurfaces for enhanced GPR detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6): 4061–4075.
60
]

图6     界面调控超表面增透膜相关研究
Fig.6     Research on interface regulation metasurface AR films

界面调控超表面增透膜在一定程度上改善了传统增透膜厚度过大和工作频带有限的问题,且在介质表面加载超表面的架构对加工工艺的要求较低,更有利于实际应用。但是,此类设计并没有解决传统增透膜工作角域有限的问题,大部分设计的工作角域仅局限于小角度甚至垂直入射,而在大角度下性能优异和具有宽工作角域的设计,仍需要被进一步探索。

2.1.2     介质调控超表面增透膜

由于超表面自身可以被看作是一层具有特殊电磁参数的介质,因此在增透膜架构中还可将其加载于介质隔板内部以调节隔板整体的电磁参数,从而调节rijtij和延迟相位φ,进而实现电磁增透,基于以上机理和思想的设计结果在此被统称为介质调控超表面增透膜[  HE Y C, ELEFTHERIADES G V. Anisotropic metamaterial as an antireflection layer at extreme angles[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(8): 4102–4114.
 HE Y C, ELEFTHERIADES G V. Magnetoelectric uniaxial metamaterials as wide-angle polarization-insensitive matching layers[J]. Physical review, B. Covering condensed matter and materials physics, 2018, 98(20): 205404.
61-62
]

介质调控超表面增透膜的设计需要计算电磁波在各界面的传播系数及其在介质隔板内部的延迟相位,但是超表面作为一种特殊二维材料本质上属于各向异性介质,而传统Snell定律仅针对于各向同性介质,因此,此材料用于分析有关超表面的电磁传播问题并不严谨[  KWAN A, DUDLEY J, LANTZ E. Who really discovered Snell’s law?[J]. Physics World, 2002, 15(4): 64.
 SHIRLEY J W. An early experimental determination of Snell’s law[J]. American Journal of Physics, 1951, 19(9): 507–508.
33-34
]
。但在2017年,He等[  HE Y C, ELEFTHERIADES G V. Anisotropic metamaterial as an antireflection layer at extreme angles[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(8): 4102–4114.
61
]
首次在研究中提出了针对各向异性介质的Snell定律,为超表面在电磁增透领域内的研究提供了巨大的理论贡献。该定律的具体内容为:作为各向异性介质超表面增透膜的介电常数和磁导率可分别被表示为3×3的矩阵ε2¯¯μ2¯¯(式(3))。在TE和TM极化下,式(4)和(5)中,空气、增透膜和基材的波阻抗分别为Z1TE/TMZ2TE/TMZ3TE/TMk2zTE/TM为电磁波在增透膜中沿z轴的波数(式(6)),为延迟相位φTE/TM(式(7)),其中η0=μ0/ε0为空气的本征波阻抗,d为增透膜的整体厚度。将以上公式(式(3)~(7))与式(1)相结合,可推导出能够实现|r˜|=0的理想ε2¯¯μ2¯¯[  HE Y C, ELEFTHERIADES G V. Magnetoelectric uniaxial metamaterials as wide-angle polarization-insensitive matching layers[J]. Physical review, B. Covering condensed matter and materials physics, 2018, 98(20): 205404.
62
]

基于上述理论,He等[  HE Y C, ELEFTHERIADES G V. Anisotropic metamaterial as an antireflection layer at extreme angles[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(8): 4102–4114.
61
]
设计了2种在大入射角下可分别实现TM和TE极化电磁增透的介质调控超表面增透膜,并且用反演S参数的方法提取了ε2¯¯μ2¯¯中的各项分量,从而验证了他们所提理论的准确性(图7)。

ε2¯=|ε2x000ε2y000ε2z|μ2¯=|μ2x000μ2y000μ2z|
(3)

Z1TE=η0cosθ1Z2TE=η0ε2xμ2ysin2θ11μ2yμ2zZ3TE=η0ε31sin2θ1ε3
(4)

Z1TM=η0cosθ1Z2TM=η0μ2xε2ysin2θ11ε2yε2zZ3TM=η01sin2θ1ε3ε3
(5)

k2zTE=k0μ2yε2xsin2θ1μ2yμ2z=k0n2zTEk2zTM=k0μ2xε2ysin2θ1ε2yε2z=k0n2zTM
(6)

φTE/TM=k2zTE/TMd
(7)

图7     针对不同极化的介质调控超表面增透膜[  HE Y C, ELEFTHERIADES G V. Anisotropic metamaterial as an antireflection layer at extreme angles[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(8): 4102–4114.
61
]
Fig.7     Dielectric regulation metasurface AR film for different polarizations[  HE Y C, ELEFTHERIADES G V. Anisotropic metamaterial as an antireflection layer at extreme angles[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(8): 4102–4114.
61
]

同样,基于上述理论,He等[  HE Y C, ELEFTHERIADES G V. Magnetoelectric uniaxial metamaterials as wide-angle polarization-insensitive matching layers[J]. Physical review, B. Covering condensed matter and materials physics, 2018, 98(20): 205404.
62
]
在2018年又提出了一种由闭口谐振环和打孔介质隔板组成的增透膜设计,该设计通过谐振环自身的电磁响应、不同层谐振环之间的耦合效应以及打孔调节介质隔板整体的各向异性介电常数与磁导率,可在6~14 GHz范围内实现宽角域的双极化电磁增透(图8)。

图8     由闭口谐振环和打孔介质隔板组成的介质调控超表面增透膜[  HE Y C, ELEFTHERIADES G V. Magnetoelectric uniaxial metamaterials as wide-angle polarization-insensitive matching layers[J]. Physical review, B. Covering condensed matter and materials physics, 2018, 98(20): 205404.
62
]
Fig.8     Dielectric regulation metasurface AR film composed of closed resonant rings and a perforated dielectric partition[  HE Y C, ELEFTHERIADES G V. Magnetoelectric uniaxial metamaterials as wide-angle polarization-insensitive matching layers[J]. Physical review, B. Covering condensed matter and materials physics, 2018, 98(20): 205404.
62
]

基于超表面对介质隔板电磁参数的调节,介质调控超表面增透膜在一定程度上解决了传统增透膜对特殊原材料的需求问题。但是其部分设计需要在介质板内部加载超表面,这相比于界面调控超表面增透膜对于加工工艺有更高的要求,且对一些特殊材料并不适用。

2.1.3     多层渐变超表面增透层

对于特殊原材料的需求和对加工工艺的要求,使得传统多层渐变增透层的实现变得十分困难,而超表面为解决上述问题提供了新的途径。首先,超表面可被看作是一层具有特殊电磁参数的材料,并且其电磁参数主要由结构单元的形状与尺寸决定,因此,理论上结构单元形状相同但尺寸具有渐变关系的超表面具有渐变的电磁参数,将其按照单元尺寸渐变次序堆叠即可实现多层渐变增透层的设计,基于以上机理的设计被统称为多层渐变超表面增透层[  XIAO X F, TURINO M, BECERRIL-CASTRO I B, et al. Extraordinarily transparent metaldielectrics for infrared and terahertz applications[J]. Advanced Photonics Research, 2022, 3(10): 2200190.
 DU C, ZHOU D, GUO H H, et al. An ultra-broadband terahertz metamaterial coherent absorber using multilayer electric ring resonator structures based on anti-reflection coating[J]. Nanoscale, 2020, 12(17): 9769–9775.
66-67
]
。2022年,Xiao等[  XIAO X F, TURINO M, BECERRIL-CASTRO I B, et al. Extraordinarily transparent metaldielectrics for infrared and terahertz applications[J]. Advanced Photonics Research, 2022, 3(10): 2200190.
66
]
通过堆叠具有渐变尺寸的金属纳米柱阵列实现了此类设计。如图9(a)所示[  XIAO X F, TURINO M, BECERRIL-CASTRO I B, et al. Extraordinarily transparent metaldielectrics for infrared and terahertz applications[J]. Advanced Photonics Research, 2022, 3(10): 2200190.
66
]
,在太赫兹波段该增透层的折射率几乎与厚度呈现绝对的正比例关系,理论上能够实现几乎100%的电磁透射。除电磁增透外,该设计思想还可应用于电磁吸波。2020年,Du等[  DU C, ZHOU D, GUO H H, et al. An ultra-broadband terahertz metamaterial coherent absorber using multilayer electric ring resonator structures based on anti-reflection coating[J]. Nanoscale, 2020, 12(17): 9769–9775.
67
]
利用吸波材料制作此类增透层的介质隔板,并在增透层底部额外加载金属背板,从而设计出可在整个太赫兹波段(0.1~10 THz)工作的电磁吸收器。如图9(b)所示[  XIAO X F, TURINO M, BECERRIL-CASTRO I B, et al. Extraordinarily transparent metaldielectrics for infrared and terahertz applications[J]. Advanced Photonics Research, 2022, 3(10): 2200190.
67
]
,该吸收器的结构单元由一组具有渐变尺寸的电谐振器组成,因此其波阻抗具有随厚度渐变的特性,电磁波在入射时能够在几乎无反射的情况下进入吸收器内,从而更好地被吸波材料吸收。

