氮化硅陶瓷在航空航天领域的研究进展及应用

基金项目

国家自然科学基金(52402094,U234120139,U22A20129);国防基础科研计划(JCKY2022130C005);中国博士后科学基金(2023M743571);国家资助博士后研究人员计划(GZC20232743);中国科学院金属研究所创新基金(2024–PY11);高端装备铸造技术全国重点实验室开放基金(CAT2023–006);安徽省研究生教育质量工程(2023cxcyjs015);国家重点研发计划(2018YFB1106600)。

中图分类号:

V25TB484.5

文献标识码:

A

通信作者

梁静静,研究员,博士,研究方向为增材制造高温合金和复杂结构陶瓷材料。

李乔磊,助理研究员,博士,研究方向为增材制造高温陶瓷材料及单晶叶片制备。

编辑

责编 :向阳

引文格式

滕家琛, 李乔磊, 梁静静, 等. 氮化硅陶瓷在航空航天领域的研究进展及应用[J]. 航空制造技术, 2025, 68(12): 106-120.

Research Progress and Application of Silicon Nitride Ceramics in Aerospace Field

Citations

TENG Jiachen, LI Qiaolei, LIANG Jingjing, et al. Research progress and application of silicon nitride ceramics in aerospace field[J]. Aeronautical Manufacturing Technology, 2025, 68(12): 106-120.

航空制造技术    第68卷    第12期    106-120
Aeronautical Manufacturing Techinology    Vol.68    No.12 : 106-120
DOI: 10.16080/j.issn1671-833x.2025.12.106
研究论文(RESEARCH)

氮化硅陶瓷在航空航天领域的研究进展及应用

  • 滕家琛 1,2
  • 李乔磊 1
  • 梁静静 1,3
  • 岳新艳 2
  • 张朝威 1
  • 刘砚飞 4
  • 谭海兵 4
  • 李金国 1,3
1.中国科学院金属研究所师昌绪先进材料创新中心沈阳 110016
2.东北大学材料科学与工程学院沈阳 110819
3.中国科学院太空制造重点实验室北京 100094
4.中国航发四川燃气涡轮研究院成都 610500

通信作者

梁静静,研究员,博士,研究方向为增材制造高温合金和复杂结构陶瓷材料。

李乔磊,助理研究员,博士,研究方向为增材制造高温陶瓷材料及单晶叶片制备。

基金项目

国家自然科学基金(52402094,U234120139,U22A20129);国防基础科研计划(JCKY2022130C005);中国博士后科学基金(2023M743571);国家资助博士后研究人员计划(GZC20232743);中国科学院金属研究所创新基金(2024–PY11);高端装备铸造技术全国重点实验室开放基金(CAT2023–006);安徽省研究生教育质量工程(2023cxcyjs015);国家重点研发计划(2018YFB1106600)。

中图分类号:

V25TB484.5

文献标识码:

A

引文格式

滕家琛, 李乔磊, 梁静静, 等. 氮化硅陶瓷在航空航天领域的研究进展及应用[J]. 航空制造技术, 2025, 68(12): 106-120.

摘要

氮化硅陶瓷凭借其耐高温、耐磨损、高强度和优异的抗热冲击性能,已成为涡轮叶片、热防护系统和航空航天结构件的理想材料。然而,随着航空航天结构件向更高服役温度和轻量化方向的发展,氮化硅陶瓷在成型和性能方面的不足逐渐显现。此外,现有的性能检测多集中于常温、常压、瞬时状态等工况,难以反映氮化硅陶瓷在航空航天领域的真实服役性能,亟须改进。为解决这些问题,本文详细阐述了近年来氮化硅陶瓷在成型、性能检测、微观结构调控和力学性能等方面的研究进展,探讨该材料在航空航天领域的应用现状,并提出相关建议以推动氮化硅陶瓷在航空航天领域的创新与发展。

关键词

氮化硅;成型工艺;力学性能;微观结构调控;强韧化;

Research Progress and Application of Silicon Nitride Ceramics in Aerospace Field

  • TENG Jiachen 1,2
  • LI Qiaolei 1
  • LIANG Jingjing 1,3
  • YUE Xinyan 2
  • ZHANG Chaowei 1
  • LIU Yanfei 4
  • TAN Haibing 4
  • LI Jinguo 1,3
1.Shi Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
3.Space Manufacturing Technology (CAS Key Lab), Chinese Academy of Sciences, Beijing 100094, China
4.AECC Sichuan Gas Turbine Establishment, Chengdu 610500, China

Citations

TENG Jiachen, LI Qiaolei, LIANG Jingjing, et al. Research progress and application of silicon nitride ceramics in aerospace field[J]. Aeronautical Manufacturing Technology, 2025, 68(12): 106-120.

Abstract

Silicon nitride (Si3N4) ceramics are ideal materials for turbine blades, thermal protection systems and aerospace structural components due to their high-temperature resistance, wear resistance, high strength and excellent thermal shock resistance. However, with the development of aerospace structural components towards higher service temperature and lightweight, shortcomings of Si3N4 ceramics in terms of molding and performance gradually appears. In addition, the existing performance tests mostly focus on working conditions of normal temperature, normal pressure, and transient state, which are not being able to reflect the real service performance of Si3N4 ceramics in aerospace field, therefore need to be improved urgently. To address these problems, this paper elaborates the research progress of Si3N4 ceramics in the aspects of molding, performance testing, microstructure control and mechanical properties, discusses the current status of Si3N4 ceramic application and puts forward relevant suggestions to promote innovation and development of Si3N4 ceramics in aerospace.

Keywords

Silicon nitride; Molding process; Mechanical properties; Microstructure control; Strengthening and toughening;



氮化硅陶瓷是由氮原子和硅原子通过共价键紧密结合形成的化合物,得益于共价键的特性,氮化硅陶瓷展现出高温高强度、耐腐蚀、耐磨损及优异的抗热震性能[   KLEMM H. Silicon nitride for high-temperature applications[J]. Journal of the American Ceramic Society, 2010, 93(6): 1501–1522.
  DA SILVA C R M, REIS D A P, DOS SANTOS C. Creep of heat treated silicon nitride with neodymium and yttrium oxides additions[J]. Materials Science and Engineering: A, 2010, 527(26): 6893–6898.
  MELÉNDEZ-MARTÍNEZ J J, DOMÍNGUEZ-RODRÍGUEZ A. Creep of silicon nitride[J]. Progress in Materials Science, 2004, 49(1): 19–107.
1-3
]
,在航空航天[   刘胜, 刘文进, 满延进, 等. 氮化硅陶瓷材料高温抗热震性能及其衰减规律研究[J]. 现代技术陶瓷, 2023, 44(S1): 451–460.LIU Sheng, LIU Wenjin, MAN Yanjin, et al. Study on thermal shock resistance and attenuation law of silicon nitride ceramic materials at high temperature[J]. Advanced Ceramics, 2023, 44(S1): 451–460.
4
]
、生物医疗[   SAINZ M A, SERENA S, BELMONTE M, et al. Protein adsorption and in vitro behavior of additively manufactured 3D-silicon nitride scaffolds intended for bone tissue engineering[J]. Materials Science and Engineering: C, 2020, 115: 110734.
  ZOU R F, BI L N, HUANG Y, et al. A biocompatible silicon nitride dental implant material prepared by digital light processing technology[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 141: 105756.
5-6
]
、汽车半导体[   IMAMURA H, KAWATA T, HONDA S, et al. Thermal conductivity improvement in silicon nitride ceramics via grain purification[J]. Journal of the American Ceramic Society, 2024, 107(2): 1159–1169.
7
]
等领域得到广泛应用。尤其在航空航天领域,氮化硅陶瓷在上千℃的高温下不仅能够保持稳定的结构和优异的性能,而且表面形成的氧化层具有良好的耐腐蚀性能[   HERRMANN M. Corrosion of silicon nitride materials in aqueous solutions[J]. Journal of the American Ceramic Society, 2013, 96(10): 3009–3022.
  TATAMI J, UDA M, TAKAHASHI T, et al. Microscopic mechanical properties of silicon nitride ceramics corroded in sulfuric acid solution[J]. Journal of the European Ceramic Society, 2024, 44(9): 5415–5421.
8-9
]
,使陶瓷材料能够在腐蚀性液体/气氛中长期稳定服役。此外,相较于传统金属材料,氮化硅陶瓷密度较低,能显著减轻飞行器的重量,提高其推重比和燃油效率。基于这些优势,氮化硅陶瓷在涡轮叶片、燃烧室衬里、导弹天线罩等航天结构件中得到广泛应用,已成为现代航空航天领域中不可或缺的重要材料[   陈波, 韦中华, 李镔, 等. 氮化硅陶瓷在四大领域的研究及应用进展[J]. 硅酸盐通报, 2022, 41(4): 1404–1415.CHEN Bo, WEI Zhonghua, LI Bin, et al. Research and application progress of silicon nitride ceramics in four major fields[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(4): 1404–1415.
10
]

近年来,氮化硅陶瓷的研究在微观机理和成型工艺方面取得重要进展,为其性能提升及应用奠定了坚实基础。Zhang等[   ZHANG J, LIU G H, CUI W, et al. Plastic deformation in silicon nitride ceramics via bond switching at coherent interfaces[J]. Science, 2022, 378(6618): 371–376.
11
]
通过控制烧结工艺,制备了具有相干α/β相界面的氮化硅陶瓷。在该结构中,当材料受到外加载荷时,α相和β相之间会通过键的断裂和重新键合发生相变,这一过程被称为键转换,这种相变机制使得材料在不产生裂纹的情况下耗散能量,为解决氮化硅陶瓷的脆性问题提供了新思路。Ziegler等[   ZIEGLER A, IDROBO J C, CINIBULK M K, et al. Interface structure and atomic bonding characteristics in silicon nitride ceramics[J]. Science, 2004, 306(5702): 1768–1770.
12
]
使用扫描透射电子显微镜(STEM)和电子能量损失光谱(EELS)研究了稀土元素在氮化硅陶瓷界面上的原子键合方式,发现不同稀土元素根据其原子大小、电子结构在界面处以不同方式键合,该研究揭示了界面微结构对氮化硅陶瓷力学性能的重要影响。Zhou等[   ZHOU Y, HYUGA H, KUSANO D, et al. A tough silicon nitride ceramic with high thermal conductivity[J]. Advanced Materials, 2011, 23(39): 4563–4567.
13
]
通过反应烧结合成氮化硅陶瓷,成功降低了晶格氧含量,并调节氮化气氛以控制晶粒生长,形成了β–Si3N4晶粒的互锁结构,这种互锁结构不仅提高了氮化硅陶瓷的热导率(177 W·m–1·K–1),还通过裂纹偏转和桥接机制增强了其断裂韧性(11.2 MPa·m1/2)。除性能机理外,氮化硅陶瓷的成型工艺也在不断改进,尤其是增材制造技术的引入,为该材料在复杂结构成型、个性化定制生产和成本控制方面提供了新的可能,进一步提升了氮化硅陶瓷在航空航天领域的应用潜力。

随着航空航天领域的快速发展,更严苛的服役环境对氮化硅的结构和性能提出了更高要求。然而,目前氮化硅陶瓷在成型工艺和性能提升方面仍然存在瓶颈问题[   HARRER W, DANZER R, MORRELL R. Influence of surface defects on the biaxial strength of a silicon nitride ceramic—Increase of strength by crack healing[J]. Journal of the European Ceramic Society, 2012, 32(1): 27–35.
  WANG C M, PAN X Q, RÜHLE M, et al. Silicon nitride crystal structure and observations of lattice defects[J]. Journal of Materials Science, 1996, 31(20): 5281–5298.
  JANG J, LEE Y, CHEONG H, et al. Defects and mechanical properties of silicon nitride ball bearings for electric vehicle reducers[J]. World Electric Vehicle Journal, 2024, 15(6): 272.
14-16
]
。例如,复杂结构氮化硅陶瓷的增材制造工艺尚未发展成熟,成型质量难以保证;后处理过程中容易引发微裂纹和加工损伤,导致其力学性能降低;烧结过程中晶粒尺寸及内部缺陷难以控制,造成最终产物性能不均等。这些不确定因素导致氮化硅陶瓷难以在高温、高压、高机械应力下长期稳定服役,限制了该材料在航空航天领域的广泛应用。

为克服上述问题,亟须通过改进成型工艺、组织结构、热处理方式来提升氮化硅的整体性能。其中,了解氮化硅陶瓷的研究进展尤为重要,通过掌握最新研究内容,不仅能够了解国内外氮化硅陶瓷的性能现状,还能为现有技术难题提供解决思路。因此,本文对近年来氮化硅陶瓷的研究进行了系统综述,主要包括氮化硅陶瓷的成型工艺、性能检测方法、性能调控研究及在航空航天领域的应用。通过对当前研究现状的系统分析,展望了氮化硅陶瓷在航空航天领域的发展前景,并提出相关建议。

