面向多功能工程应用的力学功能超材料的研究进展

中图分类号:

V250.2TB3

文献标识码:

A

通信作者

焦鹏程,研究员,博士,研究方向为力学功能超材料、监测感知与能量采集、软体机器人。

编辑

责编 :晓月

引文格式

毛振军, 许海波, 滕园, 等. 面向多功能工程应用的力学功能超材料的研究进展[J]. 航空制造技术, 2025, 68(15): 47–62.

Research Progress of Mechanically Functional Metamaterials Towards Multifunctional Engineering Applications

Citations

MAO Zhenjun, XU Haibo, TENG Yuan, et al. Research progress of mechanically functional metamaterials towards multifunctional engineering applications[J]. Aeronautical Manufacturing Technology, 2025, 68(15): 47–62.

航空制造技术    第68卷    第15期    47-62
Aeronautical Manufacturing Techinology    Vol.68    No.15 : 47-62
DOI: 10.16080/j.issn1671-833x.2025.15.047
论坛 >> 超材料(FORUM >> Metamaterials)

面向多功能工程应用的力学功能超材料的研究进展

  • 毛振军 1
  • 许海波 1
  • 滕园 1
  • 陈远杭 1
  • 王佳骏 2
  • 闵业恒 2
  • 焦鹏程 2
1.中国电建集团华东勘测设计研究院有限公司杭州 310000
2.浙江大学舟山 316021

通信作者

焦鹏程,研究员,博士,研究方向为力学功能超材料、监测感知与能量采集、软体机器人。

中图分类号:

V250.2TB3

文献标识码:

A

引文格式

毛振军, 许海波, 滕园, 等. 面向多功能工程应用的力学功能超材料的研究进展[J]. 航空制造技术, 2025, 68(15): 47–62.

摘要

力学超材料是一类人造结构化材料,其本质是以人工微结构为单元构造的复合结构,旨在通过设计人工微结构单元的形状、尺寸和周期性排列模式增强宏观整体结构的力学性能,实现负泊松比、多稳态、轻质高强、可编程/重编程等超常力学性能。然而,通过常规材料制备的力学超材料难以满足不同工程应用场景对功能器件的多环境场自适应性、迅速可控环境响应和能量转化等性能要求。结合力学超材料和先进功能材料构筑的力学功能超材料从材料角度拓展了力学超材料的性能,可以实现可调控的力电、力磁、力热等耦合响应,有望实现力学超材料的多功能工程应用。本文从超常力学性能和典型分类方面阐述了力学超材料的研究进展,从构筑方法和耦合响应方面详细介绍了力电、力磁和力热超材料3类代表性力学功能超材料,总结与展望了力学功能超材料在航空航天和海洋工程领域的潜在工程应用,包括自折展卫星太阳翼、微型航天器自供能、卫星平台隔振、海洋工程与装备监测感知和海洋波浪能采集等。

关键词

力学功能超材料;力学超材料;功能材料;航空航天;海洋工程;

Research Progress of Mechanically Functional Metamaterials Towards Multifunctional Engineering Applications

  • MAO Zhenjun 1
  • XU Haibo 1
  • TENG Yuan 1
  • CHEN Yuanhang 1
  • WANG Jiajun 2
  • MIN Yeheng 2
  • JIAO Pengcheng 2
1.PowerChina Huadong Engineering Corporation Limited, Hangzhou 310000, China
2.Zhejiang University, Zhoushan 316021, China

Citations

MAO Zhenjun, XU Haibo, TENG Yuan, et al. Research progress of mechanically functional metamaterials towards multifunctional engineering applications[J]. Aeronautical Manufacturing Technology, 2025, 68(15): 47–62.

Abstract

Mechanical metamaterials are a category of artificial structural materials and essentially composite structures constructed with artificial microstructure units, which aim to enhance mechanical properties of macroscopic overall structure by designing the shape, size and periodic arrangement mode of artificial microstructure units, and to achieve extraordinary mechanical properties such as negative Poisson’s ratio, multi-stability, lightweight and high strength, and programmability/reprogrammability. However, mechanical metamaterials fabricated by conventional materials are difficult to meet the performance requirements of multi-environmental field adaptability, rapid and controllable environmental response, and energy conversion for functional devices in different engineering application scenarios. Mechanically functional metamaterials constructed by combining mechanical metamaterials with advanced functional materials expand the performance of mechanical metamaterials from the material perspective, and can achieve tunable electro-mechanical, magneto-mechanical and thermo-mechanical coupling responses, which are expected to realize the multifunctional engineering applications of mechanical metamaterials. This review describes the extraordinary mechanical properties and typical classifications of mechanical metamaterials, detailly introduce the construction methods and coupling responses of three representative mechanically functional metamaterials, namely electro-mechanical, magneto-mechanical and thermo-mechanical metamaterials, and summarizes and prospects the potential engineering applications of mechanically functional metamaterials in the fields of aerospace and marine engineering, including self-folding satellite solar wings, micro-spacecraft self-powered, satellite platform vibration isolation, marine engineering and equipment monitoring and sensing, and marine wave energy harvesting.

Keywords

Mechanically functional metamaterials; Mechanical metamaterials; Functional materials; Aerospace; Marine engineering;



超材料是一类人造结构化材料,由人工微结构单元在二维或三维空间中周期性拓展形成。通过设计人工微结构单元的形状、尺寸和周期性排列模式,可以获得天然材料前所未有、难以实现的特性、功能和应用[  LIU Y M, ZHANG X. Metamaterials: A new frontier of science and technology[J]. Chemical Society Reviews, 2011, 40(5): 2494–2507.
 KADIC M, MILTON G W, VAN HECKE M, et al. 3D metamaterials[J]. Nature Reviews Physics, 2019, 1(3): 198–210.
 JIAO P C, ALAVI A H. Artificial intelligence-enabled smart mechanical metamaterials: Advent and future trends[J]. International Materials Reviews, 2021, 66(6): 365–393.
1-3
]
。按照功能需求划分,超材料分为电磁超材料、光学超材料、热学超材料、声学超材料和力学超材料[  SINHA P, MUKHOPADHYAY T. Programmable multi-physical mechanics of mechanical metamaterials[J]. Materials Science and Engineering: R: Reports, 2023, 155: 100745.
4
]
。其中,电磁超材料在外部磁场和电场中表现出负介电常数、负磁导率等不寻常的电磁响应[  郭阳, 杜硕, 胡莎, 等. 电磁超材料研究进展及应用现状[J]. 真空科学与技术学报, 2022, 42(9): 641–653.GUO Yang, DU Shuo, HU Sha, et al. Research progress and application status of electromagnetic metamaterials[J]. Chinese Journal of Vacuum Science and Technology, 2022, 42(9): 641–653.
5
]
。光学超材料通常具有负折射、双曲色散、超分辨率成像等独特光学功能[  曹暾, 刘宽, 李阳, 等. 可调谐光学超构材料及其应用[J]. 中国光学, 2021, 14(4): 968–985.CAO Tun, LIU Kuan, LI Yang, et al. Tunable optical metamaterials and their applications[J]. Chinese Optics, 2021, 14(4): 968–985.
6
]
。热学超材料致力于凭借非凡的导热性和辐射系数操纵热传导和热辐射[  LI Y, LI W, HAN T C, et al. Transforming heat transfer with thermal metamaterials and devices[J]. Nature Reviews Materials, 2021, 6: 488–507.
7
]
。声学超材料追求在亚波长尺度调控声场传播,通常呈现出负质量密度和负体积模量[  LIAO G X, LUAN C C, WANG Z W, et al. Acoustic metamaterials: A review of theories, structures, fabrication approaches, and applications[J]. Advanced Materials Technologies, 2021, 6(5): 2000787.
8
]
。力学超材料概念于2012年首次提出,旨在突破材料和结构力学性能的极限,获得负泊松比、多稳态、轻质高强、可编程/重编程等超常力学响应[  YU X L, ZHOU J, LIANG H Y, et al. Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review[J]. Progress in Materials Science, 2018, 94: 114–173.
 尹剑飞, 蔡力, 方鑫, 等. 力学超材料研究进展与减振降噪应用[J]. 力学进展, 2022, 52(3): 508–586.YIN Jianfei, CAI Li, FANG Xin, et al. Review on research progress of mechanical metamaterials and their applications in vibration and noise control[J]. Advances in Mechanics, 2022, 52(3): 508–586.
9-10
]
。现阶段,研究者们主要关注力学超材料的制备工艺、结构设计与优化及力学性能分析,缺乏从材料角度增强力学超材料性能的相关研究。

先进功能材料可定义为具有一种或多种电、磁、光、热、形状记忆等功能的特种材料。上述功能可以通过电场、磁场、光、温度、生化等特定外部激励激发和调控。功能材料几乎在所有材料(金属、陶瓷、聚合物等)中存在,近年来广泛应用在科学技术、工农业等领域中[  张金升, 许凤秀, 王英姿, 等. 功能材料综述[J]. 现代技术陶瓷, 2003, 24(3): 40–44.ZHANG Jinsheng, XU Fengxiu, WANG Yingzi, et al. General survey of functional materials[J]. Advanced Ceramics, 2003, 24(3): 40–44.
11
]
。典型的功能材料有摩擦电材料[  YU A F, ZHU Y X, WANG W, et al. Progress in triboelectric materials: Toward high performance and widespread applications[J]. Advanced Functional Materials, 2019, 29(41): 1900098.
12
]
、压电材料[  LI S Q, TANG X Y, GUO W W, et al. Numerical simulations of piezoelectricity and triboelectricity: From materials, structures to devices[J]. Applied Materials Today, 2024, 37: 102092.
13
]
、磁流变材料[  UBAIDILLAH, SUTRISNO J, PURWANTO A, et al. Recent progress on magnetorheological solids: Materials, fabrication, testing, and applications[J]. Advanced Engineering Materials, 2015, 17(5): 563–597.
14
]
、光化学反应聚合物[  KAUR G, SINGH G, SINGH J. Photochemical tuning of materials: A click chemistry perspective[J]. Materials Today Chemistry, 2018, 8: 56–84.
15
]
、负热膨胀材料[  SONG Y Z, SHI N K, DENG S Q, et al. Negative thermal expansion in magnetic materials[J]. Progress in Materials Science, 2021, 121: 100835.
16
]
、形状记忆材料[  HUANG W M, DING Z, WANG C C, et al. Shape memory materials[J]. Materials Today, 2010, 13(7–8): 54–61.
17
]
等。结合力学超材料(结构)和功能材料(材料)构筑力学功能超材料,可以整合力学超材料和功能材料的超常力学响应、力学性能可调控、多环境场自适应性、能量转化等优异特性,获得可控的力电、力磁、力热等超常耦合响应。力学功能超材料凭借其超常耦合响应,可用来开发环境响应型自驱动执行器、多环境场传感器、能量收集器等设备,在航空航天、海洋工程、能源工程、生物医学等领域有广阔的应用前景。

本文介绍了力学超材料的定义、超常力学性能和典型分类。按照超常力学性能分类,常见的力学超材料类别有负泊松比力学超材料、多稳态力学超材料、轻质高强力学超材料、可编程/重编程力学超材料等。归纳了典型力学功能超材料的构筑方法和多环境场耦合响应。常见的力学功能超材料有力电超材料、力磁超材料和力热超材料。以航空航天和海洋工程领域为例,总结和展望了力学功能超材料的潜在工程应用,包括自折展卫星太阳翼、微型航天器自供能、卫星平台隔振、海洋工程与装备监测感知、海洋波浪能收集等。本文从概念、构筑方法、耦合响应、潜在工程应用等方面为力学功能超材料的研究进展提供了一份前沿、全面和精炼的科学综述,为该领域未来的研究方向和发展趋势提供参考。