图9     多层渐变超表面增透层相关研究
Fig.9     Research on multilayer gradient metasurface AR layers

多层渐变超表面增透层在理论上解决了传统多层渐变增透层对于特殊原材料的需求,但是其设计思想本质上仍是“渐变尺寸”,可理解为一种特殊的渐变增透结构,因此对于加工工艺仍有较高要求,性能对于加工误差依然比较敏感,以上情况在太赫兹和可见光等高频段尤为严重,并且此类设计没有显著解决传统多层渐变增透层厚度过大的问题。

2.2     双界面超表面电磁增透技术

由于大部分天线罩和电磁窗等保护装置的厚度都是有限的,仅针对单一界面且自身又有一定厚度的单界面超表面电磁增透技术在航天航空等特殊领域的应用十分受限。因此,部分研究者在电磁增透超表面设计过程中直接将被增透对象设为厚度有限的介质基板,并且摒弃对介质隔板的使用,以便使设计具有更好的实际应用价值,这类设计在此被统称为双界面超表面电磁增透技术。双界面电磁增透技术的机理主要有两种,第1种是通过超表面同时在两个界面增强介质基板与空气之间的阻抗匹配;第2种是调节基板原本的半波壁效应。值得一提的是其中的大部分设计都以上文描述的针对各向异性介质的Snell定律作为理论基础,可以看出这一理论对于超表面电磁增透技术的重要意义[  HE Y C, ELEFTHERIADES G V. Anisotropic metamaterial as an antireflection layer at extreme angles[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(8): 4102–4114.
61
]

2.2.1     类等离子体超表面

1996年,Pendry等[  PENDRY J B, HOLDEN A J, STEWART W J, et al. Extremely low frequency plasmons in metallic mesostructures[J]. Physical Review Letters, 1996, 76(25): 4773–4776.
68
]
通过金属线阵列模型将金属的等离子体频率从光波段降低至微波波段,并将该现象命名为类等离子体效应。类等离子体效应可有效降低介质的介电常数,从而增强介质间的阻抗匹配程度,在超表面电磁增透技术领域得到了广泛研究,相关设计在此被统称为类等离子体超表面。

2019年,空军工程大学Wang团队首次提出利用类等离子体效应改善基板与空气在TE极化下的阻抗匹配,并且设计了相应的长金属带电磁增透超表面,该设计在Ku波段具有角度稳定性极佳的电磁增透效果(图10[  LI Y Z, ZHENG L, WANG J F, et al. Wide-angle transmission enhancement of metamaterial-doped fiber-reinforced polymers[J]. IEEE Access, 2019, 7: 76042–76048.
69
]
。除内部加载的方式外,在此类设计中也可将超表面加载于基板表面。2020年,He等[  HE Y C, ELEFTHERIADES G V. A thin double-mesh metamaterial radome for wide-angle and broadband applications at millimeter-wave frequencies[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 2176–2185.
70
]
提出了由双面网栅组成的电磁增透超表面,该超表面通过类等离子体效应和结构单元的谐振效应有效调节了基板整体的电磁参数,从而提高了超表面在Ka波段的电磁透射率,在TE和TM极化下均有明显效果(图11[  HE Y C, ELEFTHERIADES G V. A thin double-mesh metamaterial radome for wide-angle and broadband applications at millimeter-wave frequencies[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 2176–2185.
70
]
。如图11(b)所示[  HE Y C, ELEFTHERIADES G V. A thin double-mesh metamaterial radome for wide-angle and broadband applications at millimeter-wave frequencies[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 2176–2185.
70
]
,除透射率外该设计还额外关注了透射波在两种极化下的插入相移一致性,使其在雷达天线罩领域有很好的应用前景。

图10     长金属带电磁增透超表面[  LI Y Z, ZHENG L, WANG J F, et al. Wide-angle transmission enhancement of metamaterial-doped fiber-reinforced polymers[J]. IEEE Access, 2019, 7: 76042–76048.
69
]
Fig.10     Long-metallic-strip EM AR metasurface[  LI Y Z, ZHENG L, WANG J F, et al. Wide-angle transmission enhancement of metamaterial-doped fiber-reinforced polymers[J]. IEEE Access, 2019, 7: 76042–76048.
69
]
图11     双面网栅超表面[  HE Y C, ELEFTHERIADES G V. A thin double-mesh metamaterial radome for wide-angle and broadband applications at millimeter-wave frequencies[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 2176–2185.
70
]
Fig.11     Duplex-grid metasurface[  HE Y C, ELEFTHERIADES G V. A thin double-mesh metamaterial radome for wide-angle and broadband applications at millimeter-wave frequencies[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 2176–2185.
70
]

类等离子体超表面在设计过程中还可与有源器件相结合,从而在增透基础上实现其他功能。如图12所示,2021年,北京理工大学Jin等[  JIN C, LV Q H, ZHANG B C, et al. Ultra-wide-angle bandpass frequency selective surface[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(9): 5673–5681.
71
]
基于类等离体效应设计了一种有源电磁增透超表面,相比于上文中描述设计,该超表面在结构单元中额外加载了变容二极管,通过改变二极管的电容可调节其中心工作频率。此外,该设计的有效工作角域可覆盖0°~80°,且具有一定的带外抑制性能。

图12     有源电磁增透超表面[  JIN C, LV Q H, ZHANG B C, et al. Ultra-wide-angle bandpass frequency selective surface[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(9): 5673–5681.
71
]
Fig.12     Passive EM AR metasurface[  JIN C, LV Q H, ZHANG B C, et al. Ultra-wide-angle bandpass frequency selective surface[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(9): 5673–5681.
71
]

类等离体超表面可同时对双界面实现电磁增透,且自身几乎没有额外的厚度和体积,因此相比于单界面电磁增透超表面有更加广泛的实际应用潜力。但是在其设计过程中存在一个普遍矛盾:如果在基板内部加载超表面,一般可以获得相对较宽的工作带宽,但对加工工艺有一定要求且不适用于一些特殊材料。如果在基板表面加载超表面,虽然在可以降低对工艺的要求,但是有效工作带宽一般较窄。因此如何解决或平衡工艺要求与性能之间的矛盾,是该类设计目前面临的主要问题。

2.2.2     布儒斯特超表面

根据Snell定律,当TM极化电磁波在2种不同的介质间传播时,在某一特定角度下介质间的波阻抗会完全匹配,电磁波完全透射,该现象被称之为布儒斯特效应,对应入射角被称为布儒斯特角[  BREWSTER D. IX. On the laws which regulate the polarisation of light by reflexion from transparent bodies[J]. Philosophical Transactions of the Royal Society of London, 1815, 105: 125–159.
 MAHLEIN H F. Generalized Brewster-angle conditions for quarter-wave multilayers at non-normal incidence[J]. JOSA, 1974, 64(5): 647–653.
 LAKHTAKIA A. Would Brewster recognize today’s Brewster angle?[J]. Optics News, 1989, 15(6): 14–18.
72-74
]
。布儒斯特效应在电磁增透技术领域有很大意义,但是受限于Snell定律的波阻抗计算方式,传统布儒斯特效应仅当TM极化波以特定角度入射时才会出现。而超表面的出现打破了这一限制,近些年来不断有研究者通过超表面在不同极化和角度下激发布儒斯特效应以实现电磁透射增强,并将这种异常现象称为广义布儒斯特效应,该类超表面也被称之为布儒斯特超表面[  HUANG H, SHEN Z X. Brewster lens with perfect wave refraction[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(8): 6204–6213.
 LV Q H, JIN C, ZHANG B C, et al. Ultrawide-angle ultralow-reflection phenomenon for transverse electric mode in anisotropic metasurface[J]. Advanced Optical Materials, 2022, 10(12): 2102400.
 WANG C, ZHU Z B, CUI W Z, et al. All-angle Brewster effect observed on a terahertz metasurface[J]. Applied Physics Letters, 2019, 114(19): 191902.
 PANIAGUA-DOMÍNGUEZ R, YU Y F, MIROSHNICHENKO A E, et al. Generalized Brewster effect in dielectric metasurfaces[J]. Nature Communications, 2016, 7: 10362.
 ZHANG Z, CHE Z Y, LIANG X Y, et al. Realizing generalized Brewster effect by generalized kerker effect[J]. Physical Review Applied, 2021, 16(5): 054017.
75-79
]

图13所示,2020年新加坡南洋理工大学Shen团队[  HUANG H, SHEN Z X. Brewster lens with perfect wave refraction[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(8): 6204–6213.
75
]
设计了一种以电、磁谐振器为结构单元的双极化布儒斯特超表面。在该设计中,2种谐振器对于入射波做出电磁响应,利用此响应可分别调节基板内部的介电常数和磁导率,使其在某一角度下与空气同时形成TE和TM极化下的阻抗匹配,最终实现双极化布儒斯特效应,其有效带宽可覆盖0~16 GHz。如果仅关注TE极化下的透射率,该设计还可在保证高透射率的前提下调控透射相位,从而作为“布儒斯特透镜”将入射的柱面波转化为以任意角度出射的平面波,可解决传统透镜透射率低的问题。