1     氮化硅陶瓷成型进展

航空航天结构件需具备复杂结构、高精度及良好的表面质量,这对氮化硅陶瓷的成型技术提出较高要求。了解氮化硅陶瓷的成型方式及优缺点对其成型工艺的改进及生产具有一定指导意义。目前氮化硅陶瓷的成型工艺主要包括模压成型、注射成型、挤出成型、光固化3D打印成型、熔融沉积成型等[   占丽娜, 刘耀, 胡文, 等. 光固化工艺参数对氮化硅陶瓷成型性能的影响[J]. 中国陶瓷工业, 2024, 31(1): 6–10.ZHAN Lina, LIU Yao, HU Wen, et al. Effect of UV curing process parameters on molding properties of silicon nitride ceramics[J]. China Ceramic Industry, 2024, 31(1): 6–10.
  冯相蓺, 任桂莹, 王东, 等. 光固化3D打印氮化硅陶瓷研究进展[J]. 材料导报, 2023, 37(S2): 109–114.FENG Xiangyi, REN Guiying, WANG Dong, et al. Research progress of light-cured 3D printed silicon nitride ceramics[J]. Materials Reports, 2023, 37(S2): 109–114.
  周庆旋, 汪洋, 韩卓群, 等. 氮化硅陶瓷光固化3D打印成形研究进展[J]. 硅酸盐通报, 2024, 43(5): 1588–1599.ZHOU Qingxuan, WANG Yang, HAN Zhuoqun, et al. Research progress of stereolithography 3D printing of silicon nitride ceramics[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(5): 1588–1599.
  IYER S, MCINTOSH J, BANDYOPADHYAY A, et al. Microstructural characterization and mechanical properties of Si3N4 formed by fused deposition of ceramics[J]. International Journal of Applied Ceramic Technology, 2008, 5(2): 127–137.
  RANGARAJAN S, QI G, VENKATARAMAN N, et al. Powder processing, rheology, and mechanical properties of feedstock for fused deposition of Si3N4 ceramics[J]. Journal of the American Ceramic Society, 2000, 83(7): 1663–1669.
17-21
]
。这些方法又可分为传统成型工艺和近年来新发展的增材制造工艺两类,每种工艺具有其独特的优缺点,如表1所示。

表1     氮化硅陶瓷成型工艺及其优缺点
Table 1     Molding process and advantages & disadvantages of silicon nitride ceramics
陶瓷成型工艺 成型方式 优点 缺点
模压成型 通过施加压力将粉末材料压制成型 操作简单,陶瓷致密度较高,性能稳定 脱模困难,易损伤坯体,难以形成复杂结构
注射成型 陶瓷粉末与有机粘结剂混合形成浆料,注入模具内成型 适合较复杂形状零件的生产,精度高 形状复杂性有限,依赖于模具,材料损耗较大
挤出成型 加压将陶瓷浆料挤出模具而成型 生产效率高,较好的尺寸稳定性 形状复杂性有限,挤出过程中易产生缺陷,影响坯体的致密性
光固化3D打印成型 数字光处理(DLP) 使用数字投影仪使光敏树脂逐层曝光固化 无模具限制,成型速度快,材料表面光滑 材料选择有限,尺寸限制,需要后处理
立体光刻(SLA) 激光逐点扫描光敏树脂,逐层固化 无模具限制,精度高,成型速度快,材料表面光滑 设备成本高,材料选择有限,需要后处理
双光子聚合(TPP) 利用超快激光在三维空间内引发光敏聚合物的聚合反应 无模具限制,极高的分辨率,适合微纳米结构制造 设备成本高,材料选择有限
熔融沉积 加热熔化材料,由喷嘴挤出并逐层沉积 材料多样,成本低,操作简单 精度较低,各向异性强
直写成型 通过喷嘴挤出浆料或膏体,并在沉积后固化 多材料兼容,适合制备复杂的几何形状,材料使用效率高 分辨率有限,后处理复杂,速度较慢
选择性激光烧结 通过激光逐层烧结粉末材料形成三维物体 材料多样,无需支撑结构,陶瓷力学性能好 材料表面粗糙,需要后处理,成本高
粘结剂喷射成型 喷射粘结剂至粉末床,逐层粘结粉末而成型 速度快,适合多材料打印,成本低 材料强度低,精度低,后处理复杂

1.1     氮化硅陶瓷传统成型工艺

1.1.1     模压成型

氮化硅陶瓷传统成型工艺主要包括模压成型和注射成型,如图1所示。其中,模压成型的基本原理见图1(a)[   ZOU C, OU Y X, ZHOU W L, et al. Microstructure and properties of hot pressing sintered SiC/Y3Al5O12 composite ceramics for dry gas seals[J]. Materials, 2024, 17(5): 1182.
22
]
,其优点主要包括成型坯体尺寸精确、操作简便、粘结剂含量较低、在干燥和烧结过程中收缩较小等,特别适合制备形状简单、长径比小的氮化硅产品[   盛鹏飞, 聂光临, 黎业华, 等. 高导热氮化铝陶瓷成型技术的研究进展[J]. 陶瓷学报, 2020, 41(6): 771–782.SHENG Pengfei, NIE Guanglin, LI Yehua, et al. Research progress in shaping technology of AlN ceramics with high thermal conductivity[J]. Journal of Ceramics, 2020, 41(6): 771–782.
23
]
。此外,该工艺还具有较高的生产效率,适用于大规模生产,能够有效降低生产成本。

图1     氮化硅陶瓷传统成型工艺原理图
Fig.1     Schematic diagram of conventional molding process for silicon nitride ceramics

模压成型主要分为干压成型和冷等静压成型两种方式。其中,干压成型通过对模具施加压力,使氮化硅颗粒紧密接触形成致密坯体。该成型工艺以简单高效的特点而被广泛应用于中小型简单结构陶瓷件的生产。然而,尽管该工艺可以形成均匀的坯体,但常因颗粒间接触不够牢固而导致结构缺失,影响最终成型效果。

冷等静压成型是一种高效制备氮化硅陶瓷的方法,在该工艺中,首先将氮化硅颗粒与适量烧结助剂(如Y2O3和MgO)混合,然后将混合后的粉体装入柔性模具中,通过液体介质(如油或水)施加均匀的静态压力(通常为200~400 MPa),均匀的压力分布能够有效消除颗粒之间的空隙,确保坯体均匀致密。Wang等[   WANG W D, YAO D X, CHEN H B, et al. ZrSi2–MgO as novel additives for high thermal conductivity of β–Si3N4 ceramics[J]. Journal of the American Ceramic Society, 2020, 103(3): 2090–2100.
24
]
以α–Si3N4、MgO、ZrSi2作为原材料,以无水乙醇作为分散介质,经造粒后在300 MPa的压力下通过冷等静压工艺制备氮化硅陶瓷素坯,最终成型的素坯表面平整,烧结后基本无缺陷产生。田云龙等[   田云龙, 祁海, 张培志, 等. 水基干压成型高导热氮化硅陶瓷的结构和性能[J]. 机械工程材料, 2023, 47(9): 46–51.TIAN Yunlong, QI Hai, ZHANG Peizhi, et al. Structure and properties of high thermal conductivity silicon nitride ceramics by aqueous dry pressing[J]. Materials for Mechanical Engineering, 2023, 47(9): 46–51.
25
]
以水为分散介质,利用冷等静压成型工艺制备了高导热氮化硅陶瓷,结果表明,分散介质对素坯的成型密度影响较小,粉体颗粒的形状和尺寸差异是影响氮化硅素坯相对密度的主要因素。Li等[   LI Y S, KIM H N, WU H B, et al. Microstructure and thermal conductivity of gas-pressure-sintered Si3N4 ceramic: The effects of Y2O3 additive content[J]. Journal of the European Ceramic Society, 2021, 41(1): 274–283.
26
]
将干压成型和冷等静压成型进行结合制备氮化硅陶瓷,首先通过干压成型形成坯体,随后在液体介质中施加均匀压力,该工艺能够有效降低素坯内孔隙率、促进颗粒结合,显著提高了氮化硅陶瓷的致密性和均匀性。

通常,模压成型和烧结工艺之间密不可分,将模压成型与烧结工艺进行结合,通过加热加压的方式获得高密度和力学性能优异的氮化硅陶瓷。Poorteman等[   POORTEMAN M, DESCAMPS P, CAMBIER F, et al. Anisotropic properties in hot pressed silicon nitride—Silicon carbide platelet reinforced composites[J]. Journal of the European Ceramic Society, 1999, 19(13–14): 2375–2379.
27
]
通过热压烧结工艺调控氮化硅陶瓷的微观组织,成功制得高密度氮化硅复合陶瓷,其力学性能显著提升(断裂韧性可达7.7 MPa·m1/2)。此外,Ye等[   YE C C, JIANG Y, YUE X Y, et al. Effect of temperature and pre-sintering on phase transformation, texture and mechanical properties of silicon nitride ceramics[J]. Materials Science and Engineering: A, 2018, 731: 140–148.
28
]
探究了热压成型工艺中温度对β–Si3N4相变率及力学性能的影响,结果表明,成型温度为1550 ℃时,β–Si3N4的相变率最高(66.6%),在1650 ℃时,氮化硅复合陶瓷的致密度显著提高,抗弯强度、硬度和断裂韧性分别为911 MPa、16.23 GPa和4.9 MPa·m1/2

1.1.2     注射成型

注射成型是将氮化硅颗粒与适量的粘结剂(如聚合物)混合形成均匀浆料,然后在加热和加压条件下将浆料注入模具内,待冷却后去除模具,从而形成所需形状的氮化硅陶瓷素坯,其原理如图1(b)所示。该方法对注射浆料的流动性和黏度要求较高,若控制不当,可能产生气泡,最终导致成型缺陷。此外,该工艺在很大程度上受模具影响,模具的设计直接决定了氮化硅陶瓷的形状结构。

为提高氮化硅陶瓷注射成型的效果,可以考虑以下几种改进方法:首先,优化浆料成分,通过调整粒径和聚合物比例改善氮化硅陶瓷浆料的流动性,从而提高素坯的成型效果[   周刚, 奉龙彪, 周志勇, 等. 陶瓷粉末注射成型工艺及研究进展[J]. 材料研究与应用, 2018, 12(2): 75–81.ZHOU Gang, FENG Longbiao, ZHOU Zhiyong, et al. Ceramic powder injection molding technology and its recent development[J]. Materials Research and Application, 2018, 12(2): 75–81.
  崔凯, 张永翠, 宋涛, 等. 不同参数对注射成型异形结构陶瓷的影响[J]. 山东陶瓷, 2022, 45(5): 65–70.CUI Kai, ZHANG Yongcui, SONG Tao, et al. Influence of different parameters on injection-molded heteroideus-shaped structural ceramics[J]. Shandong Ceramics, 2022, 45(5): 65–70.
29-30
]
;其次,改进模具设计,通过采用更高精度的模具和合理的冷却系统减少成型过程中产生的缺陷;最后,优化成型过程,通过控制注射速度和温度等工艺参数,尽量避免气孔和裂纹的产生。Gal等[   GAL C W, SONG G W, BAEK W H, et al. Fabrication of pressureless sintered Si3N4 ceramic balls by powder injection molding[J]. Ceramics International, 2019, 45(5): 6418–6424.
31
]
利用阿伦尼乌斯定律和可塑性指数对氮化硅浆料进行研究,通过优化注射成型工艺参数,在注射温度160 ℃、模具温度55 ℃、注射速度10 mm/s时成功制备了无缺陷的氮化硅球体素坯。Lenz等[   LENZ J, ENNETI R K, ONBATTUVELLI V, et al. Powder injection molding of ceramic engine components for transportation[J]. JOM, 2012, 64(3): 388–392.
32
]
通过有限元法模拟了氮化硅陶瓷注射成型过程,并分析了发动机部件在成型过程中容易产生缺陷的区域,最终制备出无明显缺陷且密度高达99%的氮化硅陶瓷发动机转子。申常胜等[   申常胜, 王瑞强, 李镔, 等. 氮化硅陶瓷的注射成型工艺研究[J]. 硅酸盐通报, 2023, 42(8): 2915–2921.SHEN Changsheng, WANG Ruiqiang, LI Bin, et al. Injection molding process of silicon nitride ceramics[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(8): 2915–2921.
33
]
探究了浆料固含量对注射成型制备氮化硅陶瓷素坯密度的影响,结果表明,当浆料质量分数为52.42%时,素坯表面质量最佳,且最终形成的氮化硅陶瓷性能最优。Yang等[   YANG X F, YANG J H, XU X W, et al. Injection molding of ultra-fine Si3N4 powder for gas-pressure sintering[J]. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(6): 654–659.
34
]
以超细Si3N4颗粒(d50为0.34 µm)作为主要原料,研究了浆料流动性对成型效果的影响,结果表明,当固相体积分数低于50%时,浆料具有较好的流动性(剪切速率为100 s–1时的黏度小于1000 Pa·s),可用于氮化硅陶瓷的注射成型。