1     力学超材料概述

力学超材料是一类人造结构化材料,其本质是以人工微结构为单元构造的复合结构[  JIAO P C, MUELLER J, RANEY J R, et al. Mechanical metamaterials and beyond[J]. Nature Communications, 2023, 14(1): 6004.
18
]
。区别于传统材料,力学超材料的超常力学性能源自其内部独特的人工微结构单元而非材料组分[  于相龙, 周济. 力学超材料的构筑及其超常新功能[J]. 中国材料进展, 2019, 38(1): 14–21, 41.YU Xianglong, ZHOU Ji. Mechanical metamaterials: Architected materials and unexplored properties[J]. Materials China, 2019, 38(1): 14–21, 41.
19
]
。通过设计人工微结构单元的形状、尺寸和周期性排列模式,可以调控力学超材料宏观整体结构的力学性能[  CHEN Z C, LIN Y T, SALEHI H, et al. Advanced fabrication of mechanical metamaterials based on micro/nanoscale technology[J]. Advanced Engineering Materials, 2023, 25(22): 2300750.
20
]
。凭借非常规和可调控的力学性能,力学超材料在航空航天、结构工程、防护工程、军事国防等领域展现出巨大的应用潜力[  SURJADI J U, GAO L B, DU H F, et al. Mechanical metamaterials and their engineering applications[J]. Advanced Engineering Materials, 2019, 21(3): 1800864.
21
]

1.1     力学超材料超常力学性能

弹性固体材料的力学性能一般通过以下4个基本力学参数表征:杨氏模量E、体积模量K、剪切模量G和泊松比ν,它们之间相互关联、制约。例如,各向同性弹性固体材料通常符合K/G=[2(ν+1)]/[3(1–2ν)]的规律[  于相龙, 周济. 力学超材料的构筑及其超常新功能[J]. 中国材料进展, 2019, 38(1): 14–21, 41.YU Xianglong, ZHOU Ji. Mechanical metamaterials: Architected materials and unexplored properties[J]. Materials China, 2019, 38(1): 14–21, 41.
19
]
。常见天然材料呈现正的KG,且ν主要分布在0~0.3之间(Milton图第一象限中的绿色区域),如图1(a)所示。超越天然材料,力学超材料通过独特的人工微结构单元设计引入局部松散、易变形模式,可以削弱基本力学参数间的约束关系,拓展力学性能的调控空间,实现超常力学性能。例如,K轴(ν=0.5,G消隐)和G轴(ν=–1,K消隐)的极端情况。此外,力学超材料还可以获得负泊松比、负刚度、负压缩性(Milton图第四象限中的蓝色区域)等超常力学性能[  MILTON G W. The Theory of composites[M]. Cambridge: Cambridge University Press, 2004.
22
]
。工程中主要关注材料的比模量、比强度、比刚度等比性能,图1(b)通过Ashby图比较了弹性体、金属、工业陶瓷、复合材料、力学超材料等天然或人工材料的杨氏模量–密度关系调控空间[  尹剑飞, 蔡力, 方鑫, 等. 力学超材料研究进展与减振降噪应用[J]. 力学进展, 2022, 52(3): 508–586.YIN Jianfei, CAI Li, FANG Xin, et al. Review on research progress of mechanical metamaterials and their applications in vibration and noise control[J]. Advances in Mechanics, 2022, 52(3): 508–586.
10
 ZHENG X Y, LEE H, WEISGRABER T H, et al. Ultralight, ultrastiff mechanical metamaterials[J]. Science, 2014, 344(6190): 1373–1377.
23
]
。弹性体、金属、工业陶瓷、复合材料等传统材料的杨氏模量和密度通常呈正相关关系,即材料的杨氏模量越大,密度一般也越大。而力学超材料能够突破这种杨氏模量–密度耦合关系,在低密度的情况下也可以实现高模量、高强度、高刚度等优异力学性能。

图1     力学超材料的力学性能调控空间
Fig.1     Regulation space of mechanical properties of mechanical metamaterials

1.2     力学超材料典型分类

力学超材料的分类方式不是唯一、绝对的,常见的分类依据有超常力学性能、调控的弹性模量、人工微结构单元构型等[  SINHA P, MUKHOPADHYAY T, 王智宇, 等. 可编程多物理机制的力学超材料[J]. 力学进展, 2024, 54(4): 823–871.SINHA P, MUKHOPADHYAY T,WANG Zhiyu, et al. Programmable multi-physical mechanics of mechanical metamaterials[J]. Advances in Mechanics, 2024, 54(4): 823–871.
24
]
。本文按照超常力学性能分类,如图2所示,常见的力学超材料类别有负泊松比力学超材料[  WANG J J, CHEN Z C, JIAO P C, et al. Coupling chiral cuboids with wholly auxetic response[J]. Research, 2024, 7: 0463.
25
]
、多稳态力学超材料[  JIAO P C, CHEN Z C, WANG J J. Origami metamaterial biomimetic bouquets expand floriography to spatiotemporal 4D[J]. Cell Reports Physical Science, 2024, 5(4): 101921.
26
]
、轻质高强力学超材料[  ZHANG H Y, PAIK J. Kirigami design and modeling for strong, lightweight metamaterials[J]. Advanced Functional Materials, 2022, 32(21): 2107401.
27
]
、可编程/重编程力学超材料[  FANG X, WEN J H, CHENG L, et al. Programmable gear-based mechanical metamaterials[J]. Nature Materials, 2022, 21(8): 869–876.
28
]

图2     超常力学性能划分的4类代表性力学超材料[  WANG J J, CHEN Z C, JIAO P C, et al. Coupling chiral cuboids with wholly auxetic response[J]. Research, 2024, 7: 0463.
 JIAO P C, CHEN Z C, WANG J J. Origami metamaterial biomimetic bouquets expand floriography to spatiotemporal 4D[J]. Cell Reports Physical Science, 2024, 5(4): 101921.
 ZHANG H Y, PAIK J. Kirigami design and modeling for strong, lightweight metamaterials[J]. Advanced Functional Materials, 2022, 32(21): 2107401.
 FANG X, WEN J H, CHENG L, et al. Programmable gear-based mechanical metamaterials[J]. Nature Materials, 2022, 21(8): 869–876.
25-28
]
Fig.2     Four categories of representative mechanical metamaterials classified extraordinary