图13     双极化布儒斯特超表面[  HUANG H, SHEN Z X. Brewster lens with perfect wave refraction[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(8): 6204–6213.
75
]
Fig.13     Dual-polarization Brewster metasurface[  HUANG H, SHEN Z X. Brewster lens with perfect wave refraction[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(8): 6204–6213.
75
]

图14(a)所示,同样基于电磁谐振器组合,2021年北京理工大学Jin团队设计了一种针对TE极化的宽角域布儒斯特超表面[  LV Q H, JIN C, ZHANG B C, et al. Ultrawide-angle ultralow-reflection phenomenon for transverse electric mode in anisotropic metasurface[J]. Advanced Optical Materials, 2022, 10(12): 2102400.
76
]
,对应的布儒斯特角可覆盖0°~80°。除上述的谐振器组合外,布儒斯特超表面也可以通过更加简单的结构单元实现。如图14(b)所示,2019年,浙江大学Ran团队设计的布儒斯特超表面由加载于基板表面的金属网格和圆片组成[  WANG C, ZHU Z B, CUI W Z, et al. All-angle Brewster effect observed on a terahertz metasurface[J]. Applied Physics Letters, 2019, 114(19): 191902.
77
]
,可在太赫兹频率实现全角度布儒斯特效应。

图14     布儒斯特超表面相关研究
Fig.14     Research on Brewster metasuraces

除增强阻抗匹配之外,也有学者尝试通过其他机理实现广义布儒斯特效应。2015年,新加坡数据存储研究所提出在特定角度下单元内部的电、磁偶极子谐振彼此间可以互相干扰,从而导致散射抑制。因此,如果对全介质超表面进行合理的针对性设计,可在任意角度、频率和极化下实现布儒斯特效应。如图15(a)所示,基于上述理论,该团队设计了一种由纳米硅盘阵列组成的全介质布儒斯特超表面[  PANIAGUA-DOMÍNGUEZ R, YU Y F, MIROSHNICHENKO A E, et al. Generalized Brewster effect in dielectric metasurfaces[J]. Nature Communications, 2016, 7: 10362.
78
]
。如图15(b)所示,2020年复旦大学Zi团队基于广义Kerer效应设计了一种双极化布儒斯特超表面[  ZHANG Z, CHE Z Y, LIANG X Y, et al. Realizing generalized Brewster effect by generalized kerker effect[J]. Physical Review Applied, 2021, 16(5): 054017.
79
]
,该设计通过调节超表面在基板上方的悬挂高度来改变对应的布儒斯特角度和频率。

图15     基于其他机理的布儒斯特超表面
Fig.15     Brewster metasurfaces based on other mechanisms

布儒斯特超表面突破了传统布儒斯特效应仅能在特定角度和极化下实现的局限性,使该物理现象在电磁增透技术领域有了更强的应用价值。但是目前大部分设计仅能在窄频带,甚至单一频率下工作,与实际应用还有很大距离。

2.3     惠更斯超表面

根据惠更斯–菲涅耳原理,当电磁波入射时,超表面可被看作是入射波的一个波前面,而每一个结构单元可被看作是一个次波源,其辐射出的球面波继续传播并且相干叠加形成透射波[  ALBURY W R. Halley and the traité de la lumière of Huygens: New light on Halley’s relationship with Newton[J]. Isis, 1971, 62(4): 445–468.
 MACDONALD H M I. The integration of the equations of propagation of electric waves[J]. Philosophical Transactions of the Royal Society of London, Series A, 1901, 197(287–299): 1–45.
 SCHELKUNOFF S A. On diffraction and radiation of electromagnetic waves[J]. Physical Review, 1939, 56(4): 308–316.
80-82
]
。因此,理论上通过对结构单元辐射特性的调控,可在消除反射的基础上将入射波转化为期望的透射波。但根据Snell定律,若出现上述现象,界面两侧必然会出现切向场分布的不连续性,进而导致反射[  KWAN A, DUDLEY J, LANTZ E. Who really discovered Snell’s law?[J]. Physics World, 2002, 15(4): 64.
 SHIRLEY J W. An early experimental determination of Snell’s law[J]. American Journal of Physics, 1951, 19(9): 507–508.
33-34
]
。可以看出两种理论之间存在一定的矛盾,而超表面的出现解决了这一矛盾。如图16所示,构成超表面的结构单元可对入射电磁波产生响应,在超表面上产生正交的表面电流与表面磁流,其中,JsMs分别为相应的表面电流密度和表面磁流密度。根据麦克斯韦方程组,JsMs可分别等效为切向的电场与磁场,式(8)为此时场分布的边界条件,其中,(E1H1)和(E2H2)分别为入射空间和透射空间中的总切向电场和总切向磁场;n^为界面法向量。可以看出,由于空间中的场分布边界条件被重新构建,界面上场分布的不连续性被JsMs弥补,两种理论之间的矛盾得到了解决[  SCHELKUNOFF S A. Some equivalence theorems of electromagnetics and their application to radiation problems[J]. Bell System Technical Journal, 1936, 15(1): 92–112.
 HOLLOWAY C L, MOHAMED M A, KUESTER E F, et al. Reflection and transmission properties of a metafilm: With an application to a controllable surface composed of resonant particles[J]. IEEE Transactions on Electromagnetic Compatibility, 2005, 47(4): 853–865.
 SELVANAYAGAM M, ELEFTHERIADES G V. Discontinuous electromagnetic fields using orthogonal electric and magnetic currents for wavefront manipulation[J]. Optics Express, 2013, 21(12): 14409–14429.
63-65
]
。基于上述思想和机理,实现完美电磁透射的设计被称为惠更斯超表面,相比于一般电磁增透超表面,惠更斯超表面能够在实现高透射率的基础上进一步对透射波进行调控,且该调控功能大部分情况下针对的是透射相位,这使得惠更斯超表面在波束偏折、整形、聚焦和全息等领域得到了广泛应用[  JIN P, ZIOLKOWSKI R W. Metamaterial-inspired, electrically small Huygens sources[J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9: 501–505.
 PFEIFFER C, GRBIC A. Metamaterial Huygens’ surfaces: Tailoring wave fronts with reflectionless sheets[J]. Physical Review Letters, 2013, 110(19): 197401.
 WONG J P S, SELVANAYAGAM M, ELEFTHERIADES G V. Design of unit cells and demonstration of methods for synthesizing Huygens metasurfaces[J]. Photonics and Nanostructures–Fundamentals and Applications, 2014, 12(4): 360–375.
 LIAN J W, BAN Y L, GUO Y J. Wideband dual-layer Huygens’ metasurface for high-gain multibeam array antennas[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(11): 7521–7531.
83-86
]

Js=n^(H2H1)Ms=n^(E2E1)
(8)

图16     惠更斯超表面机理示意图
Fig.16     Schematic diagram of Huygens metasurfaces’ mechanism

2010年,Jin等[  JIN P, ZIOLKOWSKI R W. Metamaterial-inspired, electrically small Huygens sources[J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9: 501–505.
83
]
首次提出将超表面的结构单元看作是惠更斯波源,为惠更斯超表面的提出奠定了重要的理论基础。2013年,密歇根大学Pfeiffer等[  PFEIFFER C, GRBIC A. Metamaterial Huygens’ surfaces: Tailoring wave fronts with reflectionless sheets[J]. Physical Review Letters, 2013, 110(19): 197401.
84
]
首次提出了惠更斯超表面这一概念,如图17(a)所示,该团队通过在基板两侧分别加载电谐振器和开口谐振环从而设计出了最早的惠更斯超表面。当TM极化波正入射该超表面时,结构单元中的电偶极子和磁偶极子谐振分别被激发,此时在一定范围内调节单元的尺寸参数即可在无反射基础上实现对透射相位的调节。经过验证,该设计可实现波束偏折和波束聚焦的功能[  PFEIFFER C, GRBIC A. Metamaterial Huygens’ surfaces: Tailoring wave fronts with reflectionless sheets[J]. Physical Review Letters, 2013, 110(19): 197401.
84
]
。可以看出,早期惠更斯超表面由于需要被同时激发的电、磁偶极子谐振,在设计时往往需要采取横向堆叠的架构,因此十分不利于实际应用。为解决该问题,如图17(b)所示,2014年Eleftheriades等[  WONG J P S, SELVANAYAGAM M, ELEFTHERIADES G V. Design of unit cells and demonstration of methods for synthesizing Huygens metasurfaces[J]. Photonics and Nanostructures–Fundamentals and Applications, 2014, 12(4): 360–375.
85
]
通过过孔连接基板两侧的金属结构设计出了平板架构的惠更斯超表面,经过验证该设计在毫米波及更高频段可实现完美的波束偏折功能,且整体厚度仅有波长的1/10,解决了早期惠更斯超表面架构复杂的问题。