1.2     光固化3D打印成型

增材制造技术为氮化硅陶瓷的成型提供了一种全新的技术方案[   AGUIRRE T G, CRAMER C L, MITCHELL D J. Review of additive manufacturing and densification techniques for the net- and near net-shaping of geometrically complex silicon nitride components[J]. Journal of the European Ceramic Society, 2022, 42(3): 735–743.
  DONG X J, WU J Q, YU H L, et al. Additive manufacturing of silicon nitride ceramics: A review of advances and perspectives[J]. International Journal of Applied Ceramic Technology, 2022, 19(6): 2929–2949.
  CRAMER C L, IONESCU E, GRACZYK-ZAJAC M, et al. Additive manufacturing of ceramic materials for energy applications: Road map and opportunities[J]. Journal of the European Ceramic Society, 2022, 42(7): 3049–3088.
35-37
]
,与传统成型方法相比,增材制造技术可以设计和生产更复杂的几何结构[   HUANG R J, JIANG Q G, WU H D, et al. Fabrication of complex shaped ceramic parts with surface-oxidized Si3N4 powder via digital light processing based stereolithography method[J]. Ceramics International, 2019, 45(4): 5158–5162.
38
]
,这对于航空航天领域复杂结构件的生产尤为重要。近年来,光固化增材制造成型技术迅速发展,目前已成为陶瓷增材的主流方向,以SLA、DLP为主,其成型原理分别如图2(a)和(b)所示[   CHAUDHARY R P, PARAMESWARAN C, IDREES M, et al. Additive manufacturing of polymer-derived ceramics: Materials, technologies, properties and potential applications[J]. Progress in Materials Science, 2022, 128: 100969.
39
]
。Altun等[   ALTUN A A, PROCHASKA T, KONEGGER T, et al. Dense, strong, and precise silicon nitride-based ceramic parts by lithography-based ceramic manufacturing[J]. Applied Sciences, 2020, 10(3): 996.
40
]
通过研究首次证明了利用光固化成型技术制备氮化硅陶瓷的可行性,并成功制得氮化硅陶瓷复杂结构件,如图2(c)所示。Huang等[   HUANG Z Y, LIU L Y, YUAN J M, et al. Stereolithography 3D printing of Si3N4 cellular ceramics with ultrahigh strength by using highly viscous paste[J]. Ceramics International, 2023, 49(4): 6984–6995.
41
]
利用SLA成型技术打印了具有复杂结构的Si3N4蜂窝陶瓷,研究表明,当刮刀方向与打印方向成45°时,可以减少结构缺失,提高素坯成型效率。

图2     光固化成型原理及氮化硅陶瓷
Fig.2     Principle of vat photopolymerization molding and silicon nitride ceramics

光固化增材制造通过数字化设计和直接打印减少了传统制造工艺中的模具限制和后续加工步骤,使设计理念更快速地转化为实际产品,这种生产灵活性对于满足航空航天领域复杂结构件的需求具有重要意义。然而,光固化增材制造在制备氮化硅陶瓷时也面临一些明显的弊端,例如3D打印本身的堆积特性使陶瓷材料层间结合弱(图3(a)[   LI Q L, HOU W Q, LIANG J J, et al. Controlling the anisotropy behaviour of 3D printed ceramic cores: From intralayer particle distribution to interlayer pore evolution[J]. Additive Manufacturing, 2022, 58: 103055.
42
]
),内部存在较多孔隙和缺陷(图3(b)[   LI Q L, AN X L, LIANG J J, et al. Balancing flexural strength and porosity in DLP-3D printing Al2O3 cores for hollow turbine blades[J]. Journal of Materials Science & Technology, 2022, 104: 19–32.
43
]
);由于氮化硅陶瓷的低本征表面电荷[   HUANG Y, ZHOU L J, TANG Q, et al. Water-based gelcasting of surface-coated silicon nitride powder[J]. Journal of the American Ceramic Society, 2001, 84(4): 701–707.
  LUTHER E E, LANGE F F, PEARSON D S. “Alumina” surface modification of silicon nitride for colloidal processing[J]. Journal of the American Ceramic Society, 1995, 78(8): 2009–2014.
44-45
]
、高折射率和吸光性,使得成型困难(图3(c)[   WU X Q, XU C J, ZHANG Z M. Preparation and optimization of Si3N4 ceramic slurry for low-cost LCD mask stereolithography[J]. Ceramics International, 2021, 47(7): 9400–9408.
46
]
)等。为解决以上难题,Wu等[   WU X Q, XU C J, ZHANG Z M. Development and analysis of a high refractive index liquid phase Si3N4 slurry for mask stereolithography[J]. Ceramics International, 2022, 48(1): 120–129.
47
]
开发了一种适用于低成本LCD MSL设备的氮化硅陶瓷浆料,该浆料中加入了20%质量分数的高折射率单体(ACMO)和30%质量分数的非反应溶剂(POE),通过调整液相折射率使浆料透射深度提高至35 μm,提升了固化厚度。Huang等[   HUANG R J, JIANG Q G, WU H D, et al. Fabrication of complex shaped ceramic parts with surface-oxidized Si3N4 powder via digital light processing based stereolithography method[J]. Ceramics International, 2019, 45(4): 5158–5162.
38
]
在1150 ℃和1200 ℃下对氮化硅粉末进行表面氧化处理,在500 mJ/cm2的曝光能量下,氧化后浆料的固化深度由34 µm提高至68 µm,随后利用DLP工艺制备了相对密度超过90%的复杂结构氮化硅陶瓷。Chen等[   CHEN Z H, DUAN W Y, ZHANG D Y, et al. Fabrication of broadband wave-transparent Si3N4 ceramics with octet-truss lattice structure by vat photopolymerization 3D printing technology[J]. Journal of the European Ceramic Society, 2024, 44(4): 2026–2036.
48
]
选择了吸光度低、粒径大的β–Si3N4作为原料,克服了氮化硅浆料对固化深度的限制,利用DLP工艺成功打印出高精度的氮化硅陶瓷。Xing等[   XING H Y, ZOU B, LIU X Y, et al. Fabrication strategy of complicated Al2O3–Si3N4 functionally graded materials by stereolithography 3D printing[J]. Journal of the European Ceramic Society, 2020, 40(15): 5797–5809.
49
]
基于SLA成型原理,建立了氮化硅含量与浆料固化深度之间的数学关系,通过优化打印参数避免了Al2O3–Si3N4陶瓷浆料因固化收缩引发的结构变形问题。

图3     光固化成型缺陷
Fig.3     Defects of vat photopolymerization molding

1.3     其他成型方法

除上述几种主流的陶瓷成型工艺外,氮化硅陶瓷制备还包括凝胶注模成型、挤出成型、熔融沉积成型、水凝胶悬浮挤压等工艺。不同的生产工艺各有利弊,但都为氮化硅陶瓷的成型提供了可行的途径。Hu等[   HU S J, LI A, FENG B, et al. A non-sintering fabrication method for porous Si3N4 ceramics via sol hydrothermal process[J]. Ceramics International, 2018, 44(16): 19699–19705.
50
]
提出了一种高孔隙率、高机械强度的多孔氮化硅陶瓷非烧结制备方法,如图4所示,通过溶胶水热法制备多孔氮化硅陶瓷,该工艺避免了高温烧结步骤,为氮化硅陶瓷的轻量化制备提出了新的解决方案。

图4     溶胶水热法制备多孔氮化硅陶瓷过程示意图[   HU S J, LI A, FENG B, et al. A non-sintering fabrication method for porous Si3N4 ceramics via sol hydrothermal process[J]. Ceramics International, 2018, 44(16): 19699–19705.
50
]
Fig.4     Schematic diagram of the preparing process for porous silicon nitride ceramics by sol hydrothermal method[   HU S J, LI A, FENG B, et al. A non-sintering fabrication method for porous Si3N4 ceramics via sol hydrothermal process[J]. Ceramics International, 2018, 44(16): 19699–19705.
50
]

Yang等[   YANG Y T, YANG Z H, DUAN X M, et al. Large-size Si3N4 ceramic fabricated by additive manufacturing using long-term stable hydrogel-based suspensions[J]. Additive Manufacturing, 2023, 69: 103534.
51
]
报道了一种通过水凝胶悬浮挤压工艺制备大尺寸氮化硅陶瓷的方法,利用该方法制备了高度180 mm、直径90 mm、壁厚1.8 mm的单壁锥体,如图5(a)所示。Iyer等[   IYER S, MCINTOSH J, BANDYOPADHYAY A, et al. Microstructural characterization and mechanical properties of Si3N4 formed by fused deposition of ceramics[J]. International Journal of Applied Ceramic Technology, 2008, 5(2): 127–137.
20
]
利用FDC工艺制备氮化硅陶瓷并对其工艺参数进行研究,发现适宜的FDC成型参数(喷嘴直径250 μm、液化器温度185 ℃、单层厚度254 μm)可以得到均匀、致密的氮化硅陶瓷并提高其力学性能。Niu等[   NIU F R, YANG X L, LI Y B, et al. Fused deposition modeling of Si3N4 ceramics: A cost-effective 3D-printing route for dense and high performance non-oxide ceramic materials[J]. Journal of the European Ceramic Society, 2022, 42(15): 7369–7376.
52
]
开发了氮化硅陶瓷的FDM技术,有效避免了SLA和DLP工艺中紫外光散射的问题,通过优化挤出直径、层厚、打印温度、打印速度等工艺参数,成功制得曲面涡轮转子(图5(b))。此外,深圳升华三维科技有限公司还报道了一种粉末挤出打印技术(PEP),将3D打印与陶瓷注射成型相结合,该工艺不仅实现了几何结构的高度自由设计而且还降低了开发、生产成本,对于推动氮化硅陶瓷的应用具有重要意义。

图5     其他成型工艺制备的氮化硅陶瓷结构件
Fig.5     Silicon nitride ceramic components prepared by other modeling processes

随着成型技术的不断发展,特别是增材制造技术的引入,氮化硅陶瓷在航空航天领域的应用潜力显著提升。传统成型方法与增材制造技术的结合,使得氮化硅陶瓷不仅能满足所需的性能要求,还能实现复杂结构的制备。未来,这些成型工艺将为氮化硅陶瓷在航空航天领域的应用带来更多创新和可能。

2     氮化硅陶瓷性能现状及检测方法

在航空航天领域服役过程中,氮化硅陶瓷通常面临高温高压、冷热循环、高冲刷等极端环境,其性能直接影响服役过程中的稳定性和可靠性,性能优异的氮化硅陶瓷对航空航天领域的发展具有重要意义。

2.1     氮化硅陶瓷性能概述

Bouville等[   BOUVILLE F, MAIRE E, MEILLE S, et al. Strong, tough and stiff bioinspired ceramics from brittle constituents[J]. Nature Materials, 2014, 13(5): 508–514.
53
]
综述了一系列工程材料和天然材料的比强度与比韧性,结果如图6所示,在同类非金属工程材料中,氮化硅陶瓷表现出极高的性能优越性。据统计,氮化硅陶瓷的理论密度约为3.12 g/cm3,维氏硬度在1700~2200HV之间,弯曲强度可达1200~1800 MPa,断裂韧性为6~8 MPa·m1/2,热导率为18~155 W·m–1·K–1,抗压强度可达3000~4000 MPa,且其抗热震性能极佳(理论上可承受超过1000 ℃的温度突变),这些优异的理论性能为氮化硅陶瓷在航空航天领域的应用提供了坚实的基础。但在实际应用中,由于缺陷的存在,氮化硅陶瓷的实际性能通常达不到理论值,在一定程度上限制了其应用范围。

图6     不同工程材料和天然材料的比强度与比韧性[   BOUVILLE F, MAIRE E, MEILLE S, et al. Strong, tough and stiff bioinspired ceramics from brittle constituents[J]. Nature Materials, 2014, 13(5): 508–514.
53
]
Fig.6     Specific strength and specific toughness of different engineering and natural materials[   BOUVILLE F, MAIRE E, MEILLE S, et al. Strong, tough and stiff bioinspired ceramics from brittle constituents[J]. Nature Materials, 2014, 13(5): 508–514.
53
]