负泊松比定义为材料在轴向拉伸(压缩)下发生侧向膨胀(收缩)的性质。区别于传统正泊松比材料,负泊松比力学超材料通常具有增强的抗剪切、抗断裂、能量吸收等性能[  任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展[J]. 力学学报, 2019, 51(3): 656–687.REN Xin, ZHANG Xiangyu, XIE Yimin. Research progress in auxetic materials and structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 656–687.
 吴文旺, 肖登宝, 孟嘉旭, 等. 负泊松比结构力学设计、抗冲击性能及在车辆工程应用与展望[J]. 力学学报, 2021, 53(3): 611–638.WU Wenwang, XIAO Dengbao, MENG Jiaxu, et al. Mechanical design, impact energy absorption and applications of auxetic structures in automobile lightweight engineering[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 611–638.
29-30
]
,这些良好的性能为负泊松比力学超材料应用于各类工程和生物力学领域开辟了广阔途径,例如可变形机翼[  BUDARAPU P R, SASTRY S Y B, NATARAJAN R. Design concepts of an aircraft wing: Composite and morphing airfoil with auxetic structures[J]. Frontiers of Structural and Civil Engineering, 2016, 10(4): 394–408.
31
]
、防护装置[  LANG J P, JIANG W, TENG X C, et al. Assembled mechanical metamaterials with transformable shape and auxeticity[J]. Construction and Building Materials, 2023, 378: 131181.
32
]
、血管支架[  SADEGH EBRAHIMI M, NORUZI M, HAMZEHEI R, et al. Revolutionary auxetic intravascular medical stents for angioplasty applications[J]. Materials & Design, 2023, 235: 112393.
33
]
等,追求增强的能量吸收性能也是负泊松比力学超材料的研究热点[  WANG Z W, LUAN C C, LIAO G X, et al. Progress in auxetic mechanical metamaterials: Structures, characteristics, manufacturing methods, and applications[J]. Advanced Engineering Materials, 2020, 22(10): 2000312.
34
]
。多(双)稳态指系统能够稳定维持在两个(两个以上)状态的性质,这些稳定状态处于系统能量等性质的局部极小值点[  FEUDEL U. Complex dynamics in multistable systems[J]. International Journal of Bifurcation and Chaos, 2008, 18(6): 1607–1626.
35
]
。多稳态力学超材料一般是以串联、并联、平铺等形式组装双稳态单元实现的[  徐锐, 何玉龙, 孙嘉鹏, 等. 多稳态力学超构材料研究进展[J]. 南京理工大学学报, 2024, 48(1): 1–25.XU Rui, HE Yulong, SUN Jiapeng, et al. Research progress of multi-stable mechanical metamaterials[J]. Journal of Nanjing University of Science and Technology, 2024, 48(1): 1–25.
36
]
,多稳态力学超材料通常具有迅速响应、多次重复利用、能量吸收与储存、输出力调控等特殊性能[  XU R, CHEN C Q, SUN J P, et al. The design, manufacture and application of multistable mechanical metamaterials-a state-of-the-art review[J]. International Journal of Extreme Manufacturing, 2023, 5(4): 042013.
 FANG S T, ZHOU S X, YURCHENKO D, et al. Multistability phenomenon in signal processing, energy harvesting, composite structures, and metamaterials: A review[J]. Mechanical Systems and Signal Processing, 2022, 166: 108419.
37-38
]
,在软执行器与软体机器人[  YEH C Y, CHOU S C, HUANG H W, et al. Tube-crawling soft robots driven by multistable buckling mechanics[J]. Extreme Mechanics Letters, 2019, 26: 61–68.
39
]
、力学逻辑运算[  PAL A, SITTI M. Programmable mechanical devices through magnetically tunable bistable elements[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(15): e2212489120.
40
]
、力学数据存储[  LI Y B, YU S Y, QING H T, et al. Reprogrammable and reconfigurable mechanical computing metastructures with stable and high-density memory[J]. Science Advances, 2024, 10(26): eado6476.
41
]
、能量吸收[  ZHANG Y, TICHEM M, VAN KEULEN F. A novel design of multi-stable metastructures for energy dissipation[J]. Materials & Design, 2021, 212: 110234.
42
]
、带隙调控与波传播控制[  REN Z W, JI L T, TAO R, et al. SMP-based multi-stable mechanical metamaterials: From bandgap tuning to wave logic gates[J]. Extreme Mechanics Letters, 2021, 42: 101077.
43
]
等领域有广阔的应用前景。轻质高强是基于比强度和比刚度定义的。轻质高强力学超材料的比强度和比刚度显著强于常规胞元材料、多孔材料和全致密材料[  编辑部. 我国科学家成功制备轻质高强金属力学超材料[J]. 粉末冶金工业, 2023, 33(5): 164.BIAN Jibu. Chinese scientists have successfully prepared lightweight and high-strength metal mechanical metamaterials[J]. Powder Metallurgy Industry, 2023, 33(5): 164.
44
]
。一系列晶格力学超材料是轻质高强力学超材料的重要分支,可以实现最高的单位质量结构效率[  JIA Z A, LIU F, JIANG X H, et al. Engineering lattice metamaterials for extreme property, programmability, and multifunctionality[J]. Journal of Applied Physics, 2020, 127(15): 150901.
45
]
。凭借卓越的比强度和比刚度的优势,轻质高强力学超材料在例如航空航天(直升机旋翼叶片)、装甲、建筑防护物等以低密度、高强度为关键需求的领域中[  MA W W S, YANG H, ZHAO Y J, et al. Multi-physical lattice metamaterials enabled by additive manufacturing: Design principles, interaction mechanisms, and multifunctional applications[J]. Advanced Science, 2025, 12(8): 2405835.
46
]
,展现出良好的工程适配性。可编程/重编程力学超材料是一类新兴的力学超材料,其可编程/重编程特性在于可以智能编程/重编程和调控变形、泊松比、刚度、多稳态等力学性能[  LIU C Y, ZHANG X, CHANG J H, et al. Programmable mechanical metamaterials: Basic concepts, types, construction strategies—A review[J]. Frontiers in Materials, 2024, 11: 1361408.
47
]
。实现编程策略对可编程/重编程力学超材料尤为关键,具体包括折/剪纸结构编程[  BERTOLDI K, VITELLI V, CHRISTENSEN J, et al. Flexible mechanical metamaterials[J]. Nature Reviews Materials, 2017, 2(11): 17066.
 ZHAI Z R, WU L L, JIANG H Q. Mechanical metamaterials based on origami and kirigami[J]. Applied Physics Reviews, 2021, 8(4): 041319.
48-49
]
、晶格与其他结构编程[  LI X, FAN R, FAN Z J, et al. Programmable mechanical metamaterials based on hierarchical rotating structures[J]. International Journal of Solids and Structures, 2021, 216: 145–155.
 TAHIDUL HAQUE A B M, FERRACIN S, RANEY J R. Reprogrammable mechanics via individually switchable bistable unit cells in a prestrained chiral metamaterial[J]. Advanced Materials Technologies, 2024, 9(17): 2400474.
50-51
]
、典型分层结构编程[  JIAO P C. Hierarchical metastructures with programmable stiffness and zero Poisson’s ratio[J]. APL Materials, 2020, 8(5): 051109.
52
]
、外部驱动力编程[  MO S, HUANG X, HUANG Z R, et al. Continuously tunable mechanical metamaterials based on gear cells[J]. Extreme Mechanics Letters, 2024, 67: 102133.
53
]
等。可编程/重编程力学超材料凭借其独特性和可控性使其具有广泛的潜在应用,包括自适应结构[  XIN X Z, LIU L W, LIU Y J, et al. 4D pixel mechanical metamaterials with programmable and reconfigurable properties[J]. Advanced Functional Materials, 2022, 32(6): 2107795.
54
]
、软体机器人[  GREGG C E, CATANOSO D, FORMOSO O I B, et al. Ultralight, strong, and self-reprogrammable mechanical metamaterials[J]. Science Robotics, 2024, 9(86): eadi2746.
55
]
、可穿戴设备[  BABAEE S, PAJOVIC S, RAFSANJANI A, et al. Bioinspired kirigami metasurfaces as assistive shoe grips[J]. Nature Biomedical Engineering, 2020, 4(8): 778–786.
56
]
等。表1[  WANG J J, CHEN Z C, JIAO P C, et al. Coupling chiral cuboids with wholly auxetic response[J]. Research, 2024, 7: 0463.
 JIAO P C, CHEN Z C, WANG J J. Origami metamaterial biomimetic bouquets expand floriography to spatiotemporal 4D[J]. Cell Reports Physical Science, 2024, 5(4): 101921.
25-26
 FANG X, WEN J H, CHENG L, et al. Programmable gear-based mechanical metamaterials[J]. Nature Materials, 2022, 21(8): 869–876.
28
 XIN X Z, LIU L W, LIU Y J, et al. 4D pixel mechanical metamaterials with programmable and reconfigurable properties[J]. Advanced Functional Materials, 2022, 32(6): 2107795.
 GREGG C E, CATANOSO D, FORMOSO O I B, et al. Ultralight, strong, and self-reprogrammable mechanical metamaterials[J]. Science Robotics, 2024, 9(86): eadi2746.
54-55
 ZHAO T, DANG X X, MANOS K, et al. Modular chiral origami metamaterials[J]. Nature, 2025, 640(8060): 931–940.
 YIN S, GUO W H, WANG H T, et al. Strong and tough bioinspired additive-manufactured dual-phase mechanical metamaterial composites[J]. Journal of the Mechanics and Physics of Solids, 2021, 149: 104341.
 YAO Y, ZHOU Y, CHEN L H, et al. A multifunctional three-dimensional lattice material integrating auxeticity, negative compressibility and negative thermal expansion[J]. Composite Structures, 2024, 337: 118032.
 DUDEK K K, IGLESIAS MARTÍNEZ J A, ULLIAC G, et al. Micro-scale mechanical metamaterial with a controllable transition in the Poisson’s ratio and band gap formation[J]. Advanced Materials, 2023, 35(20): 2210993.
 LI Z Y, GAO W, WANG M Y, et al. Three-dimensional metamaterials exhibiting extreme isotropy and negative Poisson’s ratio[J]. International Journal of Mechanical Sciences, 2023, 259: 108617.
 DU L M, SHI W, GAO H, et al. Mechanically programmable composite metamaterials with switchable positive/negative Poisson’s ratio[J]. Advanced Functional Materials, 2024, 34(22): 2314123.
 XU X, HUANG C Q, LI C C, et al. Adjustable ultra-light mechanical negative Poisson’s ratio metamaterials with multi-level dynamic crushing effects[J]. Small, 2024, 20(43): 2470312.
 ZHOU W, WANG Y Z. Cooperative propagation and directional phase transition of topological solitons in multi-stable mechanical metamaterials[J]. Journal of the Mechanics and Physics of Solids, 2023, 175: 105287.
 JIAO W J, SHU H, TOURNAT V, et al. Phase transitions in 2D multistable mechanical metamaterials via collisions of soliton-like pulses[J]. Nature Communications, 2024, 15(1): 333.
 HE J, WANG Y H, SHEN Z Q, et al. Assembled mechanical metamaterials with integrated functionalities of programmable multistability and multitransition behaviors[J]. Materials Horizons, 2024, 11(24): 6371–6380.
 XU R, HE Y L, CHEN C Q, et al. Rotation-based snap-fit mechanical metamaterials[J]. Advanced Science, 2025: 2501749.
 XING Y R, LUO L S, LI Y S, et al. Exploration of hierarchical metal-organic framework as ultralight, high-strength mechanical metamaterials[J]. Journal of the American Chemical Society, 2022, 144(10): 4393–4402.
 CHENG H W, ZHU X X, CHENG X W, et al. Mechanical metamaterials made of freestanding quasi–BCC nanolattices of gold and copper with ultra-high energy absorption capacity[J]. Nature Communications, 2023, 14: 1243.
 LI Y W, JIN H X, ZHOU W J, et al. Ultrastrong colloidal crystal metamaterials engineered with DNA[J]. Science Advances, 2023, 9(39): eadj8103.
 ZHONG H Z, DAS R, GU J F, et al. Low-density, high-strength metal mechanical metamaterials beyond the Gibson-Ashby model[J]. Materials Today, 2023, 68: 96–107.
57-71
]
总结了近几年图2中介绍的力学超材料的代表性研究类别和达到的力学性能指标。其他力学超材料类别还有单稳态负刚度力学超材料[  XIU H N, LIU H, POLI A, et al. Topological transformability and reprogrammability of multistable mechanical metamaterials[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(52): e2211725119.
72
]
、轻质超韧力学超材料[  LIN W Q, YAN Y B, ZHAO S W, et al. Digital mechanical metamaterial with programmable functionality[J]. Advanced Materials, 2024, 36(47): 2406263.
73
]
、负压缩力学超材料[  GAO Y, KANG X, LI B. Programmable mechanical metamaterials with tunable Poisson’s ratio and morphable stiffness[J]. Composites Part B: Engineering, 2025, 292: 112089.
74
]
等。

表1     近几年力学超材料的代表性研究和力学性能指标
Table 1     Representative studies and mechanical property indicators of mechanical metamaterials in recent years
力学超材料类别 力学超材料名称及参考文献(年份) 力学性能指标
负泊松比力学超材料 基于三角形元素的微尺度力学超材料[  ZHAO T, DANG X X, MANOS K, et al. Modular chiral origami metamaterials[J]. Nature, 2025, 640(8060): 931–940.
57
]
(2023)
泊松比–1.4
极端各向同性与负泊松比超材料[  YIN S, GUO W H, WANG H T, et al. Strong and tough bioinspired additive-manufactured dual-phase mechanical metamaterial composites[J]. Journal of the Mechanics and Physics of Solids, 2021, 149: 104341.
58
]
(2023)
泊松比–1
具有无孔结构与坚固界面的集成双相负泊松比复合超材料[  YAO Y, ZHOU Y, CHEN L H, et al. A multifunctional three-dimensional lattice material integrating auxeticity, negative compressibility and negative thermal expansion[J]. Composite Structures, 2024, 337: 118032.
59
]
(2024)
泊松比–0.5
Z形韧带手性方体[  WANG J J, CHEN Z C, JIAO P C, et al. Coupling chiral cuboids with wholly auxetic response[J]. Research, 2024, 7: 0463.
25
]
(2024)
泊松比–0.69
具有多级动态破碎效应的可调超轻负泊松比超材料[  DUDEK K K, IGLESIAS MARTÍNEZ J A, ULLIAC G, et al. Micro-scale mechanical metamaterial with a controllable transition in the Poisson’s ratio and band gap formation[J]. Advanced Materials, 2023, 35(20): 2210993.
60
]
(2024)
泊松比–0.73
多稳态力学超材料 基于六边形块体的多稳态力学超材料[  LI Z Y, GAO W, WANG M Y, et al. Three-dimensional metamaterials exhibiting extreme isotropy and negative Poisson’s ratio[J]. International Journal of Mechanical Sciences, 2023, 259: 108617.
61
]
(2023)
基于类弧子脉冲碰撞的二维多稳态力学超材料[  DU L M, SHI W, GAO H, et al. Mechanically programmable composite metamaterials with switchable positive/negative Poisson’s ratio[J]. Advanced Functional Materials, 2024, 34(22): 2314123.
62
]
(2024)
组装力学超材料[  XU X, HUANG C Q, LI C C, et al. Adjustable ultra-light mechanical negative Poisson’s ratio metamaterials with multi-level dynamic crushing effects[J]. Small, 2024, 20(43): 2470312.
63
]
(2024)
仿百合半球形折纸超材料[  JIAO P C, CHEN Z C, WANG J J. Origami metamaterial biomimetic bouquets expand floriography to spatiotemporal 4D[J]. Cell Reports Physical Science, 2024, 5(4): 101921.
26
]
(2024)
基于旋转的卡扣式力学超材料[  ZHOU W, WANG Y Z. Cooperative propagation and directional phase transition of topological solitons in multi-stable mechanical metamaterials[J]. Journal of the Mechanics and Physics of Solids, 2023, 175: 105287.
64
]
(2025)
轻质高强力学超材料 基于分级金属有机骨架的力学超材料[  JIAO W J, SHU H, TOURNAT V, et al. Phase transitions in 2D multistable mechanical metamaterials via collisions of soliton-like pulses[J]. Nature Communications, 2024, 15(1): 333.
65
]
(2022)
比强度(0.68±0.11)GPa/(g·cm3
金属准体心立方纳米晶格[  HE J, WANG Y H, SHEN Z Q, et al. Assembled mechanical metamaterials with integrated functionalities of programmable multistability and multitransition behaviors[J]. Materials Horizons, 2024, 11(24): 6371–6380.
66
]
(2023)
相对密度<0.5
(107±11)MPa(金基材屈服强度);(153±15)MPa(铜基材屈服强度)
DNA组装的超强胶体晶体超材料[  XU R, HE Y L, CHEN C Q, et al. Rotation-based snap-fit mechanical metamaterials[J]. Advanced Science, 2025: 2501749.
67
]
(2023)
比强度125 MPa/(g·cm–3
比刚度550 MPa/(g·cm–3
Ti–6Al–4V晶格[  XING Y R, LUO L S, LI Y S, et al. Exploration of hierarchical metal-organic framework as ultralight, high-strength mechanical metamaterials[J]. Journal of the American Chemical Society, 2022, 144(10): 4393–4402.
68
]
(2023)
密度1.6 g/cm3
强度>400 MPa
基于纤维增强复合材料桁架状构件的晶格力学超材料[  GREGG C E, CATANOSO D, FORMOSO O I B, et al. Ultralight, strong, and self-reprogrammable mechanical metamaterials[J]. Science Robotics, 2024, 9(86): eadi2746.
55
]
(2024)
比强度1.1049 MPa/(g·cm–3
比刚度108.0485 MPa/(g·cm–3
可编程/重编程力学超材料 可编程齿轮力学超材料[  FANG X, WEN J H, CHENG L, et al. Programmable gear-based mechanical metamaterials[J]. Nature Materials, 2022, 21(8): 869–876.
28
]
(2022)
杨氏模量调制范围达两个数量级
4D像素力学超材料[  XIN X Z, LIU L W, LIU Y J, et al. 4D pixel mechanical metamaterials with programmable and reconfigurable properties[J]. Advanced Functional Materials, 2022, 32(6): 2107795.
54
]
(2022)
机械像素的应力–应变关系可调制、可编程、可重构
多稳态拓扑麦克斯韦晶格[  CHENG H W, ZHU X X, CHENG X W, et al. Mechanical metamaterials made of freestanding quasi–BCC nanolattices of gold and copper with ultra-high energy absorption capacity[J]. Nature Communications, 2023, 14: 1243.
69
]
(2023)
宏观尺度结构构型可编程,刚度可调制,拓扑转变
可编程数字力学超材料[  LI Y W, JIN H X, ZHOU W J, et al. Ultrastrong colloidal crystal metamaterials engineered with DNA[J]. Science Advances, 2023, 9(39): eadj8103.
70
]
(2024)
压缩下单元呈现压缩–扭转耦合、压缩–剪切耦合和纯压缩3种可编程变形
基于可变形多面体模块的力学超材料[  ZHONG H Z, DAS R, GU J F, et al. Low-density, high-strength metal mechanical metamaterials beyond the Gibson-Ashby model[J]. Materials Today, 2023, 68: 96–107.
71
]
(2025)
单向载荷下呈现正负泊松比复杂交替变化刚度各向异性