图17     惠更斯超表面相关研究
Fig.17     Research on Huygens metasurfaces

为克服金属结构单元在光学和红外等高频段损耗过高的问题,全介质惠更斯超表面得到了广泛研究[  CHONG K E, WANG L, STAUDE I, et al. Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms[J]. ACS Photonics, 2016, 3(4): 514–519.
 DECKER M, STAUDE I, FALKNER M, et al. High-efficiency dielectric Huygens’ surfaces[J]. Adv Opt Mater, 2015, 3(6): 813–820.
 FENG T H, POTAPOV A A, LIANG Z X, et al. Huygens metasurfaces based on congener dipole excitations[J]. Physical Review Applied, 2020, 13(2): 021002.
87-89
]
。如图18(a)所示[  DECKER M, STAUDE I, FALKNER M, et al. High-efficiency dielectric Huygens’ surfaces[J]. Adv Opt Mater, 2015, 3(6): 813–820.
88
]
,2015年澳大利亚国立大学首次提出一种由纳米硅盘单元组成的全介质惠更斯超表面,其中的硅盘单元在近红外波段具有强度相等且相互垂直的电偶极子与磁偶极子谐振,在一定半径范围内可保持几乎100%的电磁透射率和360°的透射相位覆盖。如图18(b)所示[  DECKER M, STAUDE I, FALKNER M, et al. High-efficiency dielectric Huygens’ surfaces[J]. Adv Opt Mater, 2015, 3(6): 813–820.
89
]
,2020年暨南大学设计了由双纳米硅盘单元构成的全介质惠更斯超表面设计,经过验证该设计同样可在无反射基础上实现360°的透射波的相位覆盖。此项工作证明了惠更斯超表面的设计可通过单一激发纯电或纯磁偶极子谐振实现,而不是必须同时激发两种不同类型的谐振,为惠更斯超表面设计提供了新方向。

图18     全介质惠更斯超表面相关研究
Fig.18     Rsearch on all-dielectric Huygens metasurfaces

相比于一般电磁增透超表面,惠更斯超表面可额外调节透射相位,这使得其在一些特殊领域得到了广泛应用,并且经过研究者的不懈努力,惠更斯超表面早期架构复杂的问题得到了解决。但此类设计仍存在一些问题,首先大部分设计仅仅只能在单一频率下工作,很难满足实际应用需求;其次惠更斯超表面的实现需要设计大量不同尺寸的结构单元并将其按照特定序列排布,整体设计过程比较复杂。

2.4     基于表面导抗张量设计电磁增透超表面

惠更斯超表面增透机理的本质是超表面对空间中电磁场分布的调节,但在场分布分析过程中介质基板被看作是界面(超表面)的一部分,基板内部的反射与透射未被考虑。这种分析方式对于厚度在亚波长以下的薄基板适用,但在很多应用场景中基板厚度等于甚至高于波长数量级,其内部的反射与透射对于空间中的场分布有很大贡献[  KATSIDIS C C, SIAPKAS D I. General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference[J]. Applied Optics, 2002, 41(19): 3978–3987.
 ZHAN T R, SHI X, DAI Y Y, et al. Transfer matrix method for optics in graphene layers[J]. Journal of Physics Condensed Matter, 2013, 25(21): 215301.
 SÁNCHEZ-SOTO L L, MONZÓN J J, BARRIUSO A G, et al. The transfer matrix: A geometrical perspective[J]. Physics Reports, 2012, 513(4): 191–227.
90-92
]
。因此,为在厚基板情况下正确分析空间中的电磁场分布,传输矩阵理论分析被提出,其具体内容如下:如图19所示,类似于多重干涉理论,现假设空间中有3层不同介质,其彼此间形成2个界面,电磁波从介质1入射,Ei+为介质i中正向和反向传播的切向电场;φ为介质2厚度引起的延迟相位。根据麦克斯韦方程组,此时介质i中的电场与磁场满足式(9),其中,Hi+为介质i中正向和反向传播的切向磁场;EiHi分别为介质i中的总切向电场与总切向磁场;n为90°旋转矩阵;ηi为介质i的本征波阻抗。假设在界面1加载超表面,则界面1上的表面电流密度Js和表面磁流密度Ms满足式(10),其中Eav=(E1+E2)/2和Hav=(H1+H2)/2分别为界面上的总平均电场与磁场。而YZχγ分别为超表面的电片导纳张量、磁片阻抗张量、电磁耦合张量和磁电耦合张量,其并称为超表面的表面导抗张量(Surface immidance tensor,SIT)[  HOLLOWAY C L, KUESTER E F, GORDON J A, et al. An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials[J]. IEEE Antennas and Propagation Magazine, 2012, 54(2): 10–35.
 KUESTER E F, MOHAMED M A, PIKET-MAY M, et al. Averaged transition conditions for electromagnetic fields at a metafilm[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(10): 2641–2651.
93-94
]
。SIT也代表了超表面的电磁特性,且主要由结构单元的辐射特性决定。根据对以上公式的推导,界面1两侧的切向电场关系可表示为式(11),其中Ms1为界面1(超表面)的M传输矩阵。由于延迟相位φ的存在,介质2的M传输矩阵Md2可表示为式(12),介质1和介质3中切向电场的关系最终表示为式(13),其中,Ms2为界面2的M传输矩阵[  KATSIDIS C C, SIAPKAS D I. General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference[J]. Applied Optics, 2002, 41(19): 3978–3987.
 ZHAN T R, SHI X, DAI Y Y, et al. Transfer matrix method for optics in graphene layers[J]. Journal of Physics Condensed Matter, 2013, 25(21): 215301.
 SÁNCHEZ-SOTO L L, MONZÓN J J, BARRIUSO A G, et al. The transfer matrix: A geometrical perspective[J]. Physics Reports, 2012, 513(4): 191–227.
 HOLLOWAY C L, KUESTER E F, GORDON J A, et al. An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials[J]. IEEE Antennas and Propagation Magazine, 2012, 54(2): 10–35.
 KUESTER E F, MOHAMED M A, PIKET-MAY M, et al. Averaged transition conditions for electromagnetic fields at a metafilm[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(10): 2641–2651.
90-94
]

图19     传输矩阵理论示意图
Fig.19     Schematic of transfer-matrix theory

从式(11)~(13)可以看出,与惠更斯超表面类似,理论上通过在界面加载具有合适SIT的超表面,可以在消除反射基础上将入射波转化为期望的透射波[  JIANG R Z, MA Q, LIANG J C, et al. A single-layered wideband and wide-angle transparent metasurface for enhancing the EM–wave transmissions through glass[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(8): 6593–6605.
 JIANG R Z, WU J W, MA Q, et al. Optically transparent metasurface with high RF transmittance and wide-angle stability for dual bands and dual polarizations[J]. Advanced Optical Materials, 2023, 11(19): 2300553.
 YANG F Y, RAEKER B O, NGUYEN D T, et al. Antireflection and wavefront manipulation with cascaded metasurfaces[J]. Physical Review Applied, 2020, 14(6): 064044.
95-97
]
。并且借助于表面导抗张量还可以直接表示入射场和透射场之间的关系,这使得传输矩阵理论在电磁增透超表面设计中得到了广泛的应用。

Hi+=1ηinEi+Hi=1ηinEiEi=Ei++EiHi=Hi++Hi=1ηin(Ei+Ei)
(9)

(JsMs)=(YχγZ)(EavHav)
(10)

(E1+E1)=Ms1(E2+E2)Ms1=(M11M12M21M22)=(Y2+χn2η1Iη1Y2χn2η1+Iη1γ2+Zn2η1nγ2Zn2η1n)
(11)

Md2=(ejφ0000ejφ0000ejφ0000ejφ)
(12)

(E1+E1)=Ms1Md2Ms2(E3+E3)
(13)

图20所示[  JIANG R Z, MA Q, LIANG J C, et al. A single-layered wideband and wide-angle transparent metasurface for enhancing the EM–wave transmissions through glass[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(8): 6593–6605.
95
]
,2023年东南大学Cui团队通过传输矩阵理论推导出了消除反射所需要的超表面电片导纳张量虚部Bp,并以此设计出了一种由金属网格组成的单层宽带宽角域电磁增透超表面。该设计可以在4~8 GHz频段内显著增强玻璃基板的电磁透射率,且增透性能对于电磁波的极化状态、极化角和入射角都具有很强的稳定性。如图21所示[  JIANG R Z, WU J W, MA Q, et al. Optically transparent metasurface with high RF transmittance and wide-angle stability for dual bands and dual polarizations[J]. Advanced Optical Materials, 2023, 11(19): 2300553.
96
]
,基于同样的分析方式,该团队同年又设计出了一种单层双频带宽角域电磁增透超表面,该超表面由具有双谐振特性的结构单元组成,可实现对玻璃基板的双频带(2.2~3.2 GHz和4.4~5.2 GHz)和宽角域(0°~80°)的双极化电磁增透,工作性能对于极化角有很好的稳定性,且其两个中心工作频率可通过改变结构尺寸参数独立调节。