目前,国内外对氮化硅陶瓷的性能检测主要集中在常温、常压和瞬时条件(工况)下,常通过硬度[   ZHANG X Q, CUI S W, MA S L, et al. Hardness, elastic modulus and their correlations in the transparent silicon nitrides[J]. Materials Today Communications, 2024, 38: 108320.
  JIANG J Z, KRAGH F, FROST D J, et al. Hardness and thermal stability of cubic silicon nitride[J]. Journal of Physics: Condensed Matter, 2001, 13(22): L515–L520.
54-55
]
、断裂韧性[   FURUSHIMA R, MARUYAMA Y, NAKASHIMA Y, et al. Fracture toughness evaluation of silicon nitride from microstructures via convolutional neural network[J]. Journal of the American Ceramic Society, 2023, 106(2): 817–821.
56
]
、弯曲强度[   LI J B, JIANG Q G, PAN Z F, et al. Fabrication of silicon nitride with high thermal conductivity and flexural strength by hot-pressing flowing sintering[J]. International Journal of Applied Ceramic Technology, 2024, 21(4): 2841–2849.
57
]
、热导率[   LI Y S, KIM H N, WU H B, et al. Enhanced thermal conductivity in Si3N4 ceramic with the addition of Y2Si4N6C[J]. Journal of the American Ceramic Society, 2018, 101(9): 4128–4136.
58
]
、抗热震性能[   ZHENG G M, ZHAO J, JIA C, et al. Thermal shock and thermal fatigue resistance of Sialon–Si3N4 graded composite ceramic materials[J]. International Journal of Refractory Metals and Hard Materials, 2012, 35: 55–61.
59
]
来评估氮化硅陶瓷的性能。上述方法已发展成熟且形成相应的检测标准,如GB/T 16534—2009(硬度)、GB/T 23806—2009(断裂韧性)、GB/T 6569—2006(弯曲强度)、GB/T 25995—2010(密度)、GB/T 39826—2021(热导率)、GB/T 37246—2018(抗热震性能)。基于上述标准,Ye等[   YE C C, LIU Y S, WANG C C, et al. Investigation on thermal conductivity and mechanical properties of Si3N4 ceramics via one-step sintering[J]. Ceramics International, 2021, 47(23): 33353–33362.
60
]
研究了Si含量对氮化硅陶瓷热导率和力学性能的影响,结果表明,随着Si含量的增加,热导率呈先增加后降低的趋势,其中热导率最大值为66 W·m–1·K–1,断裂韧性最大值为12 MPa·m1/2。Luo等[   LUO C X, ZHANG Y X, DENG T F. Pressureless sintering of high performance silicon nitride ceramics at 1620 ℃[J]. Ceramics International, 2021, 47(20): 29371–29378.
61
]
通过无压烧结工艺制备氮化硅陶瓷,经检测,其弯曲强度、硬度、断裂韧性和热导率分别为556.73 MPa、9.07 GPa、6.02 MPa·m1/2和47.59 W·m–1·K–1。Yin等[   YIN S, JIANG S C, PAN L M, et al. Preparation, mechanical and thermal properties of Si3N4 ceramics by gelcasting using low-toxic DMAA gelling system and gas pressure sintering[J]. Ceramics International, 2018, 44(18): 22412–22420.
62
]
通过水凝胶浇铸法制备氮化硅陶瓷,当陶瓷体积分数为50%时,其性能最佳(体积密度3.25 g/cm3、孔隙率0.67%、弯曲强度898.92 MPa、断裂韧性6.42 MPa·m1/2、热导率34.69 W·m–1·K–1)。Li等[   LI P C, WANG T, GUO R P, et al. Effect of sintering temperature on hardness gradient of Si3N4 ceramics fabricated by spark plasma sintering[J]. Vacuum, 2023, 216: 112479.
63
]
通过火花等离子烧结工艺制备氮化硅陶瓷,经检测发现,氮化硅的硬度在16.93~21.16 GPa之间。刘家宝等[   刘家宝, 宋金鹏, 高姣姣, 等. 烧结温度对氮化硅层状陶瓷材料微观组织和力学性能的影响[J]. 热加工工艺, 2024, 53(5): 84–90.LIU Jiabao, SONG Jinpeng, GAO Jiaojiao, et al. Effects of sintering temperature on microstructure and mechanical properties of silicon nitride layered ceramics[J]. Hot Working Technology, 2024, 53(5): 84–90.
64
]
采用交替浮层技术成功制备了层状氮化硅陶瓷复合材料,当烧结温度为1550 ℃时,其弯曲强度最高(841.79 MPa),当烧结温度为1650 ℃时,其断裂韧性最高(7.844 MPa·m1/2)。Wang等[   WANG L, WANG L Y, HAO Z D, et al. Microstructure and properties of silicon nitride ceramics fabricated by vat photopolymerization in combination with pressureless sintering[J]. Ceramics International, 2024, 50(7): 10485–10496.
65
]
利用光固化增材制造工艺制备氮化硅陶瓷素坯,在1750 ℃下烧结2 h后,氮化硅陶瓷的性能最佳,弯曲强度为(613.3±53.1)MPa,断裂韧性为(7.5±0.3)MPa·m1/2

基于上述总结和相关文献,对氮化硅陶瓷在室温下的强度和韧性进行统计,如表2所示[   ZOU R F, BI L N, HUANG Y, et al. A biocompatible silicon nitride dental implant material prepared by digital light processing technology[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 141: 105756.
6
  YE C C, JIANG Y, YUE X Y, et al. Effect of temperature and pre-sintering on phase transformation, texture and mechanical properties of silicon nitride ceramics[J]. Materials Science and Engineering: A, 2018, 731: 140–148.
28
  LUO C X, ZHANG Y X, DENG T F. Pressureless sintering of high performance silicon nitride ceramics at 1620 ℃[J]. Ceramics International, 2021, 47(20): 29371–29378.
  YIN S, JIANG S C, PAN L M, et al. Preparation, mechanical and thermal properties of Si3N4 ceramics by gelcasting using low-toxic DMAA gelling system and gas pressure sintering[J]. Ceramics International, 2018, 44(18): 22412–22420.
61-62
  刘家宝, 宋金鹏, 高姣姣, 等. 烧结温度对氮化硅层状陶瓷材料微观组织和力学性能的影响[J]. 热加工工艺, 2024, 53(5): 84–90.LIU Jiabao, SONG Jinpeng, GAO Jiaojiao, et al. Effects of sintering temperature on microstructure and mechanical properties of silicon nitride layered ceramics[J]. Hot Working Technology, 2024, 53(5): 84–90.
  WANG L, WANG L Y, HAO Z D, et al. Microstructure and properties of silicon nitride ceramics fabricated by vat photopolymerization in combination with pressureless sintering[J]. Ceramics International, 2024, 50(7): 10485–10496.
  李成卓, 邓腾飞. 氧化铁对氮化硅陶瓷烧结的影响[J]. 陶瓷学报, 2024, 45(3): 558–565.LI Chengzhuo, DENG Tengfei. Effect of iron oxide on sintering behavior of silicon nitride ceramics[J]. Journal of Ceramics, 2024, 45(3): 558–565.
  ZHANG Q, WANG W L, ZHANG Z X, et al. Enhancing fracture toughness of silicon nitride ceramics by addition of β–Si3N4 whisker and MXene[J]. Ceramics International, 2024, 50(19): 35695–35705.
  FU Q L, FU J X, WANG J, et al. Defects control of silicon nitride ceramics by oscillatory pressure sintering and consequent hot isotropic pressing[J]. Ceramics International, 2024, 50(2): 3276–3280.
  YE C C, YUE X Y, JIANG Y, et al. Effect of different preparation methods on the microstructure and mechanical properties of Si3N4 ceramic composites[J]. Ceramics International, 2018, 44(4): 3664–3671.
  YIN S, PAN L M, LIU Y, et al. Effect of β–Si3N4 seeds on microstructure and properties of porous Si3N4 ceramics prepared by gelcasting using DMAA system[J]. Ceramics International, 2020, 46(4): 4924–4932.
  YU J J, WEI W X, GUO W M, et al. Enhanced mechanical properties of Si3N4 ceramics with ZrB2–B binary additives prepared at low temperature[J]. Journal of the European Ceramic Society, 2019, 39(15): 5102–5105.
  RATZKER B, SOKOL M, KALABUKHOV S, et al. High-pressure spark plasma sintering of silicon nitride with LiF additive[J]. Journal of the European Ceramic Society, 2018, 38(4): 1271–1277.
  LEE S H. Densification, mass loss, and mechanical properties of low-temperature pressureless-sintered Si3N4 with LiYO2 additive: The effects of additive content and annealing[J]. International Journal of Applied Ceramic Technology, 2010, 7(6): 881–888.
  ZHUANG Y H, SUN F, ZHOU L J, et al. The influence of magnesium compounds on the properties of silicon nitride ceramics[J]. International Journal of Applied Ceramic Technology, 2024, 21(3): 2273–2287.
  HU Y Y, CHEN Z Q, ZHANG J J, et al. Preparation and mechanical properties of Si3N4 nanocomposites reinforced by Si3N4@rGO particles[J]. Journal of the American Ceramic Society, 2019, 102(11): 6991–7002.
  MENG Q Y, ZHAO Z H, SUN Y Q, et al. Low temperature pressureless sintering of dense silicon nitride using BaO–Al2O3–SiO2 glass as sintering aid[J]. Ceramics International, 2017, 43(13): 10123–10129.
  DUAN Y S, ZHANG J X, LI X G, et al. Low temperature pressureless sintering of silicon nitride ceramics for circuit substrates in powder electronic devices[J]. Ceramics International, 2018, 44(4): 4375–4380.
  KITAYAMA M, HIRAO K, TORIYAMA M, et al. High Hardness α–Si3N4 ceramics reinforced by rod-like β–Si3N4 seed particles[J]. Journal of the Ceramic Society of Japan, 2000, 108(1259): 646–649.
64-78
]
。结果表明,氮化硅陶瓷的室温强度和韧性存在显著差异,主要源于材料的成分、相组成、烧结工艺及后处理方法等因素的影响。这些研究数据揭示了氮化硅陶瓷性能的多样性,为该材料在航空航天领域的应用提供了可靠的数据支持。

表2     室温下氮化硅陶瓷的力学性能
Table 2     Mechanical properties of silicon nitride ceramics at room temperature
氮化硅陶瓷成分 硬度/GPa 弯曲强度/MPa 断裂韧性/(MPa·m1/2 文献
α–Si3N4、Y2O3、MgO、WC、GdF3 16.23 710 7.8 [   刘家宝, 宋金鹏, 高姣姣, 等. 烧结温度对氮化硅层状陶瓷材料微观组织和力学性能的影响[J]. 热加工工艺, 2024, 53(5): 84–90.LIU Jiabao, SONG Jinpeng, GAO Jiaojiao, et al. Effects of sintering temperature on microstructure and mechanical properties of silicon nitride layered ceramics[J]. Hot Working Technology, 2024, 53(5): 84–90.
64
]
α–Si3N4、Al2O3、MgF2、ZrO2、Fe2O3 13.34 360 2.4 [   李成卓, 邓腾飞. 氧化铁对氮化硅陶瓷烧结的影响[J]. 陶瓷学报, 2024, 45(3): 558–565.LI Chengzhuo, DENG Tengfei. Effect of iron oxide on sintering behavior of silicon nitride ceramics[J]. Journal of Ceramics, 2024, 45(3): 558–565.
66
]
Si3N4、Al2O3、Y2O3 12.6 613 7.5 [   WANG L, WANG L Y, HAO Z D, et al. Microstructure and properties of silicon nitride ceramics fabricated by vat photopolymerization in combination with pressureless sintering[J]. Ceramics International, 2024, 50(7): 10485–10496.
65
]
Si3N4、β–Si3N4晶须、Al2O3、Y2O3、CaF2、Ta3C4Tx 16.5 743 9.7 [   ZHANG Q, WANG W L, ZHANG Z X, et al. Enhancing fracture toughness of silicon nitride ceramics by addition of β–Si3N4 whisker and MXene[J]. Ceramics International, 2024, 50(19): 35695–35705.
67
]
α–Si3N4、Al2O3、Y2O3 1630 7.1 [   FU Q L, FU J X, WANG J, et al. Defects control of silicon nitride ceramics by oscillatory pressure sintering and consequent hot isotropic pressing[J]. Ceramics International, 2024, 50(2): 3276–3280.
68
]
α–Si3N4、Al2O3、Y2O3 19 800 6.0 [   KITAYAMA M, HIRAO K, TORIYAMA M, et al. High Hardness α–Si3N4 ceramics reinforced by rod-like β–Si3N4 seed particles[J]. Journal of the Ceramic Society of Japan, 2000, 108(1259): 646–649.
78
]
α–Si3N4、Al2O3、Y2O3 16.31 817 6.9 [   YE C C, YUE X Y, JIANG Y, et al. Effect of different preparation methods on the microstructure and mechanical properties of Si3N4 ceramic composites[J]. Ceramics International, 2018, 44(4): 3664–3671.
69
]
α–Si3N4、Al2O3、Y2O3、Al(NO3)3·9H2O、Y(NO3)3·6H2O 16.23 911 4.9 [   YE C C, JIANG Y, YUE X Y, et al. Effect of temperature and pre-sintering on phase transformation, texture and mechanical properties of silicon nitride ceramics[J]. Materials Science and Engineering: A, 2018, 731: 140–148.
28
]
α–Si3N4、β–Si3N4、Y2O3、Al2O3 378 8.6 [   YIN S, PAN L M, LIU Y, et al. Effect of β–Si3N4 seeds on microstructure and properties of porous Si3N4 ceramics prepared by gelcasting using DMAA system[J]. Ceramics International, 2020, 46(4): 4924–4932.
70
]
α–Si3N4、MgO、Yb2O3、ZrB2、B 17 675 7.2 [   YU J J, WEI W X, GUO W M, et al. Enhanced mechanical properties of Si3N4 ceramics with ZrB2–B binary additives prepared at low temperature[J]. Journal of the European Ceramic Society, 2019, 39(15): 5102–5105.
71
]
α–Si3N4、Y2O3、Al2O3、LiF 17.3 1720 6.0 [   RATZKER B, SOKOL M, KALABUKHOV S, et al. High-pressure spark plasma sintering of silicon nitride with LiF additive[J]. Journal of the European Ceramic Society, 2018, 38(4): 1271–1277.
72
]
Si3N4、Y2O3、Li2CO3、LiYO2 13.9 640 5.5 [   LEE S H. Densification, mass loss, and mechanical properties of low-temperature pressureless-sintered Si3N4 with LiYO2 additive: The effects of additive content and annealing[J]. International Journal of Applied Ceramic Technology, 2010, 7(6): 881–888.
73
]
α–Si3N4、Er2O3、MgO、MgF2、Mg2Si、Mg3N2 16.8 912 8.1 [   ZHUANG Y H, SUN F, ZHOU L J, et al. The influence of magnesium compounds on the properties of silicon nitride ceramics[J]. International Journal of Applied Ceramic Technology, 2024, 21(3): 2273–2287.
74
]
β–Si3N4 17.3 1116 10.4 [   HU Y Y, CHEN Z Q, ZHANG J J, et al. Preparation and mechanical properties of Si3N4 nanocomposites reinforced by Si3N4@rGO particles[J]. Journal of the American Ceramic Society, 2019, 102(11): 6991–7002.
75
]
α–Si3N4、BaCO3、Al2O3、SiO2 12.23 373 4.8 [   MENG Q Y, ZHAO Z H, SUN Y Q, et al. Low temperature pressureless sintering of dense silicon nitride using BaO–Al2O3–SiO2 glass as sintering aid[J]. Ceramics International, 2017, 43(13): 10123–10129.
76
]
Si3N4、TiO2、MgO 14 668 5.1 [   DUAN Y S, ZHANG J X, LI X G, et al. Low temperature pressureless sintering of silicon nitride ceramics for circuit substrates in powder electronic devices[J]. Ceramics International, 2018, 44(4): 4375–4380.
77
]
α–Si3N4、Y2O3、Al2O3 770 13.3 [   ZOU R F, BI L N, HUANG Y, et al. A biocompatible silicon nitride dental implant material prepared by digital light processing technology[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 141: 105756.
6
]
Si3N4 2.18 898 6.4 [   YIN S, JIANG S C, PAN L M, et al. Preparation, mechanical and thermal properties of Si3N4 ceramics by gelcasting using low-toxic DMAA gelling system and gas pressure sintering[J]. Ceramics International, 2018, 44(18): 22412–22420.
62
]
α–Si3N4、MgO、LiF 9.07 556 6.0 [   LUO C X, ZHANG Y X, DENG T F. Pressureless sintering of high performance silicon nitride ceramics at 1620 ℃[J]. Ceramics International, 2021, 47(20): 29371–29378.
61
]