本节从超常力学性能和典型分类方面阐述了力学超材料的研究进展。力学超材料表现出超越天然材料的非常规和可调控的力学性能,在各种力学相关工程中有巨大的应用潜力。现阶段,力学超材料领域的研究主要关注: (1)力学超材料人工微结构单元和整体结构设计; (2)力学超材料超常力学性能的探索与表征; (3)力学超材料器件的潜在和实际应用。此外,由于理论建模困难、试验制备与测试价格昂贵、数值仿真计算成本较高等因素使人类对力学超材料的进一步探索受到了限制[  JIAO P C, ALAVI A H. Artificial intelligence-enabled smart mechanical metamaterials: Advent and future trends[J]. International Materials Reviews, 2021, 66(6): 365–393.
3
]
,鉴于机器学习等人工智能(AI)技术具有从大量训练数据中捕捉潜在关系的能力[  KRENN M, POLLICE R, GUO S Y, et al. On scientific understanding with artificial intelligence[J]. Nature Reviews Physics, 2022, 4(12): 761–769.
75
]
,因此基于AI技术的力学超材料力学性能预测和结构逆设计在近几年成为了该领域的研究热点[  ZHENG X Y, ZHANG X B, CHEN T T, et al. Deep learning in mechanical metamaterials: From prediction and generation to inverse design[J]. Advanced Materials, 2023, 35(45): 2302530.
76
]
。然而,通过常规材料制备的力学超材料难以满足不同工程应用场景对功能器件的多环境场自适应性、迅速可控环境响应和能量转化等性能要求,限制了力学超材料的多功能工程应用。因此,为了推动力学超材料器件的性能提升和应用,目前需要重点关注从材料等角度增强、拓展和超越力学超材料的非常规力学性能。

2     力学功能超材料

力学功能超材料是结合力学超材料和先进功能材料构筑的一类多功能复合材料,旨在超越力学超材料的非常规力学性能,以获得可控的力电、力磁、力热等超常耦合响应,实现力学超材料的多功能工程应用。在结构方面,力学功能超材料承继了力学超材料的超常力学响应、力学性能可调控等优势。在材料方面,力学功能超材料兼具了先进功能材料的多环境场自适应性、环境响应能力、能量转化等特性,图3展示了力学功能超材料的构筑原理。力学功能超材料可以根据耦合响应进行分类,下文将分别介绍具有力电、力磁和力热响应的力学功能超材料。

图3     力学功能超材料构筑原理
Fig.3     Construction principle of mechanically functional metamaterials

2.1     力电超材料

力电超材料指选用电学功能材料为材料基质的力学功能超材料,它们可以将外界环境的机械能转化为电能,实现能量收集、监测感知等功能[  JIAO P C. Mechanical energy metamaterials in interstellar travel[J]. Progress in Materials Science, 2023, 137: 101132.
77
]
。典型的力电超材料:力学摩擦超材料[  JIAO P C, ZHANG H, LI W T. Origami tribo-metamaterials with mechanoelectrical multistability[J]. ACS Applied Materials & Interfaces, 2023, 15(2): 2873–2880.
 BARRI K, JIAO P C, ZHANG Q Y, et al. Multifunctional meta-tribomaterial nanogenerators for energy harvesting and active sensing[J]. Nano Energy, 2021, 86: 106074.
 BARRI K, ZHANG Q Y, SWINK I, et al. Patient-specific self-powered metamaterial implants for detecting bone healing progress[J]. Advanced Functional Materials, 2022, 32(32): 2203533.
 BARRI K, ZHANG Q Y, KLINE J, et al. Multifunctional nanogenerator-integrated metamaterial concrete systems for smart civil infrastructure[J]. Advanced Materials, 2023, 35(14): e2211027.
 XIA K Q, LIU J Z, LI W T, et al. A self-powered bridge health monitoring system driven by elastic origami triboelectric nanogenerator[J]. Nano Energy, 2023, 105: 107974.
 ZHANG Q Y, BARRI K, JIAO P C, et al. Meta-mechanotronics for self-powered computation[J]. Materials Today, 2023, 65: 78–89.
78-83
]
和力学压电超材料[  HU N, CHEN D J, WANG D, et al. Stretchable kirigami polyvinylidene difluoride thin films for energy harvesting: Design, analysis, and performance[J]. Physical Review Applied, 2018, 9(2): 021002.
 JIAO P C, HASNI H, LAJNEF N, et al. Mechanical metamaterial piezoelectric nanogenerator (MM–PENG): Design principle, modeling and performance[J]. Materials & Design, 2020, 187: 108214.
 JIAO P C, YANG Y, EGBE K I, et al. Mechanical metamaterials gyro-structure piezoelectric nanogenerators for energy harvesting under quasi-static excitations in ocean engineering[J]. ACS Omega, 2021, 6(23): 15348–15360.
 HONG L Q, ZHANG H, KRAUS T, et al. Ultra-stretchable kirigami piezo-metamaterials for sensing coupled large deformations[J]. Advanced Science, 2024, 11(5): 2303674.
84-87
]
,可分别选用摩擦电材料和压电材料制备。摩擦电材料通常包含两层不同极性的材料,即摩擦对,具有摩擦电效应。摩擦对通过摩擦产生静电极化电荷,在接触面间产生感应电荷并驱动感应电荷转移,实现机械能到电能的转化[  NIU S M, WANG X F, YI F, et al. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics[J]. Nature Communications, 2015, 6: 8975.
88
]
。压电材料具有压电效应,在外力作用下发生变形时,两端面间产生电势差[  HABIB M, LANTGIOS I, HORNBOSTEL K. A review of ceramic, polymer and composite piezoelectric materials[J]. Journal of Physics D Applied Physics, 2022, 55(42): 423002.
89
]

Barri等[  BARRI K, ZHANG Q Y, SWINK I, et al. Patient-specific self-powered metamaterial implants for detecting bone healing progress[J]. Advanced Functional Materials, 2022, 32(32): 2203533.
80
]
通过一体化3D打印技术制备了蜂窝摩擦超材料,包含两层导电层和一层绝缘介电层。其中,导电层和绝缘介电层的材料分别为碳纤维聚乳酸(PLA–CB)和热塑性聚氨酯(TPU)。蜂窝摩擦超材料可以充当接触分离模式摩擦纳米发电机(TENG),其原理为,在压力作用下,咬合单元发生屈曲导致导电层与绝缘介电层间的间距改变,从而产生电能(图4(a))。Jiao等[  JIAO P C, ZHANG H, LI W T. Origami tribo-metamaterials with mechanoelectrical multistability[J]. ACS Applied Materials & Interfaces, 2023, 15(2): 2873–2880.
78
]
通过折叠氟化乙丙烯(FEP)–铜(Cu)、FEP–铝(Al)、FEP–纸3组摩擦电薄膜形成Kresling折纸结构,制备了折纸摩擦超材料。在压力作用下,摩擦电薄膜不同层间发生接触分离,产生206.4 V和4.7 μA的峰值开路电压和短路电流(图4(b))。Jiao等[  JIAO P C, HASNI H, LAJNEF N, et al. Mechanical metamaterial piezoelectric nanogenerator (MM–PENG): Design principle, modeling and performance[J]. Materials & Design, 2020, 187: 108214.
85
]
结合六边形波纹超材料板和压电材料制备出了波纹压电超材料,其中,压电层由聚偏二氟乙烯–三氟乙烯(PVDF–TrFE)薄膜构成,可以通过旋涂技术制备。波纹压电超材料的力电耦合响应源自双侧约束PVDF–TrFE薄膜的多阶屈曲失稳(图4(c))。Hong等[  HONG L Q, ZHANG H, KRAUS T, et al. Ultra-stretchable kirigami piezo-metamaterials for sensing coupled large deformations[J]. Advanced Science, 2024, 11(5): 2303674.
87
]
通过混入锆钛酸铅(PZT)和钛酸钡(BaTiO3)两种压电粒子的硅胶薄膜进行极化和切割,制备了具有规则韧带的剪纸压电超材料。剪纸压电超材料可以响应耦合面外大变形,使规则韧带发生弯曲,从而产生电能,实现面外变形监测感知,(图4(d))。力电超材料主要关注开路电压、短路电流、最大输出功率等性能指标,表2[  JIAO P C, ZHANG H, LI W T. Origami tribo-metamaterials with mechanoelectrical multistability[J]. ACS Applied Materials & Interfaces, 2023, 15(2): 2873–2880.
78
 BARRI K, ZHANG Q Y, KLINE J, et al. Multifunctional nanogenerator-integrated metamaterial concrete systems for smart civil infrastructure[J]. Advanced Materials, 2023, 35(14): e2211027.
 XIA K Q, LIU J Z, LI W T, et al. A self-powered bridge health monitoring system driven by elastic origami triboelectric nanogenerator[J]. Nano Energy, 2023, 105: 107974.
81-82
 HU N, CHEN D J, WANG D, et al. Stretchable kirigami polyvinylidene difluoride thin films for energy harvesting: Design, analysis, and performance[J]. Physical Review Applied, 2018, 9(2): 021002.
84
 HONG L Q, ZHANG H, KRAUS T, et al. Ultra-stretchable kirigami piezo-metamaterials for sensing coupled large deformations[J]. Advanced Science, 2024, 11(5): 2303674.
87
 CHEN H Y, SHI J H, YAN L F, et al. Multifunctional triboelectric metamaterials with unidirectional charge transfer channels for linear mechanical motion energy harvesting[J]. Advanced Functional Materials, 2025, 35(10): 2416749.
 WANG Z H, CHENG J, XIE Y, et al. Lead-free piezoelectric composite based on a metamaterial for electromechanical energy conversion[J]. Advanced Materials Technologies, 2022, 7(12): 2200650.
 AHMADPOUR A, YETISEN A K, TASOGLU S. Piezoelectric metamaterial blood pressure sensor[J]. ACS Applied Electronic Materials, 2023, 5(6): 3280–3290.
 SHI J H, JU K, CHEN H Y, et al. Ultrahigh piezoelectricity in truss-based ferroelectric ceramics metamaterials[J]. Advanced Functional Materials, 2025, 35(12): 2417618.
91-94
]
总结了近几年力电超材料的代表性研究和达到的性能指标。