图20     针对玻璃基板的单层宽带宽角域电磁增透超表面[  JIANG R Z, MA Q, LIANG J C, et al. A single-layered wideband and wide-angle transparent metasurface for enhancing the EM–wave transmissions through glass[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(8): 6593–6605.
95
]
Fig.20     A single layer wideband wide-angle EM AR metasurface for glass substrate[  JIANG R Z, MA Q, LIANG J C, et al. A single-layered wideband and wide-angle transparent metasurface for enhancing the EM–wave transmissions through glass[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(8): 6593–6605.
95
]
图21     针对玻璃基板的单层双频带宽角域电磁增透超表面[  JIANG R Z, WU J W, MA Q, et al. Optically transparent metasurface with high RF transmittance and wide-angle stability for dual bands and dual polarizations[J]. Advanced Optical Materials, 2023, 11(19): 2300553.
96
]
Fig.21     A single layer dual-band wide-angle EM AR metasurface for glass substrate[  JIANG R Z, WU J W, MA Q, et al. Optically transparent metasurface with high RF transmittance and wide-angle stability for dual bands and dual polarizations[J]. Advanced Optical Materials, 2023, 11(19): 2300553.
96
]

除此之外,基于传输矩阵理论设计的多层超表面可以在消除反射的基础上进一步调节透射相位。如图22所示[  YANG F Y, RAEKER B O, NGUYEN D T, et al. Antireflection and wavefront manipulation with cascaded metasurfaces[J]. Physical Review Applied, 2020, 14(6): 064044.
97
]
,2020年新加坡国立大学提出了一种亚波长多层级联超表面设计方案,由该方案设计出的多层级联超表面可在任意介质间同时实现无反射和透射相位调控。该方案首先基于传输矩阵理论推导出各层超表面所需要的电片导纳张量Yi,再以此设计出相应的交叉电容与“H”形结构单元。为验证该方案,该团队设计了一种多层级联超表面透镜,可将空气中垂直入射的2.4 GHz电磁波聚焦到水中[  YANG F Y, RAEKER B O, NGUYEN D T, et al. Antireflection and wavefront manipulation with cascaded metasurfaces[J]. Physical Review Applied, 2020, 14(6): 064044.
97
]

图22     多层亚波长级联超表面设计方案[  YANG F Y, RAEKER B O, NGUYEN D T, et al. Antireflection and wavefront manipulation with cascaded metasurfaces[J]. Physical Review Applied, 2020, 14(6): 064044.
97
]
Fig.22     Design scheme of multi-layer subwavelength cascaded metasurfaces[  YANG F Y, RAEKER B O, NGUYEN D T, et al. Antireflection and wavefront manipulation with cascaded metasurfaces[J]. Physical Review Applied, 2020, 14(6): 064044.
97
]

2.5     基于复合机理的电磁增透超表面

图1所示,目前使用较为广泛的保护性材料,如CMC材料等,普遍具有较大的介电常数,根据Snell定律这会使其与空气间存在明显阻抗失配。而在TE极化下,由于没有布儒斯特效应该现象更为严重,并且会随着角度增大而逐步加剧[  LI T F, MA J C, CHU Z T, et al. Anti-reflection metasurface synergizing plasma and lattice modes: An efficient route to wideband electromagnetic transparency under extreme angles[J]. Journal of Physics D Applied Physics, 2024, 57(12): 125501.
4
 BREWSTER D. IX. On the laws which regulate the polarisation of light by reflexion from transparent bodies[J]. Philosophical Transactions of the Royal Society of London, 1815, 105: 125–159.
 MAHLEIN H F. Generalized Brewster-angle conditions for quarter-wave multilayers at non-normal incidence[J]. JOSA, 1974, 64(5): 647–653.
 LAKHTAKIA A. Would Brewster recognize today’s Brewster angle?[J]. Optics News, 1989, 15(6): 14–18.
72-74
]
,最终造成在大角度下(≥60°)电磁波的透射率极低。因此,无论是传统电磁增透技术还是超表面电磁增透技术,由于增透机理单一普遍在大角度下有效带宽窄,甚至无法工作,但在一些特殊应用场景中,电磁波又往往以大角度入射。而如图23所示[  LI T F, MA J C, CHU Z T, et al. Anti-reflection metasurface synergizing plasma and lattice modes: An efficient route to wideband electromagnetic transparency under extreme angles[J]. Journal of Physics D Applied Physics, 2024, 57(12): 125501.
4
]
,在飞行器应用中雷达天线罩一般采用长细比较大的外形,以保证飞行器整体的气动性,其中天线阵列偏置于天线罩后方,使得电磁波往往以大角度通过天线罩,最终造成电磁透波率低。为解决这一问题,空军工程大学Wang团队通过复合多种增透机理拓展电磁增透超表面在大角度下的有效带宽,设计出了一系列可在大角度下工作的宽带电磁增透超表面,相关设计在此被统称为基于复合机理的电磁增透超表面。

图23     具有大长细比外形的雷达天线罩[  LI T F, MA J C, CHU Z T, et al. Anti-reflection metasurface synergizing plasma and lattice modes: An efficient route to wideband electromagnetic transparency under extreme angles[J]. Journal of Physics D Applied Physics, 2024, 57(12): 125501.
4
]
Fig.23     A radar radome with a large slenderness ratio[  LI T F, MA J C, CHU Z T, et al. Anti-reflection metasurface synergizing plasma and lattice modes: An efficient route to wideband electromagnetic transparency under extreme angles[J]. Journal of Physics D Applied Physics, 2024, 57(12): 125501.
4
]

由于大角度下的电磁透射率低的问题主要出现在TE极化,因此,该团队首先提出了一系列针对TE极化波的宽带电磁增透超表面设计[  LI T F, MA J C, CHU Z T, et al. Anti-reflection metasurface synergizing plasma and lattice modes: An efficient route to wideband electromagnetic transparency under extreme angles[J]. Journal of Physics D Applied Physics, 2024, 57(12): 125501.
4
 LI T F, CHU Z T, FU X M, et al. Transmission enhancement of a half-wave wall under extreme angles by synergy of double Lorentz resonances[J]. Optics Express, 2022, 30(8): 13745–13756.
 LI T F, CHU Z T, WANG J F, et al. Large-angle broadband transmission of electromagnetic waves through dielectric plates by embedding meta-atoms[J]. Optics Express, 2022, 30(15): 27497–27508.
 LI T F, CHU Z T, HAN Y J, et al. Dispersion-boosting wideband electromagnetic transparency under extreme angles for TE–polarized waves[J]. Optics Express, 2023, 31(23): 37882–37891.
98-100
]
。2023年,该团队通过类等离体效应对介质基板在TE极化下的色散特性进行调控,在增强阻抗匹配的同时改变了基板原有半波壁效应的频率,从而在Ku波段实现了TE极化下的大角度宽带电磁增透(图24[  LI T F, CHU Z T, HAN Y J, et al. Dispersion-boosting wideband electromagnetic transparency under extreme angles for TE–polarized waves[J]. Optics Express, 2023, 31(23): 37882–37891.
100
]
。同年,该团队发现通过设计结构单元的排列周期可激发超表面中的网格模式[  LI T F, MA J C, CHU Z T, et al. Anti-reflection metasurface synergizing plasma and lattice modes: An efficient route to wideband electromagnetic transparency under extreme angles[J]. Journal of Physics D Applied Physics, 2024, 57(12): 125501.
4
]
,在该模式下超表面与基板各自的散射在反射方向上产生破坏性干涉,透射能量因此得到增强。后续工作中,该团队在电磁增透超表面设计当中将网格模式与类等离体效应和半波壁效应复合,所设计出的电磁增透超表面可将CMC基板在80°下的TE极化有效透射波段(透射率≥80%)拓展至4.5 GHz(图25[  LI T F, MA J C, CHU Z T, et al. Anti-reflection metasurface synergizing plasma and lattice modes: An efficient route to wideband electromagnetic transparency under extreme angles[J]. Journal of Physics D Applied Physics, 2024, 57(12): 125501.
4
]

图24     基于色散调控的的宽带电磁增透超表面[  LI T F, CHU Z T, HAN Y J, et al. Dispersion-boosting wideband electromagnetic transparency under extreme angles for TE–polarized waves[J]. Optics Express, 2023, 31(23): 37882–37891.
100
]
Fig.24     Broadband EM AR metasurface based on dispersion-engineering[  LI T F, CHU Z T, HAN Y J, et al. Dispersion-boosting wideband electromagnetic transparency under extreme angles for TE–polarized waves[J]. Optics Express, 2023, 31(23): 37882–37891.
100
]
图25     网格模式机理示意图[  LI T F, MA J C, CHU Z T, et al. Anti-reflection metasurface synergizing plasma and lattice modes: An efficient route to wideband electromagnetic transparency under extreme angles[J]. Journal of Physics D Applied Physics, 2024, 57(12): 125501.
4
]
Fig.25     Schematic diagram of lattice mode’s mechanism[  LI T F, MA J C, CHU Z T, et al. Anti-reflection metasurface synergizing plasma and lattice modes: An efficient route to wideband electromagnetic transparency under extreme angles[J]. Journal of Physics D Applied Physics, 2024, 57(12): 125501.
4
]