2.2     高温性能检测现状

传统的室温性能检测方法难以真实反映氮化硅陶瓷在航空航天等极端服役环境下的实际表现。为了确保氮化硅结构件在高温复杂工况中能够稳定运行,亟须发展能够模拟真实服役条件的高温性能测试手段。然而,由于氮化硅陶瓷具有极高的使用温度和强度,目前的传统检测设备难以在超高温条件下稳定工作,导致材料在高温服役过程中的性能变化难以被准确评估。

针对氮化硅陶瓷在高温检测中面临的诸多技术挑战,国内外已开展了一系列探索,致力于研发更先进的高温测试设备,以提高设备在极端条件下的测试精度及准确性。例如,瑞典KANTHAL公司研发的二硅化钼加热元件(Kanthal Super1900)能够在短时间内达到1850 ℃的极限温度,配备该发热源后,力学性能试验机在1700 ℃下可完成拉伸、压缩、弯曲及持久蠕变等多种力学性能试验。德国NETZSCH和美国TA Instruments等公司研发的激光导热仪和高温力学测试仪器,为科研人员提供了高精度的检测手段。这些设备采用非接触测量技术(如激光闪射法和高温原位测试),能够在1600 ℃以上的高温条件下评估氮化硅陶瓷的导热性和力学性能。此外,国内在高温检测设备的研发方面也在持续推进,许多高校和科研机构围绕氮化硅陶瓷的高温性能展开了专门研究。例如,中国科学院金属研究所将非接触式温度传感器与高温负载测试装置结合,成功组装了高温力学性能试验机,该设备可完成1600 ℃以内的力学性能检测,并能实时监测温度,可准确地反映氮化硅陶瓷在高温环境下的真实性能;三思泰捷与清华大学、中国科学院力学研究所合作开发了超高温拉伸机,配置了碳化硅高温炉和重结晶碳化硅高温夹具,可满足1400 ℃的超高温试验条件。

随着对高温结构材料需求的不断增加,氮化硅陶瓷的性能不再局限于常温条件下的优化,该材料在高温环境中的表现更为重要,因此高温力学性能检测将成为未来氮化硅陶瓷性能研究的重点方向。这一领域的突破对于促进氮化硅陶瓷在航空航天领域的工程化应用至关重要。

3     氮化硅陶瓷性能调控研究进展

氮化硅陶瓷在极端环境下的可靠性是近年来需要解决的主要问题,为了满足该材料在航空航天领域的服役要求,性能调控已成为氮化硅陶瓷研究的关键。国内外学者主要从微结构调控和第二相增韧补强两方面提升氮化硅陶瓷性能。

3.1     微观结构的设计与调控

研究表明,通过调控微观组织结构可以显著提升氮化硅陶瓷的力学性能[   ZHU X W, SAKKA Y, ZHOU Y, et al. A strategy for fabricating textured silicon nitride with enhanced thermal conductivity[J]. Journal of the European Ceramic Society, 2014, 34(10): 2585–2589.
  ZHU X W, SAKKA Y. Textured silicon nitride: Processing and anisotropic properties[J]. Science and Technology of Advanced Materials, 2008, 9(3): 033001.
  LEE F, BOWMAN K J. Texture and anisotropy in silicon nitride[J]. Journal of the American Ceramic Society, 1992, 75(7): 1748–1755.
  TAN D W, GUO W M, LAO Z Y, et al. A novel strategy for c-axis textured silicon nitride ceramics by hot extrusion[J]. Journal of the European Ceramic Society, 2021, 41(12): 6059–6063.
  TANG S J, LI Z H, GUO W M, et al. Fabrication of one-dimensional textured Si3N4-based ceramics with high hardness and toughness by low temperature hot extrusion[J]. Ceramics International, 2024, 50(21): 41975–41981.
79-83
]
,其中织构化是改善其性能的有效途径之一[   ZHU X W, SAKKA Y, ZHOU Y, et al. A strategy for fabricating textured silicon nitride with enhanced thermal conductivity[J]. Journal of the European Ceramic Society, 2014, 34(10): 2585–2589.
79
]
。氮化硅陶瓷的织构化工艺分为热加工(HW)和模板晶粒生长(TGG)两大类,如图7所示[   ZHU X W, SAKKA Y. Textured silicon nitride: Processing and anisotropic properties[J]. Science and Technology of Advanced Materials, 2008, 9(3): 033001.
80
]
。这两种工艺可以有效对准延伸的β–Si3N4晶粒,从而形成独特的织构组织。Lee等[   LEE F, BOWMAN K J. Texture and anisotropy in silicon nitride[J]. Journal of the American Ceramic Society, 1992, 75(7): 1748–1755.
81
]
通过热加工调控氮化硅陶瓷晶粒取向,制得织构氮化硅陶瓷,经检测,其断裂韧性相较于非织构氮化硅陶瓷提高了约200%。Tan等[   TAN D W, GUO W M, LAO Z Y, et al. A novel strategy for c-axis textured silicon nitride ceramics by hot extrusion[J]. Journal of the European Ceramic Society, 2021, 41(12): 6059–6063.
82
]
采用热挤压工艺制备具有c轴取向的β–Si3N4织构陶瓷,结果表明,由于织构化的各向异性,氮化硅陶瓷不同平面上的力学性能存在明显差异,在与织构方向垂直和平行的两个剖面上,其硬度分别为(16.38±0.39)GPa和(14.70±0.19)GPa。为了制备兼具高硬度和高韧性的氮化硅陶瓷,Tang等[   TANG S J, LI Z H, GUO W M, et al. Fabrication of one-dimensional textured Si3N4-based ceramics with high hardness and toughness by low temperature hot extrusion[J]. Ceramics International, 2024, 50(21): 41975–41981.
83
]
将电弧等离子体烧结与热挤压工艺进行结合,在1600 ℃下热挤压制备了一维织构化的Si3N4基陶瓷,其f因子约为0.89,断裂韧性和硬度分别为(7.49±0.47)MPa·m1/2和18.55 GPa。

图7     氮化硅陶瓷织构化工艺[   ZHU X W, SAKKA Y. Textured silicon nitride: Processing and anisotropic properties[J]. Science and Technology of Advanced Materials, 2008, 9(3): 033001.
80
]
Fig.7     Texturing processes of silicon nitride ceramics[   ZHU X W, SAKKA Y. Textured silicon nitride: Processing and anisotropic properties[J]. Science and Technology of Advanced Materials, 2008, 9(3): 033001.
80
]

除织构化外,控制颗粒级配同样可以调节氮化硅陶瓷的微观组织,提高其性能。Lv等[   LV X A, HUANG J W, DONG X F, et al. Influence of α–Si3N4 coarse powder on densification, microstructure, mechanical properties, and thermal behavior of silicon nitride ceramics[J]. Ceramics International, 2023, 49(13): 21815–21824.
84
]
通过改变α–Si3N4中粗/细粉体的质量比来调控氮化硅陶瓷的微观组织,结果表明,随着α–Si3N4粗粉质量分数的增加,陶瓷晶粒的直径由单峰分布逐渐变为双峰分布,当α–Si3N4中的粗粉质量分数为40%时,得到的氮化硅陶瓷弯曲强度最高(861.34 MPa)。Yokota等[   YOKOTA H, IBUKIYAMA M. Effect of the addition of β–Si3N4 nuclei on the thermal conductivity of β–Si3N4 ceramics[J]. Journal of the European Ceramic Society, 2003, 23(8): 1183–1191.
85
]
在高纯β–Si3N4细粉中加入大颗粒β–Si3N4晶种(粗粉),当添加体积分数24%的β–Si3N4晶种时,氮化硅陶瓷烧结后的晶粒尺寸呈双峰分布且明显减小,其热导率从128 W·m–1·K–1提高至142 W·m–1·K–1,密度最高可达3.41 g/cm3

适宜的烧结工艺不仅能够促进陶瓷颗粒间的融合,优化组织结构,还能消除成型过程中产生的内应力,提升材料的强度、韧性和导热性[   高震, 银锐明, 李光, 等. 烧结方式对氮化硅陶瓷性能的影响[J]. 中国陶瓷工业, 2024, 31(3): 47–53.GAO Zhen, YIN Ruiming, LI Guang, et al. Effect of sintering method on the properties of silicon nitride ceramics[J]. China Ceramic Industry, 2024, 31(3): 47–53.
86
]
。满延进等[   满延进, 王伟伟, 王营营, 等. 无压烧结和气压烧结对氮化硅陶瓷性能的影响[J]. 陶瓷学报, 2023, 44(6): 1183–1189.MAN Yanjin, WANG Weiwei, WANG Yingying, et al. Effect of pressureless sintering and gas pressure sintering on properties of silicon nitride ceramics[J]. Journal of Ceramics, 2023, 44(6): 1183–1189.
87
]
对比了无压烧结和气压烧结对氮化硅陶瓷的影响,在1300 ℃保温5 h后,气压烧结表现出更好的抗氧化性能及高温强度,其氧化增重率和弯曲强度平均值分别为0.014%和304.2 MPa。Fu等[   FU Q L, FU J X, WANG J, et al. Defects control of silicon nitride ceramics by oscillatory pressure sintering and consequent hot isotropic pressing[J]. Ceramics International, 2024, 50(2): 3276–3280.
68
]
采用振荡压力烧结(OPS)和热等静压工艺对氮化硅陶瓷缺陷进行优化,在1750 ℃烧结后,氮化硅陶瓷的弯曲强度为(1630±21)MPa,断裂韧性为(7.1±0.6)MPa·m1/2,力学性能明显提升。Hu等[   HU J B, ZHANG B, LI C, et al. Fabrication of Si3N4 ceramics with high thermal conductivity and flexural strength via novel two-step gas-pressure sintering[J]. Journal of the European Ceramic Society, 2022, 42(12): 4846–4854.
88
]
在1500 ℃下对氮化硅陶瓷进行预烧结处理,然后在1850 ℃下进行高温烧结,通过两步气压烧结工艺优化陶瓷颗粒重排和α→β相转变,形成了延伸β–Si3N4晶粒和细小α–Si3N4晶粒的双峰微观结构,烧结参数及微观结构演变如图8所示,结果表明,两步气压烧结工艺所得氮化硅陶瓷的热导率最高可达79.42 W·m–1·K–1,弯曲强度可达801 MPa。Wang等[   WANG Y L, TIAN J J, WU H Y, et al. Thermal and mechanical properties of Si3N4 ceramics obtained via two-step sintering[J]. Ceramics International, 2022, 48(13): 18294–18301.
89
]
进一步优化了两步烧结工艺,最终制得性能优异的氮化硅陶瓷,其弯曲强度为812 MPa,热导率为92.1 W·m–1·K–1,断裂韧性为7.6 MPa·m1/2,较一步烧结的氮化硅陶瓷分别提高了28.7%、16.9%和31.6%。

图8     氮化硅陶瓷的两步烧结工艺[   HU J B, ZHANG B, LI C, et al. Fabrication of Si3N4 ceramics with high thermal conductivity and flexural strength via novel two-step gas-pressure sintering[J]. Journal of the European Ceramic Society, 2022, 42(12): 4846–4854.
88
]
Fig.8     Two-step sintering process of silicon nitride ceramics[   HU J B, ZHANG B, LI C, et al. Fabrication of Si3N4 ceramics with high thermal conductivity and flexural strength via novel two-step gas-pressure sintering[J]. Journal of the European Ceramic Society, 2022, 42(12): 4846–4854.
88
]

Zhang等[   ZHANG J, CUI W, LI F, et al. Effects of MgSiN2 addition and post-annealing on mechanical and thermal properties of Si3N4 ceramics[J]. Ceramics International, 2020, 46(10): 15719–15722.
90
]
在1 MPa的氮气气氛中,以1900 ℃烧结8 h制备了氮化硅陶瓷,经1400 ℃退火20 h后,氮化硅陶瓷的热导率从97 W·m–1·K–1提高至105 W·m–1·K–1,经1600 ℃退火相同时间后,材料的热导率进一步提高至117 W·m–1·K–1。结果表明,提高退火温度可以减少晶界相并增大晶粒尺寸(图9,其中A0、A2、A4和A6分别表示未经退火和经1200 ℃、1400 ℃和1600 ℃退火的样品),有利于提高氮化硅陶瓷的热导率。