图4     力电超材料
Fig.4     Electro-mechanical metamaterials
表2     近几年力电超材料的代表性研究和性能指标
Table 2     Representative studies and property indicators of electro-mechanical metamaterials in recent years
力电超材料类别 力电超材料名称及参考文献(年份) 性能指标
开路电压 短路电流 最大输出功率(密度)
力学摩擦超材料 力学摩擦超材料混凝土集成系统[  BARRI K, ZHANG Q Y, KLINE J, et al. Multifunctional nanogenerator-integrated metamaterial concrete systems for smart civil infrastructure[J]. Advanced Materials, 2023, 35(14): e2211027.
81
]
(2023)
14 V 236 nA 330 µW
基于弹性折纸的折纸摩擦超材料[  XIA K Q, LIU J Z, LI W T, et al. A self-powered bridge health monitoring system driven by elastic origami triboelectric nanogenerator[J]. Nano Energy, 2023, 105: 107974.
82
]
(2023)
105 V 58 μA 162 µW
基于Kresling折纸的折纸摩擦超材料[  JIAO P C, ZHANG H, LI W T. Origami tribo-metamaterials with mechanoelectrical multistability[J]. ACS Applied Materials & Interfaces, 2023, 15(2): 2873–2880.
78
]
(2023)
206.4 V 4.66 μA 0.96 μW/cm²
基于杨氏模量可调力学超材料的自感知力学摩擦超材料[  HU S T, CAO R, HAN T Y, et al. Triboelectrically self-sensing mechanical metamaterials for smart mechanical equipment[J]. Nano Energy, 2024, 126: 109686.
90
]
(2024)
11.76 mV 16.67 pA
具有单向电荷转移通道的力学摩擦超材料[  CHEN H Y, SHI J H, YAN L F, et al. Multifunctional triboelectric metamaterials with unidirectional charge transfer channels for linear mechanical motion energy harvesting[J]. Advanced Functional Materials, 2025, 35(10): 2416749.
91
]
(2025)
3860 V 8 µA 365.3 kW/m3
力学压电超材料 PVDF剪纸薄膜[  HU N, CHEN D J, WANG D, et al. Stretchable kirigami polyvinylidene difluoride thin films for energy harvesting: Design, analysis, and performance[J]. Physical Review Applied, 2018, 9(2): 021002.
84
]
(2018)
340 mV
基于3D打印有序超材料结构骨架的压电复合材料[  WANG Z H, CHENG J, XIE Y, et al. Lead-free piezoelectric composite based on a metamaterial for electromechanical energy conversion[J]. Advanced Materials Technologies, 2022, 7(12): 2200650.
92
]
(2022)
21.7 V 17 µW/cm2
二维晶格压电超材料[  AHMADPOUR A, YETISEN A K, TASOGLU S. Piezoelectric metamaterial blood pressure sensor[J]. ACS Applied Electronic Materials, 2023, 5(6): 3280–3290.
93
]
(2023)
1123 mV
具有规则韧带的剪纸压电超材料[  HONG L Q, ZHANG H, KRAUS T, et al. Ultra-stretchable kirigami piezo-metamaterials for sensing coupled large deformations[J]. Advanced Science, 2024, 11(5): 2303674.
87
]
(2024)
24.6 V 117.85 nA
基于桁架结构的铁电陶瓷超材料[  SHI J H, JU K, CHEN H Y, et al. Ultrahigh piezoelectricity in truss-based ferroelectric ceramics metamaterials[J]. Advanced Functional Materials, 2025, 35(12): 2417618.
94
]
(2025)
101 V 5.09 mW/cm3

2.2     力磁超材料

力磁超材料定义为以磁响应活性材料为材料基质的力学功能超材料,可以通过迅速、连续地响应磁场环境,实现可控、可逆的形状变换,目前广泛应用于磁驱执行器、磁驱机器人、生物医学等领域[  QI J X, CHEN Z H, JIANG P, et al. Recent progress in active mechanical metamaterials and construction principles[J]. Advanced Science, 2022, 9(1): 2102662.
95
]
。力磁超材料常见的两种构筑策略有磁流变弹性体和永磁体。第一种策略是利用磁流变弹性体制备磁响应活性力学超材料,其中,磁流变弹性体由铁(Fe)、四氧化三铁(Fe3O4)、钕铁硼(NdFeB)等磁性颗粒混入弹性基质固化制成[  MA C P, CHANG Y L, WU S, et al. Deep learning-accelerated designs of tunable magneto-mechanical metamaterials[J]. ACS Applied Materials & Interfaces, 2022.
 MONTGOMERY S M, WU S, KUANG X, et al. Magneto-mechanical metamaterials with widely tunable mechanical properties and acoustic bandgaps[J]. Advanced Functional Materials, 2021, 31(3): 2005319.
 ZHU H L, WANG Y, GE Y W, et al. Kirigami-inspired programmable soft magnetoresponsive actuators with versatile morphing modes[J]. Advanced Science, 2022, 9(32): 2203711.
96-98
]
;第二种策略是将磁铁矿、铝镍钴合金等永磁体嵌入非磁性力学超材料框架中,由永磁体响应磁场携带力学超材料框架变形[  CHEN T, PAULY M, REIS P M. A reprogrammable mechanical metamaterial with stable memory[J]. Nature, 2021, 589(7842): 386–390.
 YUAN S S, CAO S F, XUE J N, et al. Versatile motion generation of magnetic origami spring robots in the uniform magnetic field[J]. IEEE Robotics and Automation Letters, 2022, 7(4): 10486–10493.
 ZOU B H, LIANG Z H, ZHONG D J, et al. Magneto-thermomechanically reprogrammable mechanical metamaterials[J]. Advanced Materials, 2023, 35(8): 2207349.
99-101
]

Montgomery等[  MONTGOMERY S M, WU S, KUANG X, et al. Magneto-mechanical metamaterials with widely tunable mechanical properties and acoustic bandgaps[J]. Advanced Functional Materials, 2021, 31(3): 2005319.
97
]
通过注塑成形工艺制备了力磁超材料。成形材料为磁流变弹性体,由15%(体积分数)的NdFeB颗粒混入聚二甲基硅氧烷(PDMS)–树脂混合物中制成。该力磁超材料采用了非对称接头设计,可以在相反方向磁场下实现弯曲和折叠两种驱动模式,赋予了刚度、声学带隙等特性极大的可调性(图5(a))。Pal等[  PAL A, SITTI M. Programmable mechanical devices through magnetically tunable bistable elements[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(15): e2212489120.
40
]
开发了由一系列双稳态梁单元级联构成的多稳态力磁超材料,其中,双稳态梁单元通过激光切割磁流变弹性体薄膜(NdFeB颗粒混入硅胶弹性基质)成形。在受控磁场中,该多稳态力磁超材料可以实现二进制逻辑运算(图5(b))。Chen等[  CHEN T, PAULY M, REIS P M. A reprogrammable mechanical metamaterial with stable memory[J]. Nature, 2021, 589(7842): 386–390.
99
]
设计了由一系列双稳态单元平铺形成的力磁超材料。双稳态单元通过可控磁场驱动永磁体磁帽改变双稳态弹性壳的状态,实现了两个稳态间独立、可逆的切换。每个双稳态单元可以充当一组物理二进制数字位,使力磁超材料具有稳定记忆功能(图5(c))。Yuan等[  YUAN S S, CAO S F, XUE J N, et al. Versatile motion generation of magnetic origami spring robots in the uniform magnetic field[J]. IEEE Robotics and Automation Letters, 2022, 7(4): 10486–10493.
100
]
研发出磁驱动折纸弹簧机器人,由非磁性折纸弹簧主体和两个同轴嵌入的永磁体构成。在二维磁场中,磁驱动折纸弹簧机器人实现蠕虫爬行、螃蟹爬行、滚动等运动模式(图5(d))。

图5     力磁超材料
Fig.5     Magneto-mechanical metamaterials

2.3     力热超材料

力热超材料是一类利用温度响应活性材料制备的力学功能超材料,可以迅速、连续地响应温度环境,实现可控、可逆的形状变化,此类材料适用于开发热驱执行器、热驱机器人、温度传感设备等[  NIU S M, WANG X F, YI F, et al. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics[J]. Nature Communications, 2015, 6: 8975.
88
]
。典型的力热超材料有力学形状记忆超材料[  ZHAO W, HUANG Z P, LIU L W, et al. Bionic design and performance research of tracheal stent based on shape memory polycaprolactone[J]. Composites Science and Technology, 2022, 229: 109671.
 LI X J, WANG L L, LI Y W, et al. Reprocessable, self-healing, thermadapt shape memory polycaprolactone via robust ester–ester interchanges toward kirigami-tailored 4D medical devices[J]. ACS Applied Polymer Materials, 2023, 5(2): 1585–1595.
 YANG H, D’AMBROSIO N, LIU P Y, et al. Shape memory mechanical metamaterials[J]. Materials Today, 2023, 66: 36–49.
102-104
]
和力学热膨胀超材料[  ANDRES C M, ZHU J, SHYU T, et al. Shape-morphing nanocomposite origami[J]. Langmuir, 2014, 30(19): 5378–5385.
 YANG N, ZHANG M K, ZHU R. 3D kirigami metamaterials with coded thermal expansion properties[J]. Extreme Mechanics Letters, 2020, 40: 100912.
 JIAO P C, HONG L Q, WANG J J, et al. Self-triggered thermomechanical metamaterials with asymmetric structures for programmable response under thermal excitations[J]. Materials, 2021, 14(9): 2177.
105-107
]
,分别选用热致型形状记忆材料和热膨胀材料制备。热致型形状记忆材料具有良好的热刺激响应和形状变化与恢复能力,在特定条件下经过显著变形后,可以通过施加温度刺激从显著变形状态恢复到初始状态[  XIA Y L, HE Y, ZHANG F H, et al. A review of shape memory polymers and composites: Mechanisms, materials, and applications[J]. Advanced Materials, 2021, 33(6): 2000713.
 王瑞晨, 刘秀军, 张静, 等. 刺激响应形状记忆材料的4D打印及其研究进展[J]. 功能材料, 2021, 52(10): 10069–10074.WANG Ruichen, LIU Xiujun, ZHANG Jing, et al. Recent progress in 4D printing of stimulus-responsive shape memory materials[J]. Journal of Functional Materials, 2021, 52(10): 10069–10074.
108-109
]
。热膨胀指材料在温度升高(降低)时几何尺寸增大(减小)的行为,是材料的固有性质[  吴焱, 乔英杰, 白成英, 等. 聚合物材料正热膨胀调控研究进展[J]. 材料导报, 2025, 39(7): 274–284.WU Yan, QIAO Yingjie, BAI Chengying, et al. Progress on positive thermal expansion control of polymer materials[J]. Materials Reports, 2025, 39(7): 274–284.
110
]
。本文将热膨胀材料考虑为由多种具有不同热膨胀系数的材料组装成的复合材料,例如双金属片。在变化温度场中,单一材料只发生几何尺寸的变化,而热膨胀材料可以实现折叠、展开、弯曲等特殊功能。

Li等[  LI X J, WANG L L, LI Y W, et al. Reprocessable, self-healing, thermadapt shape memory polycaprolactone via robust ester–ester interchanges toward kirigami-tailored 4D medical devices[J]. ACS Applied Polymer Materials, 2023, 5(2): 1585–1595.
103
]
利用聚己内酯(PCL)制备了剪纸形状记忆超材料,实现了网状血管支架、锥体支架等医疗器件的制备(图6(a))。PCL通过二月桂酸二丁基锡(DBTDL)催化的酯–酯交换反应合成,具有自修复、可重构、可生物降解等优异性能。Yang等[  YANG H, D’AMBROSIO N, LIU P Y, et al. Shape memory mechanical metamaterials[J]. Materials Today, 2023, 66: 36–49.
104
]
开发了由双材料咬合单元构成的力学形状记忆超材料。其中,利用选择性激光烧结(SLS)技术,选择TPU90A材料打印超材料的卡扣部分;利用立体光刻(SLA)技术,选择TOP31B材料打印超材料的支撑部分,制备的力学形状记忆超材料具有多稳态、形状记忆等特性,如图6(b)所示,可以实现药物递送和释放等应用。Andres等[  ANDRES C M, ZHU J, SHYU T, et al. Shape-morphing nanocomposite origami[J]. Langmuir, 2014, 30(19): 5378–5385.
105
]
基于亲水性聚电解质多层膜和碳纳米管(CNT)复合材料的差异膨胀,构筑了折纸热膨胀超材料。由于聚电解质多层膜和CNT复合材料具有不同的热膨胀系数和杨氏模量,由它们构成的双晶片在温度刺激下具有自折叠功能,基于该双晶片构筑的折纸热膨胀超材料也展现出可控和可逆的形状变换(图6(c))。

