Design and Performance Study of Controllable Random Acoustic Metamaterials Based on Voronoi Diagram
Citations
CHEN Wenjiong, LI Zhiqi. Design and performance study of controllable random acoustic metamaterials based on Voronoi diagram[J]. Aeronautical Manufacturing Technology, 2025, 68(15): 38–46.
Design and Performance Study of Controllable Random Acoustic Metamaterials Based on Voronoi Diagram
CHEN Wenjiong
LI Zhiqi
Dalian University of Technology, Dalian116023, China
Citations
CHEN Wenjiong, LI Zhiqi. Design and performance study of controllable random acoustic metamaterials based on Voronoi diagram[J]. Aeronautical Manufacturing Technology, 2025, 68(15): 38–46.
Abstract
Resonant acoustic metamaterials have excellent sound absorption capabilities and show great potential for applications in aerospace, shipbuilding, and other fields. However, their low-frequency broadband sound absorption capabilities still need to be improved. To improve the synergistic sound absorption effect of low-frequency and broadband acoustic metamaterials, a Voronoi based random controllable acoustic metamaterial is proposed. The influence of the number and distribution of control points based on Voronoi segmentation method on the sound absorption performance of metamaterials was studied, and the robustness of controllable random structure sound absorption performance was analyzed. Multiple sets of test samples were prepared through additive manufacturing and impedance tube tests were conducted to verify the effectiveness of the simulation results. When the number of Voronoi control points is 20 and the number of scattered seeds is 26, the acoustic metamaterial exhibits a wide frequency absorption effect with multiple absorption peaks within 350–648 Hz, with an average absorption coefficient of 0.843. The thickness of this structure is 35 mm, which is only about 1/38 of the 350 Hz wavelength, providing a new idea for solving the problem of low-frequency noise control.
近年来航空航天、船舶等领域,噪声问题日益严重[ 古龙, 闵捷. 船舶振动噪声控制技术的现状与发展[J]. 舰船科学技术, 2019, 41(23): 1–5.GU Long, MIN Jie. Review of vibration and noise control technology for submarines[J]. Ship Science and Technology, 2019, 41(23): 1–5. 张海涛, 马晓宁. 航空发动机飞行状态噪声修正方法[J]. 航空发动机, 2024, 50(5): 35–41.ZHANG Haitao, MA Xiaoning. Aeroengine flight noise correction method[J]. Aeroengine, 2024, 50(5): 35–41. 1-2],特别是中低频噪声,由于波长较长,具有穿透能力强且消减慢等特点,其吸收问题一直都是研究人员关注的重点[ DOMINGO-ROCA R, FEENEY A, WINDMILL J C, et al. On the directionality of membrane coupled Helmholtz resonators under open air conditions[J]. Scientific Reports, 2024, 14(1): 27771. 3]。传统吸声材料包括多孔材料和谐振腔吸声结构等。多孔材料在中高频段表现出优异的吸声能力[ ZEA E, BRANDÃO E, NOLAN M, et al. Sound absorption estimation of finite porous samples with deep residual learnin[J]. The Journal of the Acoustical Society of America, 2023, 154(4): 2321–2332. KALAUNI K, PAWAR S J. A review on the taxonomy, factors associated with sound absorption and theoretical modeling of porous sound absorbing materials[J]. Journal of Porous Materials, 2019, 26(6): 1795–1819. 