图9     退火温度对氮化硅陶瓷晶粒尺寸的影响[   ZHANG J, CUI W, LI F, et al. Effects of MgSiN2 addition and post-annealing on mechanical and thermal properties of Si3N4 ceramics[J]. Ceramics International, 2020, 46(10): 15719–15722.
90
]
Fig.9     Effect of annealing temperature on grain size of silicon nitride ceramics[   ZHANG J, CUI W, LI F, et al. Effects of MgSiN2 addition and post-annealing on mechanical and thermal properties of Si3N4 ceramics[J]. Ceramics International, 2020, 46(10): 15719–15722.
90
]

3.2     氮化硅的增韧补强

氮化硅陶瓷的增韧补强方法主要包括自增韧和第二相增韧。其中,自增韧是氮化硅陶瓷的重要性能之一,主要通过烧结过程中氮化硅陶瓷的α相向β相转化,形成延伸的β–Si3N4晶粒,如图10所示[   WANG W D, YAO D X, CHEN H B, et al. ZrSi2–MgO as novel additives for high thermal conductivity of β–Si3N4 ceramics[J]. Journal of the American Ceramic Society, 2020, 103(3): 2090–2100.
24
]
。这种转化使得晶粒呈现出延长形态,在裂纹扩展时,延长的β–Si3N4晶粒不仅阻碍了裂纹传播,还通过裂纹偏转和桥接等机制有效耗散能量,从而提高了陶瓷材料的断裂韧性。Peng等[   PENG G H, LI X G, LIANG M, et al. Spark plasma sintered high hardness α/β Si3N4 composites with MgSiN2 as additives[J]. Scripta Materialia, 2009, 61(4): 347–350.
91
]
在1340~1500 ℃下采用火花等离子烧结技术制备了α/β Si3N4复合材料,结果表明,延长的β–Si3N4晶粒通过裂纹桥接显著提升了复合材料的抗断裂能力,该材料的断裂韧性高达7.7 MPa·m1/2

图10     烧结过程中氮化硅陶瓷α–Si3N4向β–Si3N4转化[   WANG W D, YAO D X, CHEN H B, et al. ZrSi2–MgO as novel additives for high thermal conductivity of β–Si3N4 ceramics[J]. Journal of the American Ceramic Society, 2020, 103(3): 2090–2100.
24
]
Fig.10     Conversion of α–Si3N4 to β–Si3N4 in silicon nitride ceramics during sintering[   WANG W D, YAO D X, CHEN H B, et al. ZrSi2–MgO as novel additives for high thermal conductivity of β–Si3N4 ceramics[J]. Journal of the American Ceramic Society, 2020, 103(3): 2090–2100.
24
]

在氮化硅基体中引入第二相颗粒或晶须,同样可以有效提高氮化硅陶瓷的力学性能。该方法的增韧机制主要通过以下两方面实现:(1)第二相在裂纹扩展路径上形成阻碍,导致裂纹偏转,从而增加裂纹扩展所需的能量;(2)第二相能够吸收裂纹扩展过程中释放的能量,减缓裂纹传播速度,进而提高材料的抗断裂能力。

适当选择或添加增韧颗粒是提升陶瓷力学性能的关键。李成卓等[   李成卓, 邓腾飞. 氧化铁对氮化硅陶瓷烧结的影响[J]. 陶瓷学报, 2024, 45(3): 558–565.LI Chengzhuo, DENG Tengfei. Effect of iron oxide on sintering behavior of silicon nitride ceramics[J]. Journal of Ceramics, 2024, 45(3): 558–565.
66
]
以氧化锆颗粒为增强相,引入不同含量的氧化铁制备氮化硅陶瓷,结果表明,加入氧化铁会促进氮化硅的相变,使得样品的硬度降低,弯曲强度和断裂韧性提升。Matsuura等[   MATSUURA K, OHJI T, TAKAHASHI T, et al. Effects of rare-earth oxides on grain boundary strength of silicon nitride ceramics[J]. Journal of the European Ceramic Society, 2024, 44(14): 116672.
92
]
通过掺杂质量分数3%的RE2O3(RE=Y,La,Lu)稀土制备氮化硅陶瓷,结果表明,陶瓷强度与RE2O3的种类有关,不同种类稀土对陶瓷强度提升的顺序为Y2O3<La2O3<Lu2O3。Zhuang等[   ZHUANG Y H, SUN F, ZHOU L J, et al. The influence of magnesium compounds on the properties of silicon nitride ceramics[J]. International Journal of Applied Ceramic Technology, 2024, 21(3): 2273–2287.
74
]
探究了4种化合物对氮化硅陶瓷力学性能的影响,结果表明,在1900 ℃下掺杂摩尔分数5% Er2O3和摩尔分数2% Mg3N2的氮化硅陶瓷力学性能最佳,其硬度、弯曲强度和断裂韧性分别为16.8 GPa、912 MPa和8.1 MPa·m1/2。徐明等[   徐明, 方斌, 李祥龙. 碳纳米管增韧氮化硅陶瓷复合材料的研究[J]. 齐鲁工业大学学报, 2016, 30(1): 38–41.XU Ming, FANG Bin, LI Xianglong. The study on carbon nanotube toughened Si3N4 composites[J]. Journal of Qilu University of Technology, 2016, 30(1): 38–41.
93
]
将碳纳米管作为增韧相制备氮化硅复合材料,结果表明,碳纳米管含量对氮化硅复合材料的显微组织和力学性能有显著影响,当添加质量分数1%的碳纳米管时,复合材料内部颗粒均匀分布,密度明显提升,硬度达到14 GPa,抗弯强度为850 MPa,表现出优异的力学性能。Wu等[   WU W W, GUI J Y, WEI S, et al. Si3N4–SiCw composites as structural materials for cryogenic application[J]. Journal of the European Ceramic Society, 2016, 36(11): 2667–2672.
94
]
研究了不同温度下Si3N4–SiCw复合材料的力学性能,由于SiC晶须(SiCw)的增韧效果(增韧原理见图11),低温下Si3N4–SiCw复合材料的力学性能显著提升,其断裂韧性约为8.8 MPa·m1/2,相较于纯氮化硅陶瓷提高了19%。Sneary等[   SNEARY P R, YEH Z, CRIMP M J. Effect of whisker aspect ratio on the density and fracture toughness of SiC whisker-reinforced Si3N4[J]. Journal of Materials Science, 2001, 36(10): 2529–2534.
95
]
利用球磨将SiC晶须的长径比从25降至15,改善了SiC晶须在悬浮液中的分散效果,提高了其成型密度,当加入体积分数为20%的SiC晶须时,制得的复合材料断裂韧性在9~10.5 MPa·m1/2之间,断裂韧性最大值较相同工艺下制备的纯氮化硅提高了30%。

图11     SiC晶须的增韧原理[   SNEARY P R, YEH Z, CRIMP M J. Effect of whisker aspect ratio on the density and fracture toughness of SiC whisker-reinforced Si3N4[J]. Journal of Materials Science, 2001, 36(10): 2529–2534.
95
]
Fig.11     Toughening principle of SiC whiskers[   SNEARY P R, YEH Z, CRIMP M J. Effect of whisker aspect ratio on the density and fracture toughness of SiC whisker-reinforced Si3N4[J]. Journal of Materials Science, 2001, 36(10): 2529–2534.
95
]

综上所述,氮化硅陶瓷在性能调控方面已取得显著进展,这些方法的综合应用有效提升了氮化硅陶瓷在复杂环境中的应用可靠性。但随着航空航天领域的不断发展,未来的研究应聚焦于材料性能的持续优化,以应对更为严苛的工作环境和服役需求。

4     氮化硅陶瓷在航空航天领域的应用现状

近年来,许多研究开始探索利用氮化硅陶瓷制备发动机叶片、尾喷管等航空航天结构件(图12[   NIU F R, YANG X L, LI Y B, et al. Fused deposition modeling of Si3N4 ceramics: A cost-effective 3D-printing route for dense and high performance non-oxide ceramic materials[J]. Journal of the European Ceramic Society, 2022, 42(15): 7369–7376.
52
  杨小乐, 牛富荣, 罗煌阳, 等. 熔融沉积成型制备致密氮化硅陶瓷[J]. 航空制造技术, 2023, 66(16): 69–75, 102.YANG Xiaole, NIU Furong, LUO Huangyang, et al. Dense silicon nitride ceramics prepared by fused deposition modeling[J]. Aeronautical Manufacturing Technology, 2023, 66(16): 69–75, 102.
  HAMPSHIRE S. Silicon nitride ceramics—Review of structure, processing and properties[J]. Journal of Achievements in Materials and Manufacturing Engineering, 2007, 24(1): 43–50.
  LIN L F, WU H D, HUANG Z Q, et al. Effect of monomers with different functionalities on stability, rheology, and curing behavior of ceramic suspensions[J]. Materials Chemistry and Physics, 2022, 275: 125243.
96-98
]
),展现了氮化硅陶瓷在航空航天领域的巨大应用潜力。

图12     氮化硅陶瓷制备的航空航天结构件
Fig.12     Aerospace structural parts prepared by silicon nitride ceramics

氮化硅陶瓷被认为是超声速飞行器天线罩、导弹精确制导天线罩和传感器保护壳的首选波传输材料[   DONG X J, WU J Q, ZHOU Q, et al. Mechanical and dielectric properties of Si3N4–SiO2 ceramics prepared by digital light processing based 3D printing and oxidation sintering[J]. Ceramics International, 2023, 49(18): 29699–29708.
99
]
。据报道,欧洲导弹集团研发出一种新型天线罩制备工艺,将氮化硅与氧化物混合,烧结后制成的新型天线罩具有较低的密度及良好的耐高温性和抗热冲击性。相较于传统的石英天线罩,该天线罩能显著提升超音速导弹的飞行速度、制导精度及飞行距离。中国科学院大学利用DLP 3D打印技术制备了相对介电常数在4以内、损耗角正切值低于0.003的宽带微波透明氮化硅复合陶瓷,该陶瓷的应用为航天器通信及导航系统在恶劣环境下正常工作提供了保障[   CHEN R F, DUAN W Y, WANG G, et al. Preparation of broadband transparent Si3N4–SiO2 ceramics by digital light processing (DLP) 3D printing technology[J]. Journal of the European Ceramic Society, 2021, 41(11): 5495–5504.
100
]
。航天器在重返大气层时面临着剧烈的温度变化。氮化硅陶瓷凭借其优异的热震稳定性和耐高温性,能够有效防止材料因热应力而发生开裂或变形[   FAN X Y, SUN R J, DONG J, et al. Fabrication and thermal shock behavior of Si3N4 whiskers toughened γ–Y2Si2O7 coating on porous Si3N4 ceramics[J]. Ceramics International, 2020, 46(13): 21681–21688.
101
]
。俄罗斯国家研究型技术大学开发了一种用于航空航天领域的新型耐火氮化硅复合陶瓷材料,该材料制成的隔热涂层在2000 ℃以上的温度下表现出卓越的抗氧化性,同时具有优异的力学性能。

由于氮化硅陶瓷能够承受高温、高压和高速气流冲击,目前已成为涡轮增压器转子和燃气涡轮发动机部件的主要候选材料[   BOCANEGRA-BERNAL M H, MATOVIC B. Mechanical properties of silicon nitride-based ceramics and its use in structural applications at high temperatures[J]. Materials Science and Engineering: A, 2010, 527(6): 1314–1338.
102
]
。2010年,日本太空探测器Akatsuki的尾喷管首次采用氮化硅陶瓷材料,与金属材料相比,氮化硅陶瓷既保证了结构强度,又有效降低了飞行器的整体重量,其推重比和燃油效率得到明显提升。近年来,由京瓷公司制备的氮化硅尾喷管已经成功应用于小型飞机和火箭发动机,在服役时,其卓越的耐高温性能为推进系统提供了更强动力,同时边缘的高稳定性使得气流喷射更加均匀。此外,欧洲航天局(ESA)在其最新的火星探测器中使用了氮化硅材料制造的涡轮机叶片,该叶片显著提高了探测器的运行效率和可靠性。有效数据表明,在模拟火星环境时,氮化硅陶瓷涡轮机叶片的使用寿命较传统金属材料增加了至少60%。深圳升华三维科技有限公司将3D打印与注射成型工艺相结合,在无需模具的情况下制得性能优异的氮化硅涡轮及燃气轮机漩涡叶片;3M公司采用氮化硅陶瓷制备喷气式发动机点火器,其重量相较于钢材减轻了60%,成为发动机和液压系统部件的理想选择;弗劳恩霍夫陶瓷技术和系统研究所根据直升机的服役需求,利用氮化硅陶瓷制备了直升机涡轮叶片和转子,如图12(c)和(f)所示,测试结果表明,氮化硅陶瓷叶片能够在1400 ℃的高温下稳定运行,表现出优异的高温稳定性。

随着航空航天领域的不断发展,氮化硅陶瓷在轻量化、高温承载和复杂结构件方面的需求日益增加,展现出广阔的应用前景。未来,在增材制造等先进技术的推动下,氮化硅陶瓷能够更好地满足复杂结构件的制备需求,在高温防护、精密结构件和耐热传感器等领域发挥重要作用。

5     结论与展望

本文全面总结了氮化硅陶瓷在成型、检测方法、性能调控等方面的研究现状,明确了氮化硅陶瓷在航空航天领域的应用及潜力。然而,随着航空航天领域对材料性能、结构要求的不断提升,氮化硅陶瓷在长期使用中的可靠性和耐久性仍需进一步验证,特别是在极端环境下,其性能稳定性和使用寿命是需要关注的重点问题。为推动氮化硅陶瓷在航空航天领域的快速发展,本文结合当前研究现状提出3点建议,具体如下。

(1)氮化硅陶瓷的高温性能检测尚未形成完整规范。现阶段,超高温检测设备及技术不够成熟,亟须进一步完善。现有的检测方法多集中于室温条件,导致研究人员对氮化硅陶瓷在极端环境中的行为和性能认识不足。因此,未来亟须开发更为先进的高温检测设备、检测手段,规范极端环境下的检测标准,以便更全面地评价氮化硅陶瓷的真实性能。

(2)氮化硅陶瓷在极端环境下的可靠性有待提升。氮化硅陶瓷虽然表现出一定的韧性,但韧性不足仍然是制约该材料在航空航天领域长期服役和广泛应用的关键阻碍。因此,未来氮化硅陶瓷仍需在性能提升方面继续改进。通过引入韧性更高的第二相、优化微观结构设计及改进烧结工艺等方法,进一步提升氮化硅陶瓷的综合性能。

(3)进一步发展氮化硅陶瓷增材制造成型工艺。复杂结构成型是制约氮化硅陶瓷实际应用的关键因素,与传统成型工艺相比,增材制造技术提供了更高的设计灵活性。其中,光固化成型工艺不仅能够实现复杂结构的快速成型,而且在精度和成本方面具有其他增材制造技术无法比拟的独特优势。通过深入研究光固化增材制造技术,氮化硅陶瓷有望在结构和性能优化方面取得显著进展。未来,氮化硅陶瓷的光固化增材制造技术必将成为航空航天领域发展的重要方向之一。

参考文献

[1]

KLEMM H. Silicon nitride for high-temperature applications[J]. Journal of the American Ceramic Society, 2010, 93(6): 15011522.