为更好地满足实际应用需求,该团队还同样基于复合机理的思想设计了可同时在双极化下工作的大角度宽带电磁增透超表面[  CHU Z T, LI T F, WANG J F, et al. Tailoring permittivity using metasurface: A facile way of enhancing extreme-angle transmissions for both TE-and TM–polarizations[J]. Optics Express, 2022, 30(16): 29365–29379.
 CHU Z T, LI T F, WANG J F, et al. Ultrawide-angle broadband electromagnetic window for both TM-and TE–polarizations by synergy of multimechanism resonances[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 71(9): 3701–3711.
 CHU Z T, LI T F, WANG J F, et al. Polarization-multiplexed full-space metasurface simultaneously merging with an ultrawide-angle antireflection and a large-angle retroreflection[J]. Optics Express, 2022, 30(25): 45776–45791.
 CHU Z T, LI T F, WANG J F, et al. Extremely angle-stable transparent window for TE-polarized waves empowered by anisotropic metasurfaces[J]. Optics Express, 2022, 30(11): 19999.
101-104
]
。如图26所示,2020年,该团队提出一种在TE和TM极化下分别基于类等离体效应和广义布儒斯特效应实现透射增强的宽带电磁增透超表面[  CHU Z T, LI T F, WANG J F, et al. Tailoring permittivity using metasurface: A facile way of enhancing extreme-angle transmissions for both TE-and TM–polarizations[J]. Optics Express, 2022, 30(16): 29365–29379.
101
]
,其有效工作角域可覆盖75°~85°,有效工作带宽可覆盖整个X波段。2023年,该团队再次提出一种基于多机理的宽带宽角域双极化电磁增透超表面,进一步拓展了此类设计的有效工作带宽[  CHU Z T, LI T F, WANG J F, et al. Ultrawide-angle broadband electromagnetic window for both TM-and TE–polarizations by synergy of multimechanism resonances[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 71(9): 3701–3711.
102
]
。如图27所示[  CHU Z T, LI T F, WANG J F, et al. Ultrawide-angle broadband electromagnetic window for both TM-and TE–polarizations by synergy of multimechanism resonances[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 71(9): 3701–3711.
102
]
,该设计同时复合了等离子体振荡、洛伦兹谐振、Fano谐振和半波壁效应4种不同机理,有效工作角域可覆盖0°~80°,有效工作带宽可覆盖整个X波段和Ku波段。

图26     基于类等离体效应和广义布儒斯特效应的宽带电磁增透超表面[  CHU Z T, LI T F, WANG J F, et al. Tailoring permittivity using metasurface: A facile way of enhancing extreme-angle transmissions for both TE-and TM–polarizations[J]. Optics Express, 2022, 30(16): 29365–29379.
101
]
Fig.26     Broadband EM AR metasurface based on plasma-like effect and generalized Brewster effect[  CHU Z T, LI T F, WANG J F, et al. Tailoring permittivity using metasurface: A facile way of enhancing extreme-angle transmissions for both TE-and TM–polarizations[J]. Optics Express, 2022, 30(16): 29365–29379.
101
]
图27     基于多机理的宽带宽角域双极化电磁增透超表面[  CHU Z T, LI T F, WANG J F, et al. Ultrawide-angle broadband electromagnetic window for both TM-and TE–polarizations by synergy of multimechanism resonances[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 71(9): 3701–3711.
102
]
Fig.27     Wide-band, wide-angle and dual-polarization EM AR metasurface based on multi-mechanism[  CHU Z T, LI T F, WANG J F, et al. Ultrawide-angle broadband electromagnetic window for both TM-and TE–polarizations by synergy of multimechanism resonances[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 71(9): 3701–3711.
102
]

基于复合机理的电磁增透超表面突破了目前大部分电磁增透技术在大角度下有效带宽窄的短板,不仅拓宽了超表面在电磁增透领域的应用前景,也为电磁增透超表面设计提供了新的思想。而此类设计目前也存在一些重要短板:(1)部分设计为追求在大角度下的增透性能,牺牲了其在小角度下的透射率;(2)网格模式和Fano谐振等机理对于加工误差过于敏感,不利于实际应用;(3)此类设计针对的应用场景主要为雷达天线罩等,但是目前还没有设计考虑透射波在不同极化下的插入相移问题;(4)为拓展工作带宽,此类设计普遍采用夹层加载超表面的架构,对于加工工艺有一定的要求。

3     结论

天线罩和电磁窗作为典型的结构–功能一体化器件,在保护射频系统内部结构不受外界环境侵害的同时还需要有良好的透波性能,以保证射频系统正常工作。但具有保护性能的材料一般具有较大的介电常数,易造成透波性能下降和插入相移增大等问题。因此,电磁增透技术一直是电磁增透领域的重要研究课题,并且随着技术水平的发展传统电磁增透技术越来越难以满足实际应用的需要,在这样的背景下具有二维几何属性和独特电磁属性的超表面在电磁增透技术领域得到了广泛研究。本文首先扼要回顾了典型的传统电磁增透技术,后重点介绍了超表面电磁增透机理、设计思想和具体设计架构,并且分析了各类电磁增透超表面的特点。从前中可以看出,与传统电磁增透技术相比,电磁增透超表面已经在工作性能、工艺要求和架构外形等方面展现出了巨大优势,但根据目前研究现状与实际应用需要,电磁增透超表面还需要解决4项问题。

(1)圆极化设计。根据当前的研究进展可以发现,目前的超表面电磁增透技术大多仅针对线极化波,还未发现有针对圆极化波的电磁增透超表面设计,这可能跟结构单元在圆极化入射下的电磁响应不易于分析有关。但是圆极化波目前在雷达和通信等领域都有较大的应用潜力,因此探索针对圆极化波的设计对超表面电磁增透技术的进一步十分重要。

(2)插入相移一致性。由于电磁增透超表面的主要作用是增强电磁透射率,因此大部分设计的技术指标都只局限于透射幅值。然而在很多应用场景中,透射波在两种极化下的插入相移一致性也十分重要。以雷达天线罩为例,若罩体在TE和TM极化下的插入相移过大,内部天线系统的辐射波瓣在通过后会严重变形,最终导致瞄准误差等性能的降低,类似问题在探测和通信等其他领域也普遍存在。因此,额外关注插入相移一致性,对超表面电磁增透技术有极大的实际应用价值。

(3)共形性。目前大部分超表面电磁增透技术的设计与验证都是基于平板基板,但是电磁增透超表面在实际应用时需要加载于具有特定外形的保护外壳上,且部分外壳的外形较为复杂,如雷达天线罩等。因此,超表面在与外壳共形之后且结构单元的周期与尺寸必然会改变,工作性能极有可能受到影响,这是在电磁增透超表面在实际应用中所必须考虑的问题。

(4)材料加工制造工艺兼容性。电磁增透超表面在实际应用时必须通过特殊技术工艺与保护性材料结合,但目前来看在工艺上超表面并不是与所有材料都有较好的兼容性。比如,对于CMC材料,超表面大多通过丝网印刷技术加载,但在该工艺下结构单元的几何参数极容易出现误差。并且由于CMC材料自身的结构特性,很难将超表面加载于其内部。因此提升超表面与当今复合材料在工艺上的兼容性,对超表面电磁增透技术实际应用的拓展十分重要。

简而言之,无论是理论方法还是实际应用方面,超表面都已在电磁增透技术领域做出了卓越的贡献,并且已经成为电磁增透的重要技术手段。但为在未来得到更加广泛的实际应用,超表面电磁增透技术还需要得到研究者们更深的探索。

作者介绍



李铁夫 博士研究生,研究方向为电磁增透超表面。

参考文献

[1]

Chawla K K. Ceramic matrix composites[M]. New York : Springer, 1987.

[2]

SCHMIDT S, BEYER S, KNABE H, et al. Advanced ceramic matrix composite materials for current and future propulsion technology applications[J]. Acta Astronautica, 2004, 55(3–9): 409420.

[3]

CURTIN W A. Theory of mechanical properties of ceramic-matrix composites[J]. Journal of the American Ceramic Society, 1991, 74(11): 28372845.

[4]

LI T F, MA J C, CHU Z T, et al. Anti-reflection metasurface synergizing plasma and lattice modes: An efficient route to wideband electromagnetic transparency under extreme angles[J]. Journal of Physics D Applied Physics, 2024, 57(12): 125501.

[5]

PROFESSOR RAYLEIGH F R S. On reflection of vibrations at the confines of two media between which the transition is gradual[J]. Proceedings of the London Mathematical Society, 1879, s1–11(1): 5156.

[6]

TOWNSEND R J, HILL M, HARRIS N R, et al. Performance of a quarter-wavelength particle concentrator[J]. Ultrasonics, 2008, 48(6–7): 515520.