陈文炯, 常润鑫, 王小鹏. 多孔材料增材制造与吸声特性研究[J]. 航空制造技术, 2022, 65(14): 58–66.CHEN Wenjiong, CHANG Runxin, WANG Xiaopeng. Additive manufacturing and sound absorption characterization of porous materials[J]. Aeronautical Manufacturing Technology, 2022, 65(14): 58–66. 4-6],但处理低频噪声时,通常需增大结构厚度以实现低频声能的有效耗散,不仅占用空间,且不利于结构轻量化设计。蜂窝结构能够通过内部共振和多次散射提升低频段吸声性能,但传统蜂窝结构单一,导致吸声频点单一。Fahey等[ FAHEY D J, DUNLAP M E, SEIDL R J. Thermal conductivity of paper honeycomb cores and sound absorption of sandwich panels[J]. TAPPI, 1953, 36(11): 523–528. 7]将蜂窝夹层结构应用于声学领域,实现了亚波长尺寸下良好的低频吸声效果;Xie等[ XIE S C, WANG D, FENG Z J, et al. Sound absorption performance of microperforated honeycomb metasurface panels with a combination of multiple orifice diameters[J]. Applied Acoustics, 2020, 158: 107046. 8]设计了多孔径微穿孔蜂窝超表面面板,通过调整微穿孔板孔径和厚度使蜂窝结构吸声频段向低频移动;Ng等[ NG C F, HUI C K. Low frequency sound insulation using stiffness control with honeycomb panels[J]. Applied Acoustics, 2008, 69(4): 293–301. 9]设计了高刚度芳纶蜂窝夹层结构,在低频实现了比传统隔声结构更好的降噪效果。上述研究表明,各结构仅可在窄带内实现良好的吸声效果,无法满足宽频带吸声要求。为拓宽其吸声频带,Yang等[ YANG C, CHENG L. Sound absorption of microperforated panels inside compact acoustic enclosures[J]. Journal of Sound and Vibration, 2016, 360: 140–155. 10]将蜂窝结构与背腔结合,实现同尺寸下更宽频的吸声效果;Sakagami等[ SAKAGAMI K, YAMASHITA I, YAIRI M, et al. Sound absorption characteristics of a honeycomb-backed microperforated panel absorber: Revised theory and experimental validation[J]. Noise Control Engineering Journal, 2010, 58(2): 157. 11]将双层微穿孔板与蜂窝芯结合,提升了结构宽带吸声能力;Chen等[ CHEN W J, LU C, WANG X P, et al. The acoustic performances of a subwavelength hierarchical honeycomb structure: Analytical, numerical, and experimental investigations[J]. The Journal of the Acoustical Society of America, 2023, 153(3): 1754. 12]设计了多级蜂窝结构,打破单频点吸声限制,在亚波长空间有效拓宽了吸声频带。上述研究表明,蜂窝夹层穿孔结构通过引入多级、多种蜂窝组合的方式,能够有效提升吸声频带范围[ 黄安坤, 温耀杰, 张百成, 等. 增材制造金属点阵结构性能研究进展[J]. 航空制造技术, 2023, 66(11): 90–101.HUANG Ankun, WEN Yaojie, ZHANG Baicheng, et al. Research progress on properties of metal lattice structure by additive manufacturing[J]. Aeronautical Manufacturing Technology, 2023, 66(11): 90–101. 13]。但由于规则蜂窝受自身参数限制,此类吸声材料对蜂窝结构的尺寸、形状及排布等要求较高,结构设计存在较大局限性,增加了制备难度及成本,对实际工程应用不利。因此,探索具有小厚度、多频点、胞元排布多样性的低频宽带吸声超材料具有重要意义。
随机结构的引入实现了吸声胞元的多样性排布,为宽频吸声设计提供了新思路。Meng等[ MENG H, AO Q B, TANG H P, et al. Dynamic flow resistivity based model for sound absorption of multi-layer sintered fibrous metals[J]. Science China Technological Sciences, 2014, 57(11): 2096–2105. MENG H, REN S W, XIN F X, et al. Sound absorption coefficient optimization of gradient sintered metal fiber felts[J]. Science China Technological Sciences, 2016, 59(5): 699–708. 14-15]建立了用于分析吸声性能的随机分布平行金属纤维多孔材料理论模型,拓宽了吸声频带;Luu等[ LUU H T, PERROT C, PANNETON R. Influence of porosity, fiber radius and fiber orientation on the transport and acoustic properties of random fiber structures[J]. Acta Acustica United with Acustica, 2017, 103(6): 1050–1063. 16]通过调整随机纤维材料的孔隙率、纤维的空间排布形式等变量,实现了随机纤维材料中低频且宽频带吸声。但研究结果表明,不同参数下的随机结构吸声系数离散程度大,存在约50%的变化区间,吸声性能的稳定性有待提升。