[2]

DA SILVA C R M, REIS D A P, DOS SANTOS C. Creep of heat treated silicon nitride with neodymium and yttrium oxides additions[J]. Materials Science and Engineering: A, 2010, 527(26): 68936898.

[3]

MELÉNDEZ-MARTÍNEZ J J, DOMÍNGUEZ-RODRÍGUEZ A. Creep of silicon nitride[J]. Progress in Materials Science, 2004, 49(1): 19107.

[4]

刘胜, 刘文进, 满延进, . 氮化硅陶瓷材料高温抗热震性能及其衰减规律研究[J]. 现代技术陶瓷, 2023, 44(S1): 451460.
LIU Sheng, LIU Wenjin, MAN Yanjin, et al. Study on thermal shock resistance and attenuation law of silicon nitride ceramic materials at high temperature[J]. Advanced Ceramics, 2023, 44(S1): 451460.

[5]

SAINZ M A, SERENA S, BELMONTE M, et al. Protein adsorption and in vitro behavior of additively manufactured 3D-silicon nitride scaffolds intended for bone tissue engineering[J]. Materials Science and Engineering: C, 2020, 115: 110734.

[6]

ZOU R F, BI L N, HUANG Y, et al. A biocompatible silicon nitride dental implant material prepared by digital light processing technology[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 141: 105756.

[7]

IMAMURA H, KAWATA T, HONDA S, et al. Thermal conductivity improvement in silicon nitride ceramics via grain purification[J]. Journal of the American Ceramic Society, 2024, 107(2): 11591169.

[8]

HERRMANN M. Corrosion of silicon nitride materials in aqueous solutions[J]. Journal of the American Ceramic Society, 2013, 96(10): 30093022.

[9]

TATAMI J, UDA M, TAKAHASHI T, et al. Microscopic mechanical properties of silicon nitride ceramics corroded in sulfuric acid solution[J]. Journal of the European Ceramic Society, 2024, 44(9): 54155421.

[10]

陈波, 韦中华, 李镔, . 氮化硅陶瓷在四大领域的研究及应用进展[J]. 硅酸盐通报, 2022, 41(4): 14041415.
CHEN Bo, WEI Zhonghua, LI Bin, et al. Research and application progress of silicon nitride ceramics in four major fields[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(4): 14041415.

[11]

ZHANG J, LIU G H, CUI W, et al. Plastic deformation in silicon nitride ceramics via bond switching at coherent interfaces[J]. Science, 2022, 378(6618): 371376.

[12]

ZIEGLER A, IDROBO J C, CINIBULK M K, et al. Interface structure and atomic bonding characteristics in silicon nitride ceramics[J]. Science, 2004, 306(5702): 17681770.

[13]

ZHOU Y, HYUGA H, KUSANO D, et al. A tough silicon nitride ceramic with high thermal conductivity[J]. Advanced Materials, 2011, 23(39): 45634567.

[14]

HARRER W, DANZER R, MORRELL R. Influence of surface defects on the biaxial strength of a silicon nitride ceramic—Increase of strength by crack healing[J]. Journal of the European Ceramic Society, 2012, 32(1): 2735.

[15]

WANG C M, PAN X Q, RÜHLE M, et al. Silicon nitride crystal structure and observations of lattice defects[J]. Journal of Materials Science, 1996, 31(20): 52815298.

[16]

JANG J, LEE Y, CHEONG H, et al. Defects and mechanical properties of silicon nitride ball bearings for electric vehicle reducers[J]. World Electric Vehicle Journal, 2024, 15(6): 272.

[17]

占丽娜, 刘耀, 胡文, . 光固化工艺参数对氮化硅陶瓷成型性能的影响[J]. 中国陶瓷工业, 2024, 31(1): 610.
ZHAN Lina, LIU Yao, HU Wen, et al. Effect of UV curing process parameters on molding properties of silicon nitride ceramics[J]. China Ceramic Industry, 2024, 31(1): 610.

[18]

冯相蓺, 任桂莹, 王东, . 光固化3D打印氮化硅陶瓷研究进展[J]. 材料导报, 2023, 37(S2): 109114.
FENG Xiangyi, REN Guiying, WANG Dong, et al. Research progress of light-cured 3D printed silicon nitride ceramics[J]. Materials Reports, 2023, 37(S2): 109114.

[19]

周庆旋, 汪洋, 韩卓群, . 氮化硅陶瓷光固化3D打印成形研究进展[J]. 硅酸盐通报, 2024, 43(5): 15881599.
ZHOU Qingxuan, WANG Yang, HAN Zhuoqun, et al. Research progress of stereolithography 3D printing of silicon nitride ceramics[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(5): 15881599.

[20]

IYER S, MCINTOSH J, BANDYOPADHYAY A, et al. Microstructural characterization and mechanical properties of Si3N4 formed by fused deposition of ceramics[J]. International Journal of Applied Ceramic Technology, 2008, 5(2): 127137.

[21]

RANGARAJAN S, QI G, VENKATARAMAN N, et al. Powder processing, rheology, and mechanical properties of feedstock for fused deposition of Si3N4 ceramics[J]. Journal of the American Ceramic Society, 2000, 83(7): 16631669.

[22]

ZOU C, OU Y X, ZHOU W L, et al. Microstructure and properties of hot pressing sintered SiC/Y3Al5O12 composite ceramics for dry gas seals[J]. Materials, 2024, 17(5): 1182.

[23]

盛鹏飞, 聂光临, 黎业华, . 高导热氮化铝陶瓷成型技术的研究进展[J]. 陶瓷学报, 2020, 41(6): 771782.
SHENG Pengfei, NIE Guanglin, LI Yehua, et al. Research progress in shaping technology of AlN ceramics with high thermal conductivity[J]. Journal of Ceramics, 2020, 41(6): 771782.

[24]

WANG W D, YAO D X, CHEN H B, et al. ZrSi2–MgO as novel additives for high thermal conductivity of β–Si3N4 ceramics[J]. Journal of the American Ceramic Society, 2020, 103(3): 20902100.

[25]

田云龙, 祁海, 张培志, . 水基干压成型高导热氮化硅陶瓷的结构和性能[J]. 机械工程材料, 2023, 47(9): 4651.
TIAN Yunlong, QI Hai, ZHANG Peizhi, et al. Structure and properties of high thermal conductivity silicon nitride ceramics by aqueous dry pressing[J]. Materials for Mechanical Engineering, 2023, 47(9): 4651.

[26]

LI Y S, KIM H N, WU H B, et al. Microstructure and thermal conductivity of gas-pressure-sintered Si3N4 ceramic: The effects of Y2O3 additive content[J]. Journal of the European Ceramic Society, 2021, 41(1): 274283.

[27]

POORTEMAN M, DESCAMPS P, CAMBIER F, et al. Anisotropic properties in hot pressed silicon nitride—Silicon carbide platelet reinforced composites[J]. Journal of the European Ceramic Society, 1999, 19(13–14): 23752379.

[28]

YE C C, JIANG Y, YUE X Y, et al. Effect of temperature and pre-sintering on phase transformation, texture and mechanical properties of silicon nitride ceramics[J]. Materials Science and Engineering: A, 2018, 731: 140148.

[29]

周刚, 奉龙彪, 周志勇, . 陶瓷粉末注射成型工艺及研究进展[J]. 材料研究与应用, 2018, 12(2): 7581.
ZHOU Gang, FENG Longbiao, ZHOU Zhiyong, et al. Ceramic powder injection molding technology and its recent development[J]. Materials Research and Application, 2018, 12(2): 7581.

[30]

崔凯, 张永翠, 宋涛, . 不同参数对注射成型异形结构陶瓷的影响[J]. 山东陶瓷, 2022, 45(5): 6570.
CUI Kai, ZHANG Yongcui, SONG Tao, et al. Influence of different parameters on injection-molded heteroideus-shaped structural ceramics[J]. Shandong Ceramics, 2022, 45(5): 6570.

[31]

GAL C W, SONG G W, BAEK W H, et al. Fabrication of pressureless sintered Si3N4 ceramic balls by powder injection molding[J]. Ceramics International, 2019, 45(5): 64186424.

[32]

LENZ J, ENNETI R K, ONBATTUVELLI V, et al. Powder injection molding of ceramic engine components for transportation[J]. JOM, 2012, 64(3): 388392.

[33]

申常胜, 王瑞强, 李镔, . 氮化硅陶瓷的注射成型工艺研究[J]. 硅酸盐通报, 2023, 42(8): 29152921.
SHEN Changsheng, WANG Ruiqiang, LI Bin, et al. Injection molding process of silicon nitride ceramics[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(8): 29152921.

[34]

YANG X F, YANG J H, XU X W, et al. Injection molding of ultra-fine Si3N4 powder for gas-pressure sintering[J]. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(6): 654659.

[35]

AGUIRRE T G, CRAMER C L, MITCHELL D J. Review of additive manufacturing and densification techniques for the net- and near net-shaping of geometrically complex silicon nitride components[J]. Journal of the European Ceramic Society, 2022, 42(3): 735743.

[36]

DONG X J, WU J Q, YU H L, et al. Additive manufacturing of silicon nitride ceramics: A review of advances and perspectives[J]. International Journal of Applied Ceramic Technology, 2022, 19(6): 29292949.

[37]

CRAMER C L, IONESCU E, GRACZYK-ZAJAC M, et al. Additive manufacturing of ceramic materials for energy applications: Road map and opportunities[J]. Journal of the European Ceramic Society, 2022, 42(7): 30493088.

[38]

HUANG R J, JIANG Q G, WU H D, et al. Fabrication of complex shaped ceramic parts with surface-oxidized Si3N4 powder via digital light processing based stereolithography method[J]. Ceramics International, 2019, 45(4): 51585162.

[39]

CHAUDHARY R P, PARAMESWARAN C, IDREES M, et al. Additive manufacturing of polymer-derived ceramics: Materials, technologies, properties and potential applications[J]. Progress in Materials Science, 2022, 128: 100969.

[40]

ALTUN A A, PROCHASKA T, KONEGGER T, et al. Dense, strong, and precise silicon nitride-based ceramic parts by lithography-based ceramic manufacturing[J]. Applied Sciences, 2020, 10(3): 996.

[41]

HUANG Z Y, LIU L Y, YUAN J M, et al. Stereolithography 3D printing of Si3N4 cellular ceramics with ultrahigh strength by using highly viscous paste[J]. Ceramics International, 2023, 49(4): 69846995.

[42]

LI Q L, HOU W Q, LIANG J J, et al. Controlling the anisotropy behaviour of 3D printed ceramic cores: From intralayer particle distribution to interlayer pore evolution[J]. Additive Manufacturing, 2022, 58: 103055.

[43]

LI Q L, AN X L, LIANG J J, et al. Balancing flexural strength and porosity in DLP-3D printing Al2O3 cores for hollow turbine blades[J]. Journal of Materials Science & Technology, 2022, 104: 1932.

[44]

HUANG Y, ZHOU L J, TANG Q, et al. Water-based gelcasting of surface-coated silicon nitride powder[J]. Journal of the American Ceramic Society, 2001, 84(4): 701707.

[45]

LUTHER E E, LANGE F F, PEARSON D S. “Alumina” surface modification of silicon nitride for colloidal processing[J]. Journal of the American Ceramic Society, 1995, 78(8): 20092014.

[46]

WU X Q, XU C J, ZHANG Z M. Preparation and optimization of Si3N4 ceramic slurry for low-cost LCD mask stereolithography[J]. Ceramics International, 2021, 47(7): 94009408.

[47]

WU X Q, XU C J, ZHANG Z M. Development and analysis of a high refractive index liquid phase Si3N4 slurry for mask stereolithography[J]. Ceramics International, 2022, 48(1): 120129.

[48]

CHEN Z H, DUAN W Y, ZHANG D Y, et al. Fabrication of broadband wave-transparent Si3N4 ceramics with octet-truss lattice structure by vat photopolymerization 3D printing technology[J]. Journal of the European Ceramic Society, 2024, 44(4): 20262036.