[7]

WITHAYACHUMNANKUL W, FISCHER B M, ABBOTT D. Quarter-wavelength multilayer interference filter for terahertz waves[J]. Optics Communications, 2008, 281(9): 23742379.

[8]

FAN P X, BAI B F, LONG J Y, et al. Broadband high-performance infrared antireflection nanowires facilely grown on ultrafast laser structured Cu surface[J]. Nano Letters, 2015, 15(9): 59885994.

[9]

HU L, CHEN G. Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications[J]. Nano Letters, 2007, 7(11): 32493252.

[10]

LOHMÜLLER T, HELGERT M, SUNDERMANN M, et al. Biomimetic interfaces for high-performance optics in the deep–UV light range[J]. Nano Letters, 2008, 8(5): 14291433.

[11]

MUSKENS O L, RIVAS J G, ALGRA R E, et al. Design of light scattering in nanowire materials for photovoltaic applications[J]. Nano Letters, 2008, 8(9): 26382642.

[12]

YU N F, CAPASSO F. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13(2): 139150.

[13]

MA X L, PU M B, LI X, et al. All-metallic wide-angle metasurfaces for multifunctional polarization manipulation[J]. Opto–Electronic Advances, 2019, 2(3): 1800230118002306.

[14]

YU N F, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333337.

[15]

CHEN H T, ZHOU J F, O’HARA J F, et al. A numerical investigation of metamaterial antireflection coatings[J]. Terahertz Science and Technology , 2010, 3(2): 66-73.

[16]

ZHANG B Y, HENDRICKSON J, NADER N, et al. Metasurface optical antireflection coating[J]. Applied Physics Letters, 2014, 105(24): 241113.

[17]

HUANG L, CHANG C C, ZENG B B, et al. Bilayer metasurfaces for dual- and broadband optical antireflection[J]. ACS Photonics, 2017, 4(9): 21112116.

[18]

LI X J, ZHENG W A, ZHANG W H, et al. Broadband bilayer antireflective coating with metasurfaces and Chebyshev transformer[J]. Physical Review Applied, 2022, 18(5): 054057.

[19]

LUO J, CHU H C, PENG R W, et al. Ultra-broadband reflectionless Brewster absorber protected by reciprocity[J]. Light, Science & Applications, 2021, 10(1): 89.

[20]

FAN H Y, LI J, LAI Y, et al. Optical Brewster metasurfaces exhibiting ultrabroadband reflectionless absorption and extreme angular asymmetry[J]. Physical Review Applied, 2021, 16(4): 044064.

[21]

LAVIGNE G, CALOZ C. Generalized Brewster effect using bianisotropic metasurfaces[J]. Optics Express, 2021, 29(7): 1136111370.

[22]

GRADY N K, HEYES J E, CHOWDHURY D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138): 13041307.

[23]

PFEIFFER C, EMANI N K, SHALTOUT A M, et al. Efficient light bending with isotropic metamaterial Huygens’ surfaces[J]. Nano Letters, 2014, 14(5): 24912497.

[24]

DERAFSHI I, KOMJANI N. A new high aperture efficiency transmitarray antenna based on Huygens metasurfaces[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(7): 54585467.

[25]

HASSANFIROOZI A, CHENG Y C, HUANG S H, et al. Toroidal-assisted generalized Huygens’ sources for highly transmissive plasmonic metasurfaces[J]. Laser & Photonics Reviews, 2022, 16(6): 2100525.

[26]

BORN M, WOLF E. Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light[M]. Amsterdam: Elsevier, 1999.

[27]

SHI Y, ZHANG C, ZHANG H, et al. Low (Sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape[J]. Science, 2000, 288(5463): 119122.

[28]

CAI Z W, HE X D, SUN J, et al. Deep learning with low precision by half-wave Gaussian quantization[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 54065414.

[29]

CRISTAL E G, FRANKEL S. Hairpin-line and hybrid hairpin-line/half-wave parallel-coupled-line filters[J]. IEEE Transactions on Microwave Theory and Techniques, 1972, 20(11): 719728.

[30]

DING F, WANG Z X, HE S L, et al. Broadband high-efficiency half-wave plate: A supercell-based plasmonic metasurface approach[J]. ACS Nano, 2015, 9(4): 41114119.

[31]

STETTER F, ESSELBORN R, HARDER N, et al. New materials for optical thin films[J]. Applied Optics, 1976, 15(10): 23152317.

[32]

WALHEIM S, SCHAFFER E, MLYNEK J, et al. Nanophase-separated polymer films as high-performance antireflection coatings[J]. Science, 1999, 283(5401): 520522.

[33]

KWAN A, DUDLEY J, LANTZ E. Who really discovered Snell’s law?[J]. Physics World, 2002, 15(4): 64.

[34]

SHIRLEY J W. An early experimental determination of Snell’s law[J]. American Journal of Physics, 1951, 19(9): 507508.

[35]

SOUTHWELL W H. Gradient-index antireflection coatings[J]. Optics Letters, 1983, 8(11): 584586.

[36]

XI J Q, SCHUBERT M F, KIM J K, et al. Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection[J]. Nature Photonics, 2007, 1: 176179.

[37]

SELJ J H, MONGSTAD T T, SØNDENÅ R, et al. Reduction of optical losses in colored solar cells with multilayer antireflection coatings[J]. Solar Energy Materials and Solar Cells, 2011, 95(9): 25762582.

[38]

CHHAJED S, SCHUBERT M F, KIM J K, et al. Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics[J]. Applied Physics Letters, 2008, 93(25): 251108.

[39]

PARK M S, LEE Y, KIM J K. One-step preparation of antireflection film by spin-coating of polymer/solvent/nonsolvent ternary system[J]. Chemistry of Materials, 2005, 17(15): 39443950.

[40]

EGERTON A. Lord Rayleigh, 1875—1947[J]. Royal Society, 1987, 6(18):502-538.

[41]

WOLF E. Progress in Optics:Vol.5 [M]. North-Holland: Elsevier,1966.

[42]

BERNHARD C G, GEMNE G, SÄLLSTRÖM J. Comparative ultrastructure of corneal surface topography in insects with aspects on phylogenesis and function[J]. Zeitschrift Für Vergleichende Physiologie, 1970, 67(1): 125.

[43]

HAN G, NGUYEN T B, PARK S, et al. Moth-eye mimicking solid slippery glass surface with icephobicity, transparency, and self-healing[J]. ACS Nano, 2020, 14(8): 1019810209.

[44]

JU S, CHOI J Y, CHAE D, et al. Fabrication of high-transmittance and low-reflectance meter-scale moth-eye film via roll-to-roll printing[J]. Nanotechnology, 2020, 31(50): 505301.

[45]

SAI H, FUJII H, ARAFUNE K, et al. Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks[J]. Applied Physics Letters, 2006, 88(20): 201116.

[46]

SOUTHWELL W H. Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces[J]. Journal of the Optical Society of America A, 1991, 8(3): 549553.

[47]

KANAMORI Y, ROY E, CHEN Y. Antireflection sub-wavelength gratings fabricated by spin-coating replication[J]. Microelectronic Engineering, 2005, 78: 287293.

[48]

JEON B J, KIM S J. Metasurface modeled as Chebyshev impedance transformer for super-broadband anti-reflection of visible and near infrared light[J]. IEEE Photonics Journal, 2021, 13(3): 2200310.

[49]

GHIASVAND F, HEIDAR H, KAZEROONI M, et al. A frequency-independent inhomogeneous planar radome with high angular stability based on permittivity manipulating[J]. AEU–International Journal of Electronics and Communications, 2022, 151: 154214.

[50]

MEINZER N, BARNES W L, HOOPER I R. Plasmonic meta-atoms and metasurfaces[J]. Nature Photonics, 2014, 8: 889898.

[51]

PFEIFFER C, ZHANG C, RAY V, et al. High performance bianisotropic metasurfaces: Asymmetric transmission of light[J]. Physical Review Letters, 2014, 113(2): 023902.

[52]

FAN R H, ZHOU Y, REN X P, et al. Freely tunable broadband polarization rotator for terahertz waves[J]. Advanced Materials, 2015, 27(7): 12011206.

[53]

PFEIFFER C, GRBIC A. Millimeter-wave transmitarrays for wavefront and polarization control[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(12): 44074417.

[54]

ZHU R C, WANG J F, QIU T S, et al. Remotely mind-controlled metasurface via brainwaves[J]. eLight, 2022, 2(1): 10.

[55]

NI X J, EMANI N K, KILDISHEV A V, et al. Broadband light bending with plasmonic nanoantennas[J]. Science, 2012, 335(6067): 427.

[56]

SUN S L, HE Q, XIAO S Y, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11(5): 426431.

[57]

KILDISHEV A V, BOLTASSEVA A, SHALAEV V M. Planar photonics with metasurfaces[J]. Science, 2013, 339(6125): 1232009.

[58]

CHEN H T, ZHOU J F, O’HARA J F, et al. Antireflection coating using metamaterials and identification of its mechanism[J]. Physical Review Letters, 2010, 105(7): 073901.