为实现稳定的低频宽带吸声性能,本文提出了基于Voronoi图的可控随机声学超材料,通过控制Voronoi图生成点的数量、离散度、分布位置等参数,生成随机且可实现自适应尺寸及边界的Voronoi图[ DU Y, LIANG H X, XIE D Q, et al. Design and statistical analysis of irregular porous scaffolds for orthopedic reconstruction based on voronoi tessellation and fabricated via selective laser melting (SLM)[J]. Materials Chemistry and Physics, 2020, 239: 121968. 17],并通过调整参数研究Voronoi图超材料低频宽带的吸声性能。建立了声学超材料有限元模型并进行吸声性能仿真分析,采用光固化成型(SLA)的增材制造方法对样件进行打印制备,最后对实物样件进行阻抗管试验以进一步验证Voronoi图可控随机声学超材料的吸声性能。
1 Voronoi图可控随机声学超材料设计与试验方法
1.1 Voronoi图可控随机结构设计
Voronoi图是一种将空间划分为若干区域的方法,这些区域是基于一组离散点(称为生成点或种子点)来定义的[ FANTINI M, CURTO M, DE CRESCENZIO F. A method to design biomimetic scaffolds for bone tissue engineering based on Voronoi lattices[J]. Virtual and Physical Prototyping, 2016, 11(2): 77–90. 18]。二维空间中,Voronoi图定义如下。
Fig.1 Voronoi diagram of controllable random acoustic metamaterial formation process and complete structure
1.2 声学吸收机制
声吸收是能量减小的过程[ 白攀峰, 柏林元, 何山, 等. 常用吸声材料及吸声机理[J]. 山西化工, 2018, 38(3): 40–42.BAI Panfeng, BAI Linyuan, HE Shan, et al. Sound absorption materials and sound absorption mechanism[J]. Shanxi Chemical Industry, 2018, 38(3): 40–42. 19],当声波频率与共振腔固有频率相同时,腔体内空气剧烈振动,振动幅度最大,空气分子间的摩擦和粘滞效应增强,可将声能转化为热能,能量耗散从而实现声的吸收[ LIU X T, YAN X, ZHANG H P. Effects of pore structure on sound absorption of kapok-based fiber nonwoven fabrics at low frequency[J]. Textile Research Journal, 2016, 86(7): 755–764. 20]。吸声系数通常用于描述吸声能力的物理量,可表示入射声能被材料吸收的比例(式(10))。
Fig.3 Establishment of finite element model and grid division
1.4 样件制备
采用光敏树脂作为样件材料,该材料在增材制造领域应用广泛[ RIVA L, GINESTRA P S, PANDINI S, et al. Production and characterization of the Poisson’s ratio of cellular structured metamaterials by additive manufacturing[J]. Procedia CIRP, 2022, 110: 378–382. 21],其材料参数如表1所示。采用NovaMaker 3D打印机打印样件实物图(图4),利用SLA成型技术,通过紫外激光对液态光敏树脂进行精确照射,使其快速固化实现样件制备[ NEFEDOVAA L A, IVKOV V I, SYCHOV M M, et al. Additive manufacturing of ceramic insulators[J]. Materials Today: Proceedings, 2020, 30: 520–522. 22]。
图4 NovaMaker 3D打印机和打印样件实物
Fig.4 NovaMaker 3D printer and physical printed samples
古龙, 闵捷. 船舶振动噪声控制技术的现状与发展[J]. 舰船科学技术, 2019, 41(23): 1–5. GULong, MINJie. Review of vibration and noise control technology for submarines[J]. Ship Science and Technology, 2019, 41(23): 1–5.
DOMINGO-ROCAR, FEENEYA, WINDMILLJ C, et al. On the directionality of membrane coupled Helmholtz resonators under open air conditions[J]. Scientific Reports, 2024, 14(1): 27771.
[4]
ZEAE, BRANDÃOE, NOLANM, et al. Sound absorption estimation of finite porous samples with deep residual learnin[J]. The Journal of the Acoustical Society of America, 2023, 154(4): 2321–2332.