[49]

XING H Y, ZOU B, LIU X Y, et al. Fabrication strategy of complicated Al2O3–Si3N4 functionally graded materials by stereolithography 3D printing[J]. Journal of the European Ceramic Society, 2020, 40(15): 57975809.

[50]

HU S J, LI A, FENG B, et al. A non-sintering fabrication method for porous Si3N4 ceramics via sol hydrothermal process[J]. Ceramics International, 2018, 44(16): 1969919705.

[51]

YANG Y T, YANG Z H, DUAN X M, et al. Large-size Si3N4 ceramic fabricated by additive manufacturing using long-term stable hydrogel-based suspensions[J]. Additive Manufacturing, 2023, 69: 103534.

[52]

NIU F R, YANG X L, LI Y B, et al. Fused deposition modeling of Si3N4 ceramics: A cost-effective 3D-printing route for dense and high performance non-oxide ceramic materials[J]. Journal of the European Ceramic Society, 2022, 42(15): 73697376.

[53]

BOUVILLE F, MAIRE E, MEILLE S, et al. Strong, tough and stiff bioinspired ceramics from brittle constituents[J]. Nature Materials, 2014, 13(5): 508514.

[54]

ZHANG X Q, CUI S W, MA S L, et al. Hardness, elastic modulus and their correlations in the transparent silicon nitrides[J]. Materials Today Communications, 2024, 38: 108320.

[55]

JIANG J Z, KRAGH F, FROST D J, et al. Hardness and thermal stability of cubic silicon nitride[J]. Journal of Physics: Condensed Matter, 2001, 13(22): L515L520.

[56]

FURUSHIMA R, MARUYAMA Y, NAKASHIMA Y, et al. Fracture toughness evaluation of silicon nitride from microstructures via convolutional neural network[J]. Journal of the American Ceramic Society, 2023, 106(2): 817821.

[57]

LI J B, JIANG Q G, PAN Z F, et al. Fabrication of silicon nitride with high thermal conductivity and flexural strength by hot-pressing flowing sintering[J]. International Journal of Applied Ceramic Technology, 2024, 21(4): 28412849.

[58]

LI Y S, KIM H N, WU H B, et al. Enhanced thermal conductivity in Si3N4 ceramic with the addition of Y2Si4N6C[J]. Journal of the American Ceramic Society, 2018, 101(9): 41284136.

[59]

ZHENG G M, ZHAO J, JIA C, et al. Thermal shock and thermal fatigue resistance of Sialon–Si3N4 graded composite ceramic materials[J]. International Journal of Refractory Metals and Hard Materials, 2012, 35: 5561.

[60]

YE C C, LIU Y S, WANG C C, et al. Investigation on thermal conductivity and mechanical properties of Si3N4 ceramics via one-step sintering[J]. Ceramics International, 2021, 47(23): 3335333362.

[61]

LUO C X, ZHANG Y X, DENG T F. Pressureless sintering of high performance silicon nitride ceramics at 1620 ℃[J]. Ceramics International, 2021, 47(20): 2937129378.

[62]

YIN S, JIANG S C, PAN L M, et al. Preparation, mechanical and thermal properties of Si3N4 ceramics by gelcasting using low-toxic DMAA gelling system and gas pressure sintering[J]. Ceramics International, 2018, 44(18): 2241222420.

[63]

LI P C, WANG T, GUO R P, et al. Effect of sintering temperature on hardness gradient of Si3N4 ceramics fabricated by spark plasma sintering[J]. Vacuum, 2023, 216: 112479.

[64]

刘家宝, 宋金鹏, 高姣姣, . 烧结温度对氮化硅层状陶瓷材料微观组织和力学性能的影响[J]. 热加工工艺, 2024, 53(5): 8490.
LIU Jiabao, SONG Jinpeng, GAO Jiaojiao, et al. Effects of sintering temperature on microstructure and mechanical properties of silicon nitride layered ceramics[J]. Hot Working Technology, 2024, 53(5): 8490.

[65]

WANG L, WANG L Y, HAO Z D, et al. Microstructure and properties of silicon nitride ceramics fabricated by vat photopolymerization in combination with pressureless sintering[J]. Ceramics International, 2024, 50(7): 1048510496.

[66]

李成卓, 邓腾飞. 氧化铁对氮化硅陶瓷烧结的影响[J]. 陶瓷学报, 2024, 45(3): 558565.
LI Chengzhuo, DENG Tengfei. Effect of iron oxide on sintering behavior of silicon nitride ceramics[J]. Journal of Ceramics, 2024, 45(3): 558565.

[67]

ZHANG Q, WANG W L, ZHANG Z X, et al. Enhancing fracture toughness of silicon nitride ceramics by addition of β–Si3N4 whisker and MXene[J]. Ceramics International, 2024, 50(19): 3569535705.

[68]

FU Q L, FU J X, WANG J, et al. Defects control of silicon nitride ceramics by oscillatory pressure sintering and consequent hot isotropic pressing[J]. Ceramics International, 2024, 50(2): 32763280.

[69]

YE C C, YUE X Y, JIANG Y, et al. Effect of different preparation methods on the microstructure and mechanical properties of Si3N4 ceramic composites[J]. Ceramics International, 2018, 44(4): 36643671.

[70]

YIN S, PAN L M, LIU Y, et al. Effect of β–Si3N4 seeds on microstructure and properties of porous Si3N4 ceramics prepared by gelcasting using DMAA system[J]. Ceramics International, 2020, 46(4): 49244932.

[71]

YU J J, WEI W X, GUO W M, et al. Enhanced mechanical properties of Si3N4 ceramics with ZrB2–B binary additives prepared at low temperature[J]. Journal of the European Ceramic Society, 2019, 39(15): 51025105.

[72]

RATZKER B, SOKOL M, KALABUKHOV S, et al. High-pressure spark plasma sintering of silicon nitride with LiF additive[J]. Journal of the European Ceramic Society, 2018, 38(4): 12711277.

[73]

LEE S H. Densification, mass loss, and mechanical properties of low-temperature pressureless-sintered Si3N4 with LiYO2 additive: The effects of additive content and annealing[J]. International Journal of Applied Ceramic Technology, 2010, 7(6): 881888.

[74]

ZHUANG Y H, SUN F, ZHOU L J, et al. The influence of magnesium compounds on the properties of silicon nitride ceramics[J]. International Journal of Applied Ceramic Technology, 2024, 21(3): 22732287.

[75]

HU Y Y, CHEN Z Q, ZHANG J J, et al. Preparation and mechanical properties of Si3N4 nanocomposites reinforced by Si3N4@rGO particles[J]. Journal of the American Ceramic Society, 2019, 102(11): 69917002.

[76]

MENG Q Y, ZHAO Z H, SUN Y Q, et al. Low temperature pressureless sintering of dense silicon nitride using BaO–Al2O3–SiO2 glass as sintering aid[J]. Ceramics International, 2017, 43(13): 1012310129.

[77]

DUAN Y S, ZHANG J X, LI X G, et al. Low temperature pressureless sintering of silicon nitride ceramics for circuit substrates in powder electronic devices[J]. Ceramics International, 2018, 44(4): 43754380.

[78]

KITAYAMA M, HIRAO K, TORIYAMA M, et al. High Hardness α–Si3N4 ceramics reinforced by rod-like β–Si3N4 seed particles[J]. Journal of the Ceramic Society of Japan, 2000, 108(1259): 646649.

[79]

ZHU X W, SAKKA Y, ZHOU Y, et al. A strategy for fabricating textured silicon nitride with enhanced thermal conductivity[J]. Journal of the European Ceramic Society, 2014, 34(10): 25852589.

[80]

ZHU X W, SAKKA Y. Textured silicon nitride: Processing and anisotropic properties[J]. Science and Technology of Advanced Materials, 2008, 9(3): 033001.

[81]

LEE F, BOWMAN K J. Texture and anisotropy in silicon nitride[J]. Journal of the American Ceramic Society, 1992, 75(7): 17481755.

[82]

TAN D W, GUO W M, LAO Z Y, et al. A novel strategy for c-axis textured silicon nitride ceramics by hot extrusion[J]. Journal of the European Ceramic Society, 2021, 41(12): 60596063.

[83]

TANG S J, LI Z H, GUO W M, et al. Fabrication of one-dimensional textured Si3N4-based ceramics with high hardness and toughness by low temperature hot extrusion[J]. Ceramics International, 2024, 50(21): 4197541981.

[84]

LV X A, HUANG J W, DONG X F, et al. Influence of α–Si3N4 coarse powder on densification, microstructure, mechanical properties, and thermal behavior of silicon nitride ceramics[J]. Ceramics International, 2023, 49(13): 2181521824.

[85]

YOKOTA H, IBUKIYAMA M. Effect of the addition of β–Si3N4 nuclei on the thermal conductivity of β–Si3N4 ceramics[J]. Journal of the European Ceramic Society, 2003, 23(8): 11831191.

[86]

高震, 银锐明, 李光, . 烧结方式对氮化硅陶瓷性能的影响[J]. 中国陶瓷工业, 2024, 31(3): 4753.
GAO Zhen, YIN Ruiming, LI Guang, et al. Effect of sintering method on the properties of silicon nitride ceramics[J]. China Ceramic Industry, 2024, 31(3): 4753.

[87]

满延进, 王伟伟, 王营营, . 无压烧结和气压烧结对氮化硅陶瓷性能的影响[J]. 陶瓷学报, 2023, 44(6): 11831189.
MAN Yanjin, WANG Weiwei, WANG Yingying, et al. Effect of pressureless sintering and gas pressure sintering on properties of silicon nitride ceramics[J]. Journal of Ceramics, 2023, 44(6): 11831189.

[88]

HU J B, ZHANG B, LI C, et al. Fabrication of Si3N4 ceramics with high thermal conductivity and flexural strength via novel two-step gas-pressure sintering[J]. Journal of the European Ceramic Society, 2022, 42(12): 48464854.

[89]

WANG Y L, TIAN J J, WU H Y, et al. Thermal and mechanical properties of Si3N4 ceramics obtained via two-step sintering[J]. Ceramics International, 2022, 48(13): 1829418301.

[90]

ZHANG J, CUI W, LI F, et al. Effects of MgSiN2 addition and post-annealing on mechanical and thermal properties of Si3N4 ceramics[J]. Ceramics International, 2020, 46(10): 1571915722.

[91]

PENG G H, LI X G, LIANG M, et al. Spark plasma sintered high hardness α/β Si3N4 composites with MgSiN2 as additives[J]. Scripta Materialia, 2009, 61(4): 347350.

[92]

MATSUURA K, OHJI T, TAKAHASHI T, et al. Effects of rare-earth oxides on grain boundary strength of silicon nitride ceramics[J]. Journal of the European Ceramic Society, 2024, 44(14): 116672.

[93]

徐明, 方斌, 李祥龙. 碳纳米管增韧氮化硅陶瓷复合材料的研究[J]. 齐鲁工业大学学报, 2016, 30(1): 3841.
XU Ming, FANG Bin, LI Xianglong. The study on carbon nanotube toughened Si3N4 composites[J]. Journal of Qilu University of Technology, 2016, 30(1): 3841.

[94]

WU W W, GUI J Y, WEI S, et al. Si3N4–SiCw composites as structural materials for cryogenic application[J]. Journal of the European Ceramic Society, 2016, 36(11): 26672672.

[95]

SNEARY P R, YEH Z, CRIMP M J. Effect of whisker aspect ratio on the density and fracture toughness of SiC whisker-reinforced Si3N4[J]. Journal of Materials Science, 2001, 36(10): 25292534.

[96]

杨小乐, 牛富荣, 罗煌阳, . 熔融沉积成型制备致密氮化硅陶瓷[J]. 航空制造技术, 2023, 66(16): 6975, 102.
YANG Xiaole, NIU Furong, LUO Huangyang, et al. Dense silicon nitride ceramics prepared by fused deposition modeling[J]. Aeronautical Manufacturing Technology, 2023, 66(16): 6975, 102.

[97]

HAMPSHIRE S. Silicon nitride ceramics—Review of structure, processing and properties[J]. Journal of Achievements in Materials and Manufacturing Engineering, 2007, 24(1): 4350.

[98]

LIN L F, WU H D, HUANG Z Q, et al. Effect of monomers with different functionalities on stability, rheology, and curing behavior of ceramic suspensions[J]. Materials Chemistry and Physics, 2022, 275: 125243.

[99]

DONG X J, WU J Q, ZHOU Q, et al. Mechanical and dielectric properties of Si3N4–SiO2 ceramics prepared by digital light processing based 3D printing and oxidation sintering[J]. Ceramics International, 2023, 49(18): 2969929708.

[100]

CHEN R F, DUAN W Y, WANG G, et al. Preparation of broadband transparent Si3N4–SiO2 ceramics by digital light processing (DLP) 3D printing technology[J]. Journal of the European Ceramic Society, 2021, 41(11): 54955504.

[101]

FAN X Y, SUN R J, DONG J, et al. Fabrication and thermal shock behavior of Si3N4 whiskers toughened γ–Y2Si2O7 coating on porous Si3N4 ceramics[J]. Ceramics International, 2020, 46(13): 2168121688.

[102]

BOCANEGRA-BERNAL M H, MATOVIC B. Mechanical properties of silicon nitride-based ceramics and its use in structural applications at high temperatures[J]. Materials Science and Engineering: A, 2010, 527(6): 13141338.

目录