图6     力热超材料
Fig.6     Thermo-mechanical metamaterials

本节从构筑方法和耦合响应方面介绍了力电、力磁和力热超材料3类代表性力学功能超材料。力学功能超材料融合了力学超材料和先进功能材料的优势和特性,从材料角度来看,增强、拓展和超越了力学超材料的非常规力学性能,推动了力学超材料器件的性能提升和应用。现阶段,力学功能超材料的研究主要关注:(1)力学功能超材料制备工艺的研发;(2)力学功能超材料的构筑,包括力学超材料结构设计、功能材料选择等;(3)力学功能超材料超常耦合响应和功能的探索、分析与表征。然而,现有研究通常通过简单叠加力学超材料和功能材料构筑力学功能超材料,鲜有报道研究力学超材料结构设计对功能材料性能的影响和增益。因此,在构筑力学功能超材料时,需要重点关注力学超材料(结构)和功能材料(材料)的有机结合,实现力学超材料超常力学响应对功能材料性能的增益,产生1+1>2的倍增效果。

3     力学功能超材料潜在工程应用

力学功能超材料融合了力学超材料和先进功能材料的超常力学响应、力学性能可调控、多环境场自适应性、能量转化等优势,表现出可控的力电、力磁、力热等超常耦合响应,有望广泛应用于航空航天、海洋工程、能源工程等领域,为诸多工程领域提供解决策略。下文以航空航天和海洋工程为例,总结和展望了力学功能超材料的潜在工程应用,包括自折展卫星太阳翼、微型航天器自供能、卫星平台隔振、海上风电与跨海桥梁等海洋工程与装备监测感知、海洋波浪能收集等。

3.1     航空航天领域的潜在应用

折纸力学超材料已用于卫星太阳翼、固面天线、空间望远镜等空间折展结构的设计中[  田大可, 杨希华, 金路, 等. 面向空间折展机构的刚性折纸研究现状与展望[J]. 南京航空航天大学学报, 2023, 55(3): 379–400.TIAN Dake, YANG Xihua, JIN Lu, et al. Research status and prospect of rigid origami for space deployable and foldable mechanism[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2023, 55(3): 379–400.
111
]
图7(a)展示了Flasher折纸衍生的卫星太阳翼的展开过程[  CONTRERAS M T, TREASE B P, SHERWOOD B. The solar umbrella: A low-cost demonstration of scalable space based solar power[C]//IEEE International Conference on Wireless for Space and Extreme Environments. Piscataway: IEEE, 2013: 1–6.
112
]
。然而,实现太阳翼在环境中的自折展是空间折展结构领域的难题。力学功能超材料提供了有效的解决策略,Chen等[  CHEN T, BILAL O R, LANG R, et al. Autonomous deployment of a solar panel using elastic origami and distributed shape-memory-polymer actuators[J]. Physical Review Applied, 2019, 11(6): 064069.
113
]
开发了一种结合Flasher折纸和热致型形状记忆聚合物的自折展卫星太阳翼。如图7(b)所示,自折展卫星太阳翼的外环和内基板均利用形状记忆聚合物制造,其中,外环充当主驱动器和支撑结构;内基板承担次级驱动和携带卫星太阳翼表面的功能。自折展卫星太阳翼可以从约0.05 m2展开至0.5 m2,实现约10倍的面积增大率。Jiao[  JIAO P C. Mechanical energy metamaterials in interstellar travel[J]. Progress in Materials Science, 2023, 137: 101132.
77
]
提出基于力学功能超材料制备的纳米帆,有望从宇宙环境中获取能量为微型航天器供能(图7(c))。由力学摩擦超材料或力学压电超材料制造的纳米帆,安装到微型航天器上,通过材料的力电响应为支撑长期星际旅行供能。由于微型航天器会与宇宙尘埃发生碰撞,使暴露在外的纳米帆通过碰撞获得动能,并将动能转化为电能。Zeng等[  ZENG C J, LIU L W, HU Y Q, et al. Stair-stepping mechanical metamaterials with programmable load plateaus[J]. Advanced Functional Materials, 2024, 34(49): 2408887.
114
]
利用形状记忆聚合物制备阶梯力学超材料,构筑了阶梯形状记忆超材料,通过形状记忆编程将单元从初始构型编程为“零刚度”构型,使阶梯形状记忆超材料可以获得出色的隔振性能,因此能够用做位于卫星平台与捕获器间的隔振装置(图7(d))。隔振装置可以有效抑制捕获过程中产生的周期性冲击或激励,确保传递最小的振动到卫星平台。

图7     力学功能超材料在航空航天领域的潜在应用
Fig.7     Potential applications of mechanically functional metamaterials in aerospace field

3.2     海洋工程领域的潜在应用

力学摩擦超材料、力学压电超材料等力电超材料将机械能转化为电能的特性使它们可以实现海上风电与跨海桥梁等海洋工程与装备监测感知、海洋波浪能收集等应用。Li等[  LI W T, YANG P, JIAO P C. Double-helix multilayered tribo-metamaterials (DH–MTMs) for self-powered wireless monitoring systems[J]. Advanced Devices & Instrumentation, 2024, 5: 62.
115
]
利用一体化3D打印技术制备了双螺旋摩擦超材料传感器,其中,导电层和介电层的材料分别为PLA–CB和TPU。传感器可以监测水面和水下的海上风电结构位移和水流流速,监测原理如图8(a)所示。实测试验表明,传感器可以精确捕捉厘米级水下结构位移和小于0.1 m/s的水流流速。双螺旋摩擦超材料传感器既可以是单独的传感器,也能够充当自感知海洋工程与装备的结构组件,为海洋工程与装备的实时、主动监测提供了新颖的解决策略。将2.1节中的折纸摩擦超材料嵌入橡胶减速带中构筑自感知减速带,可以监测途经跨海桥梁车辆的速度和载重[  JIAO P C, ZHANG H, LI W T. Origami tribo-metamaterials with mechanoelectrical multistability[J]. ACS Applied Materials & Interfaces, 2023, 15(2): 2873–2880.
78
]
图8(b)[  JIAO P C, ZHANG H, LI W T. Origami tribo-metamaterials with mechanoelectrical multistability[J]. ACS Applied Materials & Interfaces, 2023, 15(2): 2873–2880.
78
]
展示了自感知减速带的应用场景和工作原理,当车辆压过减速带时,减速带发生变形并触发折纸摩擦超材料产生感应电压。经过多次现场测试构建出电压与车速、车载的关系,使其可以通过电压值精准预测途经车辆的速度和载重。利用2.1节中的波纹压电超材料在双侧约束下的多阶屈曲失稳行为,可以实现海洋波浪能收集(图8(c)[  JIAO P C, HASNI H, LAJNEF N, et al. Mechanical metamaterial piezoelectric nanogenerator (MM–PENG): Design principle, modeling and performance[J]. Materials & Design, 2020, 187: 108214.
 JIAO P C, YANG Y, EGBE K I, et al. Mechanical metamaterials gyro-structure piezoelectric nanogenerators for energy harvesting under quasi-static excitations in ocean engineering[J]. ACS Omega, 2021, 6(23): 15348–15360.
85-86
]
)。制备的毫米级波纹压电超材料和约束端等组件一起封装后可获得海洋波浪能收集器。将海洋波浪能收集器放置于海面上,利用周期性波浪提供的轴向激励触发波纹压电超材料发生屈曲变形,实现海洋波浪能到电能的转化。

图8     力学功能超材料在海洋工程中的潜在应用
Fig.8     Potential applications of mechanically functional metamaterials in marine engineering

由于缺乏针对力学功能超材料的大尺度和微纳尺度一体化制备工艺,以及力学功能超材料自身难以完成的工程应用中需要的全部功能和技术,导致力学功能超材料的工程应用仍然处在设想和实验室验证阶段。为了实现力学功能超材料的实际工程应用,目前需要重点关注:(1)研发力学功能超材料的大尺度和微纳尺度一体化制备工艺,实现力学功能超材料的高效、高质量制造。相较于独立制备大型力学功能超材料器件的局部构件并组装形成整体器件,大尺度一体化制备工艺将极大节约制造时间和成本。为了准确控制和预测力学功能超材料的多环境场耦合响应,精确制造小型力学功能超材料局部结构的微纳尺度一体化制备工艺是必要的技术前提;(2)设计和研发融合多种技术和设备的力学功能超材料集成系统。力学功能超材料自身难以实现工程应用,因此需要开发融合其他技术和设备的力学功能超材料集成系统。例如,为了存储和利用力学超材料纳米帆采集电能,真正实现微型航天器的供能,微型航天器需要搭载额外的能量存储设备,与力电超材料纳米帆构成力电超材料集成供能系统。

4     结论

力学超材料可以实现负泊松比、多稳态、轻质高强、可编程/重编程等超常力学性能。然而,以常规材料为材料基质的力学超材料难以满足不同工程应用场景对功能器件的多环境场自适应性、迅速可控环境响应和能量转化等性能要求。结合力学超材料和先进功能材料构筑力学功能超材料,可以超越力学超材料的非常规力学性能,获得可控的力电、力磁、力热等超常耦合响应,为力学超材料的多功能工程应用提供有效解决策略。本文深入探讨了力电、力磁和力热超材料3类代表性力学功能超材料的构筑方法和耦合响应,以及力学功能超材料在航空航天和海洋工程领域的多功能工程应用,包括自折展卫星太阳翼、微型航天器自供能、卫星平台隔振、海洋工程与装备监测感知和海洋波浪能采集等。根据力学功能超材料的研究现状,提出以下挑战和趋势。

截至目前,大多数现有研究仍然停留在以机理研究和实验室测试为主的实验室阶段,缺乏实现实际应用的力学功能超材料器件。据分析,力学功能超材料在应用层面面临的挑战和难题主要有以下4个方面。

(1)现有研究通常通过简单叠加力学超材料(结构)和先进功能材料(材料)构筑力学功能超材料,鲜有报道关注力学超材料结构设计对功能材料性能的增益,例如增大能量转化率、提升放大形变等。

(2)目前缺乏大尺度制备工艺一体化制造大型力学功能超材料器件,而独立制备力学功能超材料器件的局部构件并组装形成整体器件将大大增加制造时间和成本,导致实现自折展卫星太阳翼、卫星平台隔振等应用难度巨大、成本高昂。

(3)目前缺乏微纳尺度一体化工艺精确制造小型力学功能超材料的局部结构,难以准确控制和预测力学功能超材料的多环境场耦合响应,限制了微型航天器自供能、海上风电与跨海桥梁等海洋工程与装备监测感知、海洋波浪能收集等应用。

(4)力学功能超材料自身难以完成工程应用需要的全部功能和技术,例如力电超材料纳米帆、波纹压电超材料能量采集器等力电超材料器件可以将环境中的机械能转化为电能,而无法独自储存转化的电能,以备在未来随时利用。

针对力学功能超材料面临的挑战和难题,力学功能超材料的未来研究应致力于提出能够有效增强功能材料性能的力学超材料结构设计,研发针对大尺度与微纳尺度力学功能超材料器件的制备工艺,以及开发融合多种技术和设备的力学功能超材料集成系统。首先,根据应用场景和所选功能材料特点,设计可以有效增强功能材料性能的力学超材料结构,实现力学超材料的超常力学响应对功能材料的多环境场自适应性、能量转化等性能的增益,产生1+1>2的倍增效果;其次,针对拟制造的力学功能超材料器件的尺寸、结构特点和材料组成,研发大尺度与微纳尺度的先进多材料、一体化制备工艺,缩减制造时间和成本,提升制造精度;最后,根据应用需求和力学功能超材料特性,设计和研发融合其他技术和设备的力学功能超材料集成系统,为力学功能超材料器件的实际应用铺平道路。

作者介绍



毛振军 正高级工程师,研究方向为力学功能超材料。

参考文献

[1]

LIU Y M, ZHANG X. Metamaterials: A new frontier of science and technology[J]. Chemical Society Reviews, 2011, 40(5): 24942507.

[2]

KADIC M, MILTON G W, VAN HECKE M, et al. 3D metamaterials[J]. Nature Reviews Physics, 2019, 1(3): 198210.

[3]

JIAO P C, ALAVI A H. Artificial intelligence-enabled smart mechanical metamaterials: Advent and future trends[J]. International Materials Reviews, 2021, 66(6): 365393.