[59]

HAO T, ZHENG W A, WANG W Q, et al. Electrically thin metasurface for broadband transmission enhancement by manipulating the amplitude and phase of the reflection coefficients[J]. Journal of Applied Physics, 2019, 126(2): 025303.

[60]

HAO T, ZHENG W A, HE W C, et al. Air-ground impedance matching by depositing metasurfaces for enhanced GPR detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6): 40614075.

[61]

HE Y C, ELEFTHERIADES G V. Anisotropic metamaterial as an antireflection layer at extreme angles[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(8): 41024114.

[62]

HE Y C, ELEFTHERIADES G V. Magnetoelectric uniaxial metamaterials as wide-angle polarization-insensitive matching layers[J]. Physical review, B. Covering condensed matter and materials physics, 2018, 98(20): 205404.

[63]

SCHELKUNOFF S A. Some equivalence theorems of electromagnetics and their application to radiation problems[J]. Bell System Technical Journal, 1936, 15(1): 92112.

[64]

HOLLOWAY C L, MOHAMED M A, KUESTER E F, et al. Reflection and transmission properties of a metafilm: With an application to a controllable surface composed of resonant particles[J]. IEEE Transactions on Electromagnetic Compatibility, 2005, 47(4): 853865.

[65]

SELVANAYAGAM M, ELEFTHERIADES G V. Discontinuous electromagnetic fields using orthogonal electric and magnetic currents for wavefront manipulation[J]. Optics Express, 2013, 21(12): 1440914429.

[66]

XIAO X F, TURINO M, BECERRIL-CASTRO I B, et al. Extraordinarily transparent metaldielectrics for infrared and terahertz applications[J]. Advanced Photonics Research, 2022, 3(10): 2200190.

[67]

DU C, ZHOU D, GUO H H, et al. An ultra-broadband terahertz metamaterial coherent absorber using multilayer electric ring resonator structures based on anti-reflection coating[J]. Nanoscale, 2020, 12(17): 97699775.

[68]

PENDRY J B, HOLDEN A J, STEWART W J, et al. Extremely low frequency plasmons in metallic mesostructures[J]. Physical Review Letters, 1996, 76(25): 47734776.

[69]

LI Y Z, ZHENG L, WANG J F, et al. Wide-angle transmission enhancement of metamaterial-doped fiber-reinforced polymers[J]. IEEE Access, 2019, 7: 7604276048.

[70]

HE Y C, ELEFTHERIADES G V. A thin double-mesh metamaterial radome for wide-angle and broadband applications at millimeter-wave frequencies[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 21762185.

[71]

JIN C, LV Q H, ZHANG B C, et al. Ultra-wide-angle bandpass frequency selective surface[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(9): 56735681.

[72]

BREWSTER D. IX. On the laws which regulate the polarisation of light by reflexion from transparent bodies[J]. Philosophical Transactions of the Royal Society of London, 1815, 105: 125159.

[73]

MAHLEIN H F. Generalized Brewster-angle conditions for quarter-wave multilayers at non-normal incidence[J]. JOSA, 1974, 64(5): 647653.

[74]

LAKHTAKIA A. Would Brewster recognize today’s Brewster angle?[J]. Optics News, 1989, 15(6): 1418.

[75]

HUANG H, SHEN Z X. Brewster lens with perfect wave refraction[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(8): 62046213.

[76]

LV Q H, JIN C, ZHANG B C, et al. Ultrawide-angle ultralow-reflection phenomenon for transverse electric mode in anisotropic metasurface[J]. Advanced Optical Materials, 2022, 10(12): 2102400.

[77]

WANG C, ZHU Z B, CUI W Z, et al. All-angle Brewster effect observed on a terahertz metasurface[J]. Applied Physics Letters, 2019, 114(19): 191902.

[78]

PANIAGUA-DOMÍNGUEZ R, YU Y F, MIROSHNICHENKO A E, et al. Generalized Brewster effect in dielectric metasurfaces[J]. Nature Communications, 2016, 7: 10362.

[79]

ZHANG Z, CHE Z Y, LIANG X Y, et al. Realizing generalized Brewster effect by generalized kerker effect[J]. Physical Review Applied, 2021, 16(5): 054017.

[80]

ALBURY W R. Halley and the traité de la lumière of Huygens: New light on Halley’s relationship with Newton[J]. Isis, 1971, 62(4): 445468.

[81]

MACDONALD H M I. The integration of the equations of propagation of electric waves[J]. Philosophical Transactions of the Royal Society of London, Series A, 1901, 197(287–299): 145.

[82]

SCHELKUNOFF S A. On diffraction and radiation of electromagnetic waves[J]. Physical Review, 1939, 56(4): 308316.

[83]

JIN P, ZIOLKOWSKI R W. Metamaterial-inspired, electrically small Huygens sources[J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9: 501505.

[84]

PFEIFFER C, GRBIC A. Metamaterial Huygens’ surfaces: Tailoring wave fronts with reflectionless sheets[J]. Physical Review Letters, 2013, 110(19): 197401.

[85]

WONG J P S, SELVANAYAGAM M, ELEFTHERIADES G V. Design of unit cells and demonstration of methods for synthesizing Huygens metasurfaces[J]. Photonics and Nanostructures–Fundamentals and Applications, 2014, 12(4): 360375.

[86]

LIAN J W, BAN Y L, GUO Y J. Wideband dual-layer Huygens’ metasurface for high-gain multibeam array antennas[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(11): 75217531.

[87]

CHONG K E, WANG L, STAUDE I, et al. Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms[J]. ACS Photonics, 2016, 3(4): 514519.

[88]

DECKER M, STAUDE I, FALKNER M, et al. High-efficiency dielectric Huygens’ surfaces[J]. Adv Opt Mater, 2015, 3(6): 813820.

[89]

FENG T H, POTAPOV A A, LIANG Z X, et al. Huygens metasurfaces based on congener dipole excitations[J]. Physical Review Applied, 2020, 13(2): 021002.

[90]

KATSIDIS C C, SIAPKAS D I. General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference[J]. Applied Optics, 2002, 41(19): 39783987.

[91]

ZHAN T R, SHI X, DAI Y Y, et al. Transfer matrix method for optics in graphene layers[J]. Journal of Physics Condensed Matter, 2013, 25(21): 215301.

[92]

SÁNCHEZ-SOTO L L, MONZÓN J J, BARRIUSO A G, et al. The transfer matrix: A geometrical perspective[J]. Physics Reports, 2012, 513(4): 191227.

[93]

HOLLOWAY C L, KUESTER E F, GORDON J A, et al. An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials[J]. IEEE Antennas and Propagation Magazine, 2012, 54(2): 1035.

[94]

KUESTER E F, MOHAMED M A, PIKET-MAY M, et al. Averaged transition conditions for electromagnetic fields at a metafilm[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(10): 26412651.

[95]

JIANG R Z, MA Q, LIANG J C, et al. A single-layered wideband and wide-angle transparent metasurface for enhancing the EM–wave transmissions through glass[J]. IEEE Transactions on Antennas and Propagation, 2023, 71(8): 65936605.

[96]

JIANG R Z, WU J W, MA Q, et al. Optically transparent metasurface with high RF transmittance and wide-angle stability for dual bands and dual polarizations[J]. Advanced Optical Materials, 2023, 11(19): 2300553.

[97]

YANG F Y, RAEKER B O, NGUYEN D T, et al. Antireflection and wavefront manipulation with cascaded metasurfaces[J]. Physical Review Applied, 2020, 14(6): 064044.

[98]

LI T F, CHU Z T, FU X M, et al. Transmission enhancement of a half-wave wall under extreme angles by synergy of double Lorentz resonances[J]. Optics Express, 2022, 30(8): 1374513756.

[99]

LI T F, CHU Z T, WANG J F, et al. Large-angle broadband transmission of electromagnetic waves through dielectric plates by embedding meta-atoms[J]. Optics Express, 2022, 30(15): 2749727508.

[100]

LI T F, CHU Z T, HAN Y J, et al. Dispersion-boosting wideband electromagnetic transparency under extreme angles for TE–polarized waves[J]. Optics Express, 2023, 31(23): 3788237891.

[101]

CHU Z T, LI T F, WANG J F, et al. Tailoring permittivity using metasurface: A facile way of enhancing extreme-angle transmissions for both TE-and TM–polarizations[J]. Optics Express, 2022, 30(16): 2936529379.

[102]

CHU Z T, LI T F, WANG J F, et al. Ultrawide-angle broadband electromagnetic window for both TM-and TE–polarizations by synergy of multimechanism resonances[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 71(9): 37013711.

[103]

CHU Z T, LI T F, WANG J F, et al. Polarization-multiplexed full-space metasurface simultaneously merging with an ultrawide-angle antireflection and a large-angle retroreflection[J]. Optics Express, 2022, 30(25): 4577645791.

[104]

CHU Z T, LI T F, WANG J F, et al. Extremely angle-stable transparent window for TE-polarized waves empowered by anisotropic metasurfaces[J]. Optics Express, 2022, 30(11): 19999.

目录