[5]
KALAUNIK, PAWARS J. A review on the taxonomy, factors associated with sound absorption and theoretical modeling of porous sound absorbing materials[J]. Journal of Porous Materials, 2019, 26(6): 1795–1819.
FAHEYD J, DUNLAPM E, SEIDLR J. Thermal conductivity of paper honeycomb cores and sound absorption of sandwich panels[J]. TAPPI, 1953, 36(11): 523–528.
[8]
XIES C, WANGD, FENGZ J, et al. Sound absorption performance of microperforated honeycomb metasurface panels with a combination of multiple orifice diameters[J]. Applied Acoustics, 2020, 158: 107046.
[9]
NGC F, HUIC K. Low frequency sound insulation using stiffness control with honeycomb panels[J]. Applied Acoustics, 2008, 69(4): 293–301.
[10]
YANGC, CHENGL. Sound absorption of microperforated panels inside compact acoustic enclosures[J]. Journal of Sound and Vibration, 2016, 360: 140–155.
[11]
SAKAGAMIK, YAMASHITAI, YAIRIM, et al. Sound absorption characteristics of a honeycomb-backed microperforated panel absorber: Revised theory and experimental validation[J]. Noise Control Engineering Journal, 2010, 58(2): 157.
[12]
CHENW J, LUC, WANGX P, et al. The acoustic performances of a subwavelength hierarchical honeycomb structure: Analytical, numerical, and experimental investigations[J]. The Journal of the Acoustical Society of America, 2023, 153(3): 1754.
[13]
黄安坤, 温耀杰, 张百成, 等. 增材制造金属点阵结构性能研究进展[J]. 航空制造技术, 2023, 66(11): 90–101. HUANGAnkun, WENYaojie, ZHANGBaicheng, et al. Research progress on properties of metal lattice structure by additive manufacturing[J]. Aeronautical Manufacturing Technology, 2023, 66(11): 90–101.
[14]
MENGH, AOQ B, TANGH P, et al. Dynamic flow resistivity based model for sound absorption of multi-layer sintered fibrous metals[J]. Science China Technological Sciences, 2014, 57(11): 2096–2105.
[15]
MENGH, RENS W, XINF X, et al. Sound absorption coefficient optimization of gradient sintered metal fiber felts[J]. Science China Technological Sciences, 2016, 59(5): 699–708.
[16]
LUUH T, PERROTC, PANNETONR. Influence of porosity, fiber radius and fiber orientation on the transport and acoustic properties of random fiber structures[J]. Acta Acustica United with Acustica, 2017, 103(6): 1050–1063.
[17]
DUY, LIANGH X, XIED Q, et al. Design and statistical analysis of irregular porous scaffolds for orthopedic reconstruction based on voronoi tessellation and fabricated via selective laser melting (SLM)[J]. Materials Chemistry and Physics, 2020, 239: 121968.
[18]
FANTINIM, CURTOM, DE CRESCENZIOF. A method to design biomimetic scaffolds for bone tissue engineering based on Voronoi lattices[J]. Virtual and Physical Prototyping, 2016, 11(2): 77–90.
[19]
白攀峰, 柏林元, 何山, 等. 常用吸声材料及吸声机理[J]. 山西化工, 2018, 38(3): 40–42. BAIPanfeng, BAILinyuan, HEShan, et al. Sound absorption materials and sound absorption mechanism[J]. Shanxi Chemical Industry, 2018, 38(3): 40–42.
[20]
LIUX T, YANX, ZHANGH P. Effects of pore structure on sound absorption of kapok-based fiber nonwoven fabrics at low frequency[J]. Textile Research Journal, 2016, 86(7): 755–764.
[21]
RIVAL, GINESTRAP S, PANDINIS, et al. Production and characterization of the Poisson’s ratio of cellular structured metamaterials by additive manufacturing[J]. Procedia CIRP, 2022, 110: 378–382.
[22]
NEFEDOVAAL A, IVKOVV I, SYCHOVM M, et al. Additive manufacturing of ceramic insulators[J]. Materials Today: Proceedings, 2020, 30: 520–522.