[4]

SINHA P, MUKHOPADHYAY T. Programmable multi-physical mechanics of mechanical metamaterials[J]. Materials Science and Engineering: R: Reports, 2023, 155: 100745.

[5]

郭阳, 杜硕, 胡莎, . 电磁超材料研究进展及应用现状[J]. 真空科学与技术学报, 2022, 42(9): 641653.
GUO Yang, DU Shuo, HU Sha, et al. Research progress and application status of electromagnetic metamaterials[J]. Chinese Journal of Vacuum Science and Technology, 2022, 42(9): 641653.

[6]

曹暾, 刘宽, 李阳, . 可调谐光学超构材料及其应用[J]. 中国光学, 2021, 14(4): 968985.
CAO Tun, LIU Kuan, LI Yang, et al. Tunable optical metamaterials and their applications[J]. Chinese Optics, 2021, 14(4): 968985.

[7]

LI Y, LI W, HAN T C, et al. Transforming heat transfer with thermal metamaterials and devices[J]. Nature Reviews Materials, 2021, 6: 488507.

[8]

LIAO G X, LUAN C C, WANG Z W, et al. Acoustic metamaterials: A review of theories, structures, fabrication approaches, and applications[J]. Advanced Materials Technologies, 2021, 6(5): 2000787.

[9]

YU X L, ZHOU J, LIANG H Y, et al. Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review[J]. Progress in Materials Science, 2018, 94: 114173.

[10]

尹剑飞, 蔡力, 方鑫, . 力学超材料研究进展与减振降噪应用[J]. 力学进展, 2022, 52(3): 508586.
YIN Jianfei, CAI Li, FANG Xin, et al. Review on research progress of mechanical metamaterials and their applications in vibration and noise control[J]. Advances in Mechanics, 2022, 52(3): 508586.

[11]

张金升, 许凤秀, 王英姿, . 功能材料综述[J]. 现代技术陶瓷, 2003, 24(3): 4044.
ZHANG Jinsheng, XU Fengxiu, WANG Yingzi, et al. General survey of functional materials[J]. Advanced Ceramics, 2003, 24(3): 4044.

[12]

YU A F, ZHU Y X, WANG W, et al. Progress in triboelectric materials: Toward high performance and widespread applications[J]. Advanced Functional Materials, 2019, 29(41): 1900098.

[13]

LI S Q, TANG X Y, GUO W W, et al. Numerical simulations of piezoelectricity and triboelectricity: From materials, structures to devices[J]. Applied Materials Today, 2024, 37: 102092.

[14]

UBAIDILLAH, SUTRISNO J, PURWANTO A, et al. Recent progress on magnetorheological solids: Materials, fabrication, testing, and applications[J]. Advanced Engineering Materials, 2015, 17(5): 563597.

[15]

KAUR G, SINGH G, SINGH J. Photochemical tuning of materials: A click chemistry perspective[J]. Materials Today Chemistry, 2018, 8: 5684.

[16]

SONG Y Z, SHI N K, DENG S Q, et al. Negative thermal expansion in magnetic materials[J]. Progress in Materials Science, 2021, 121: 100835.

[17]

HUANG W M, DING Z, WANG C C, et al. Shape memory materials[J]. Materials Today, 2010, 13(7–8): 5461.

[18]

JIAO P C, MUELLER J, RANEY J R, et al. Mechanical metamaterials and beyond[J]. Nature Communications, 2023, 14(1): 6004.

[19]

于相龙, 周济. 力学超材料的构筑及其超常新功能[J]. 中国材料进展, 2019, 38(1): 1421, 41.
YU Xianglong, ZHOU Ji. Mechanical metamaterials: Architected materials and unexplored properties[J]. Materials China, 2019, 38(1): 1421, 41.

[20]

CHEN Z C, LIN Y T, SALEHI H, et al. Advanced fabrication of mechanical metamaterials based on micro/nanoscale technology[J]. Advanced Engineering Materials, 2023, 25(22): 2300750.

[21]

SURJADI J U, GAO L B, DU H F, et al. Mechanical metamaterials and their engineering applications[J]. Advanced Engineering Materials, 2019, 21(3): 1800864.

[22]

MILTON G W. The Theory of composites[M]. Cambridge: Cambridge University Press, 2004.

[23]

ZHENG X Y, LEE H, WEISGRABER T H, et al. Ultralight, ultrastiff mechanical metamaterials[J]. Science, 2014, 344(6190): 13731377.

[24]

SINHA P, MUKHOPADHYAY T, 王智宇, . 可编程多物理机制的力学超材料[J]. 力学进展, 2024, 54(4): 823871.
SINHA P, MUKHOPADHYAY T,WANG Zhiyu, et al. Programmable multi-physical mechanics of mechanical metamaterials[J]. Advances in Mechanics, 2024, 54(4): 823871.

[25]

WANG J J, CHEN Z C, JIAO P C, et al. Coupling chiral cuboids with wholly auxetic response[J]. Research, 2024, 7: 0463.

[26]

JIAO P C, CHEN Z C, WANG J J. Origami metamaterial biomimetic bouquets expand floriography to spatiotemporal 4D[J]. Cell Reports Physical Science, 2024, 5(4): 101921.

[27]

ZHANG H Y, PAIK J. Kirigami design and modeling for strong, lightweight metamaterials[J]. Advanced Functional Materials, 2022, 32(21): 2107401.

[28]

FANG X, WEN J H, CHENG L, et al. Programmable gear-based mechanical metamaterials[J]. Nature Materials, 2022, 21(8): 869876.

[29]

任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展[J]. 力学学报, 2019, 51(3): 656687.
REN Xin, ZHANG Xiangyu, XIE Yimin. Research progress in auxetic materials and structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 656687.

[30]

吴文旺, 肖登宝, 孟嘉旭, . 负泊松比结构力学设计、抗冲击性能及在车辆工程应用与展望[J]. 力学学报, 2021, 53(3): 611638.
WU Wenwang, XIAO Dengbao, MENG Jiaxu, et al. Mechanical design, impact energy absorption and applications of auxetic structures in automobile lightweight engineering[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(3): 611638.

[31]

BUDARAPU P R, SASTRY S Y B, NATARAJAN R. Design concepts of an aircraft wing: Composite and morphing airfoil with auxetic structures[J]. Frontiers of Structural and Civil Engineering, 2016, 10(4): 394408.

[32]

LANG J P, JIANG W, TENG X C, et al. Assembled mechanical metamaterials with transformable shape and auxeticity[J]. Construction and Building Materials, 2023, 378: 131181.

[33]

SADEGH EBRAHIMI M, NORUZI M, HAMZEHEI R, et al. Revolutionary auxetic intravascular medical stents for angioplasty applications[J]. Materials & Design, 2023, 235: 112393.

[34]

WANG Z W, LUAN C C, LIAO G X, et al. Progress in auxetic mechanical metamaterials: Structures, characteristics, manufacturing methods, and applications[J]. Advanced Engineering Materials, 2020, 22(10): 2000312.

[35]

FEUDEL U. Complex dynamics in multistable systems[J]. International Journal of Bifurcation and Chaos, 2008, 18(6): 16071626.

[36]

徐锐, 何玉龙, 孙嘉鹏, . 多稳态力学超构材料研究进展[J]. 南京理工大学学报, 2024, 48(1): 125.
XU Rui, HE Yulong, SUN Jiapeng, et al. Research progress of multi-stable mechanical metamaterials[J]. Journal of Nanjing University of Science and Technology, 2024, 48(1): 125.

[37]

XU R, CHEN C Q, SUN J P, et al. The design, manufacture and application of multistable mechanical metamaterials-a state-of-the-art review[J]. International Journal of Extreme Manufacturing, 2023, 5(4): 042013.

[38]

FANG S T, ZHOU S X, YURCHENKO D, et al. Multistability phenomenon in signal processing, energy harvesting, composite structures, and metamaterials: A review[J]. Mechanical Systems and Signal Processing, 2022, 166: 108419.

[39]

YEH C Y, CHOU S C, HUANG H W, et al. Tube-crawling soft robots driven by multistable buckling mechanics[J]. Extreme Mechanics Letters, 2019, 26: 6168.

[40]

PAL A, SITTI M. Programmable mechanical devices through magnetically tunable bistable elements[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(15): e2212489120.

[41]

LI Y B, YU S Y, QING H T, et al. Reprogrammable and reconfigurable mechanical computing metastructures with stable and high-density memory[J]. Science Advances, 2024, 10(26): eado6476.

[42]

ZHANG Y, TICHEM M, VAN KEULEN F. A novel design of multi-stable metastructures for energy dissipation[J]. Materials & Design, 2021, 212: 110234.

[43]

REN Z W, JI L T, TAO R, et al. SMP-based multi-stable mechanical metamaterials: From bandgap tuning to wave logic gates[J]. Extreme Mechanics Letters, 2021, 42: 101077.

[44]

编辑部. 我国科学家成功制备轻质高强金属力学超材料[J]. 粉末冶金工业, 2023, 33(5): 164.
BIAN Jibu. Chinese scientists have successfully prepared lightweight and high-strength metal mechanical metamaterials[J]. Powder Metallurgy Industry, 2023, 33(5): 164.

[45]

JIA Z A, LIU F, JIANG X H, et al. Engineering lattice metamaterials for extreme property, programmability, and multifunctionality[J]. Journal of Applied Physics, 2020, 127(15): 150901.

[46]

MA W W S, YANG H, ZHAO Y J, et al. Multi-physical lattice metamaterials enabled by additive manufacturing: Design principles, interaction mechanisms, and multifunctional applications[J]. Advanced Science, 2025, 12(8): 2405835.

[47]

LIU C Y, ZHANG X, CHANG J H, et al. Programmable mechanical metamaterials: Basic concepts, types, construction strategies—A review[J]. Frontiers in Materials, 2024, 11: 1361408.

[48]

BERTOLDI K, VITELLI V, CHRISTENSEN J, et al. Flexible mechanical metamaterials[J]. Nature Reviews Materials, 2017, 2(11): 17066.

[49]

ZHAI Z R, WU L L, JIANG H Q. Mechanical metamaterials based on origami and kirigami[J]. Applied Physics Reviews, 2021, 8(4): 041319.

[50]

LI X, FAN R, FAN Z J, et al. Programmable mechanical metamaterials based on hierarchical rotating structures[J]. International Journal of Solids and Structures, 2021, 216: 145155.

[51]

TAHIDUL HAQUE A B M, FERRACIN S, RANEY J R. Reprogrammable mechanics via individually switchable bistable unit cells in a prestrained chiral metamaterial[J]. Advanced Materials Technologies, 2024, 9(17): 2400474.

[52]

JIAO P C. Hierarchical metastructures with programmable stiffness and zero Poisson’s ratio[J]. APL Materials, 2020, 8(5): 051109.

[53]

MO S, HUANG X, HUANG Z R, et al. Continuously tunable mechanical metamaterials based on gear cells[J]. Extreme Mechanics Letters, 2024, 67: 102133.

[54]

XIN X Z, LIU L W, LIU Y J, et al. 4D pixel mechanical metamaterials with programmable and reconfigurable properties[J]. Advanced Functional Materials, 2022, 32(6): 2107795.

[55]

GREGG C E, CATANOSO D, FORMOSO O I B, et al. Ultralight, strong, and self-reprogrammable mechanical metamaterials[J]. Science Robotics, 2024, 9(86): eadi2746.

[56]

BABAEE S, PAJOVIC S, RAFSANJANI A, et al. Bioinspired kirigami metasurfaces as assistive shoe grips[J]. Nature Biomedical Engineering, 2020, 4(8): 778786.

[57]

ZHAO T, DANG X X, MANOS K, et al. Modular chiral origami metamaterials[J]. Nature, 2025, 640(8060): 931940.

[58]

YIN S, GUO W H, WANG H T, et al. Strong and tough bioinspired additive-manufactured dual-phase mechanical metamaterial composites[J]. Journal of the Mechanics and Physics of Solids, 2021, 149: 104341.

[59]

YAO Y, ZHOU Y, CHEN L H, et al. A multifunctional three-dimensional lattice material integrating auxeticity, negative compressibility and negative thermal expansion[J]. Composite Structures, 2024, 337: 118032.

[60]

DUDEK K K, IGLESIAS MARTÍNEZ J A, ULLIAC G, et al. Micro-scale mechanical metamaterial with a controllable transition in the Poisson’s ratio and band gap formation[J]. Advanced Materials, 2023, 35(20): 2210993.

[61]

LI Z Y, GAO W, WANG M Y, et al. Three-dimensional metamaterials exhibiting extreme isotropy and negative Poisson’s ratio[J]. International Journal of Mechanical Sciences, 2023, 259: 108617.

[62]

DU L M, SHI W, GAO H, et al. Mechanically programmable composite metamaterials with switchable positive/negative Poisson’s ratio[J]. Advanced Functional Materials, 2024, 34(22): 2314123.

[63]

XU X, HUANG C Q, LI C C, et al. Adjustable ultra-light mechanical negative Poisson’s ratio metamaterials with multi-level dynamic crushing effects[J]. Small, 2024, 20(43): 2470312.

[64]

ZHOU W, WANG Y Z. Cooperative propagation and directional phase transition of topological solitons in multi-stable mechanical metamaterials[J]. Journal of the Mechanics and Physics of Solids, 2023, 175: 105287.

[65]

JIAO W J, SHU H, TOURNAT V, et al. Phase transitions in 2D multistable mechanical metamaterials via collisions of soliton-like pulses[J]. Nature Communications, 2024, 15(1): 333.

[66]

HE J, WANG Y H, SHEN Z Q, et al. Assembled mechanical metamaterials with integrated functionalities of programmable multistability and multitransition behaviors[J]. Materials Horizons, 2024, 11(24): 63716380.

[67]

XU R, HE Y L, CHEN C Q, et al. Rotation-based snap-fit mechanical metamaterials[J]. Advanced Science, 2025: 2501749.

[68]

XING Y R, LUO L S, LI Y S, et al. Exploration of hierarchical metal-organic framework as ultralight, high-strength mechanical metamaterials[J]. Journal of the American Chemical Society, 2022, 144(10): 43934402.

[69]

CHENG H W, ZHU X X, CHENG X W, et al. Mechanical metamaterials made of freestanding quasi–BCC nanolattices of gold and copper with ultra-high energy absorption capacity[J]. Nature Communications, 2023, 14: 1243.

[70]

LI Y W, JIN H X, ZHOU W J, et al. Ultrastrong colloidal crystal metamaterials engineered with DNA[J]. Science Advances, 2023, 9(39): eadj8103.

[71]

ZHONG H Z, DAS R, GU J F, et al. Low-density, high-strength metal mechanical metamaterials beyond the Gibson-Ashby model[J]. Materials Today, 2023, 68: 96107.

[72]

XIU H N, LIU H, POLI A, et al. Topological transformability and reprogrammability of multistable mechanical metamaterials[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(52): e2211725119.

[73]

LIN W Q, YAN Y B, ZHAO S W, et al. Digital mechanical metamaterial with programmable functionality[J]. Advanced Materials, 2024, 36(47): 2406263.

[74]

GAO Y, KANG X, LI B. Programmable mechanical metamaterials with tunable Poisson’s ratio and morphable stiffness[J]. Composites Part B: Engineering, 2025, 292: 112089.

[75]

KRENN M, POLLICE R, GUO S Y, et al. On scientific understanding with artificial intelligence[J]. Nature Reviews Physics, 2022, 4(12): 761769.

[76]

ZHENG X Y, ZHANG X B, CHEN T T, et al. Deep learning in mechanical metamaterials: From prediction and generation to inverse design[J]. Advanced Materials, 2023, 35(45): 2302530.

[77]

JIAO P C. Mechanical energy metamaterials in interstellar travel[J]. Progress in Materials Science, 2023, 137: 101132.

[78]

JIAO P C, ZHANG H, LI W T. Origami tribo-metamaterials with mechanoelectrical multistability[J]. ACS Applied Materials & Interfaces, 2023, 15(2): 28732880.

[79]

BARRI K, JIAO P C, ZHANG Q Y, et al. Multifunctional meta-tribomaterial nanogenerators for energy harvesting and active sensing[J]. Nano Energy, 2021, 86: 106074.

[80]

BARRI K, ZHANG Q Y, SWINK I, et al. Patient-specific self-powered metamaterial implants for detecting bone healing progress[J]. Advanced Functional Materials, 2022, 32(32): 2203533.

[81]

BARRI K, ZHANG Q Y, KLINE J, et al. Multifunctional nanogenerator-integrated metamaterial concrete systems for smart civil infrastructure[J]. Advanced Materials, 2023, 35(14): e2211027.

[82]

XIA K Q, LIU J Z, LI W T, et al. A self-powered bridge health monitoring system driven by elastic origami triboelectric nanogenerator[J]. Nano Energy, 2023, 105: 107974.

[83]

ZHANG Q Y, BARRI K, JIAO P C, et al. Meta-mechanotronics for self-powered computation[J]. Materials Today, 2023, 65: 7889.

[84]

HU N, CHEN D J, WANG D, et al. Stretchable kirigami polyvinylidene difluoride thin films for energy harvesting: Design, analysis, and performance[J]. Physical Review Applied, 2018, 9(2): 021002.

[85]

JIAO P C, HASNI H, LAJNEF N, et al. Mechanical metamaterial piezoelectric nanogenerator (MM–PENG): Design principle, modeling and performance[J]. Materials & Design, 2020, 187: 108214.

[86]

JIAO P C, YANG Y, EGBE K I, et al. Mechanical metamaterials gyro-structure piezoelectric nanogenerators for energy harvesting under quasi-static excitations in ocean engineering[J]. ACS Omega, 2021, 6(23): 1534815360.

[87]

HONG L Q, ZHANG H, KRAUS T, et al. Ultra-stretchable kirigami piezo-metamaterials for sensing coupled large deformations[J]. Advanced Science, 2024, 11(5): 2303674.

[88]

NIU S M, WANG X F, YI F, et al. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics[J]. Nature Communications, 2015, 6: 8975.

[89]

HABIB M, LANTGIOS I, HORNBOSTEL K. A review of ceramic, polymer and composite piezoelectric materials[J]. Journal of Physics D Applied Physics, 2022, 55(42): 423002.

[90]

HU S T, CAO R, HAN T Y, et al. Triboelectrically self-sensing mechanical metamaterials for smart mechanical equipment[J]. Nano Energy, 2024, 126: 109686.

[91]

CHEN H Y, SHI J H, YAN L F, et al. Multifunctional triboelectric metamaterials with unidirectional charge transfer channels for linear mechanical motion energy harvesting[J]. Advanced Functional Materials, 2025, 35(10): 2416749.

[92]

WANG Z H, CHENG J, XIE Y, et al. Lead-free piezoelectric composite based on a metamaterial for electromechanical energy conversion[J]. Advanced Materials Technologies, 2022, 7(12): 2200650.

[93]

AHMADPOUR A, YETISEN A K, TASOGLU S. Piezoelectric metamaterial blood pressure sensor[J]. ACS Applied Electronic Materials, 2023, 5(6): 32803290.

[94]

SHI J H, JU K, CHEN H Y, et al. Ultrahigh piezoelectricity in truss-based ferroelectric ceramics metamaterials[J]. Advanced Functional Materials, 2025, 35(12): 2417618.

[95]

QI J X, CHEN Z H, JIANG P, et al. Recent progress in active mechanical metamaterials and construction principles[J]. Advanced Science, 2022, 9(1): 2102662.

[96]

MA C P, CHANG Y L, WU S, et al. Deep learning-accelerated designs of tunable magneto-mechanical metamaterials[J]. ACS Applied Materials & Interfaces, 2022.

[97]

MONTGOMERY S M, WU S, KUANG X, et al. Magneto-mechanical metamaterials with widely tunable mechanical properties and acoustic bandgaps[J]. Advanced Functional Materials, 2021, 31(3): 2005319.

[98]

ZHU H L, WANG Y, GE Y W, et al. Kirigami-inspired programmable soft magnetoresponsive actuators with versatile morphing modes[J]. Advanced Science, 2022, 9(32): 2203711.

[99]

CHEN T, PAULY M, REIS P M. A reprogrammable mechanical metamaterial with stable memory[J]. Nature, 2021, 589(7842): 386390.

[100]

YUAN S S, CAO S F, XUE J N, et al. Versatile motion generation of magnetic origami spring robots in the uniform magnetic field[J]. IEEE Robotics and Automation Letters, 2022, 7(4): 1048610493.

[101]

ZOU B H, LIANG Z H, ZHONG D J, et al. Magneto-thermomechanically reprogrammable mechanical metamaterials[J]. Advanced Materials, 2023, 35(8): 2207349.

[102]

ZHAO W, HUANG Z P, LIU L W, et al. Bionic design and performance research of tracheal stent based on shape memory polycaprolactone[J]. Composites Science and Technology, 2022, 229: 109671.

[103]

LI X J, WANG L L, LI Y W, et al. Reprocessable, self-healing, thermadapt shape memory polycaprolactone via robust ester–ester interchanges toward kirigami-tailored 4D medical devices[J]. ACS Applied Polymer Materials, 2023, 5(2): 15851595.

[104]

YANG H, D’AMBROSIO N, LIU P Y, et al. Shape memory mechanical metamaterials[J]. Materials Today, 2023, 66: 3649.

[105]

ANDRES C M, ZHU J, SHYU T, et al. Shape-morphing nanocomposite origami[J]. Langmuir, 2014, 30(19): 53785385.

[106]

YANG N, ZHANG M K, ZHU R. 3D kirigami metamaterials with coded thermal expansion properties[J]. Extreme Mechanics Letters, 2020, 40: 100912.

[107]

JIAO P C, HONG L Q, WANG J J, et al. Self-triggered thermomechanical metamaterials with asymmetric structures for programmable response under thermal excitations[J]. Materials, 2021, 14(9): 2177.

[108]

XIA Y L, HE Y, ZHANG F H, et al. A review of shape memory polymers and composites: Mechanisms, materials, and applications[J]. Advanced Materials, 2021, 33(6): 2000713.

[109]

王瑞晨, 刘秀军, 张静, . 刺激响应形状记忆材料的4D打印及其研究进展[J]. 功能材料, 2021, 52(10): 1006910074.
WANG Ruichen, LIU Xiujun, ZHANG Jing, et al. Recent progress in 4D printing of stimulus-responsive shape memory materials[J]. Journal of Functional Materials, 2021, 52(10): 1006910074.

[110]

吴焱, 乔英杰, 白成英, . 聚合物材料正热膨胀调控研究进展[J]. 材料导报, 2025, 39(7): 274284.
WU Yan, QIAO Yingjie, BAI Chengying, et al. Progress on positive thermal expansion control of polymer materials[J]. Materials Reports, 2025, 39(7): 274284.

[111]

田大可, 杨希华, 金路, . 面向空间折展机构的刚性折纸研究现状与展望[J]. 南京航空航天大学学报, 2023, 55(3): 379400.
TIAN Dake, YANG Xihua, JIN Lu, et al. Research status and prospect of rigid origami for space deployable and foldable mechanism[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2023, 55(3): 379400.

[112]

CONTRERAS M T, TREASE B P, SHERWOOD B. The solar umbrella: A low-cost demonstration of scalable space based solar power[C]//IEEE International Conference on Wireless for Space and Extreme Environments. Piscataway: IEEE, 2013: 16.

[113]

CHEN T, BILAL O R, LANG R, et al. Autonomous deployment of a solar panel using elastic origami and distributed shape-memory-polymer actuators[J]. Physical Review Applied, 2019, 11(6): 064069.

[114]

ZENG C J, LIU L W, HU Y Q, et al. Stair-stepping mechanical metamaterials with programmable load plateaus[J]. Advanced Functional Materials, 2024, 34(49): 2408887.

[115]

LI W T, YANG P, JIAO P C. Double-helix multilayered tribo-metamaterials (DH–MTMs) for self-powered wireless monitoring systems[J]. Advanced Devices & Instrumentation, 2024, 5: 62.

目录