Conformal Gradient Design for Aerospace Lightweight Lattice Structures
Citations
CAO Qianfeng, YANG Siyuan, DAI Ning. Conformal gradient design for aerospace lightweight lattice structures[J]. Aeronautical Manufacturing Technology, 2025, 68(12): 60-67.
College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing210016, China
Citations
CAO Qianfeng, YANG Siyuan, DAI Ning. Conformal gradient design for aerospace lightweight lattice structures[J]. Aeronautical Manufacturing Technology, 2025, 68(12): 60-67.
Abstract
Aerospace equipment is evolving towards greater mobility, extended range, and increased load-bearing capacity, which puts forward higher requirements for the lightweight design of structures. As the new type of low-density lightweight structure, lattice structures have excellent mechanical properties such as high specific strength and specific stiffness, showing great prospects in the field of lightweight design. However, the lattice structures generated by traditional array method is not being able to avoid damage to integrity of the lattice structures and stress concentration due to the cropping operation, particularly in modeling structures with complex shapes. This study proposes a unified mathematical characterization and conformal design method for lattice structures based on implicit modeling. The design of functional gradient conformal lattice structures is achieved through the size-optimization technique. Design experiments of fairing and skin demonstrated that gradient design of conformal lattice structures enhanced structural stiffness. Stiffness of the optimized fairing and skin increased by 23.0% and 60.5%, respectively, which verifies potential of the proposed method in application of lightweight design of aircraft structures.
高超声速飞行器、空天往返飞行器和运载火箭等不断追求更高的机动性、航程和承载能力,对航空航天构件的轻量化和功能化设计提出了更高的要求。在传统减材制造工艺的限制下,传统的轻量化设计主要依赖在结构上设计减重孔或槽以实现减重。增材制造技术的出现和快速发展拓展了结构设计的自由度,推动了拓扑优化设计、仿生结构设计和微结构设计等先进轻量化设计技术的发展[ 廖文和, 戴宁. 航空航天结构轻量化设计制造技术发展现状与挑战[J]. 南京航空航天大学学报, 2023, 55(3): 347–360.LIAO Wenhe, DAI Ning. Development and challenge of lightweight design and manufacturing technology for aerospace structures[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2023, 55(3): 347–360. 1]。点阵结构是一种由梁单元组成的三维空间桁架微结构,具有有序的排列方式和较强的参数化设计能力[ XIONG J, MINES R, GHOSH R, et al. Advanced micro-lattice materials[J]. Advanced Engineering Materials, 2015, 17(9): 1253–1264. 2]。此外,点阵结构具有较高的比强度、比刚度[ 张钱城, 卢天健, 闻婷. 轻质高强点阵金属材料的制备及其力学性能强化的研究进展[J]. 力学进展, 2010, 40(2): 157–169.ZHANG Qiancheng, LU Tianjian, WEN Ting. Processes in the study on enhanced mechanical properties of high-performance lightweight lattice metallic materials[J]. Advances in Mechanics, 2010, 40(2): 157–169. 3]、散热[ 张磊, 邱志平. 碳纤维增强点阵夹芯结构的散热承载协同优化[J]. 航空动力学报, 2012, 27(1): 89–96.ZHANG Lei, QIU Zhiping. Collaborative optimization of heat dissipation and load capacity for sandwich structures with carbon fiber reinforced lattice truss cores[J]. Journal of Aerospace Power, 2012, 27(1): 89–96. 4]和减振吸能[ 朱凌雪, 朱晓磊. 芯体截面梯度变化的点阵夹层结构吸能特性研究[J]. 振动与冲击, 2018, 37(14): 115–121.ZHU Lingxue, ZHU Xiaolei. Energy absorption characteristics of lattice truss structures with graded cross-section core member[J]. Journal of Vibration and Shock, 2018, 37(14): 115–121. 5]等特点,具有实现结构功能一体化设计的巨大潜力。
对点阵结构的相对密度进行优化可有效改善结构的力学性能。赵芳垒等[ 赵芳垒, 敬石开, 刘晨燕. 基于局部相对密度映射的变密度多孔结构设计方法[J]. 机械工程学报, 2018, 54(19): 121–128.ZHAO Fanglei, JING Shikai, LIU Chenyan. Variable density cellular structure design method base on local relative density mapping[J]. Journal of Mechanical Engineering, 2018, 54(19): 121–128. 6]基于拓扑优化和相对密度映射设计了变密度的点阵结构,提高了结构的力学承载性能。Li等[ LI D W, LIAO W H, DAI N, et al. Anisotropic design and optimization of conformal gradient lattice structures[J]. Computer-Aided Design, 2020, 119: 102787. 7]提出了一种各向异性点阵结构的设计优化方法,优化后的点阵结构具有更强的刚度和抗屈曲性能。任利民等[ 任利民, 戴宁, 程筱胜, 等. 点阵结构填充模型的边界强化设计方法[J]. 中国机械工程, 2021, 32(5): 594–599.REN Limin, DAI Ning, CHENG Xiaosheng, et al. Method of boundary strengthening design for lattice structure filling model[J]. China Mechanical Engineering, 2021, 32(5): 594–599. 8]对边界处的点阵结构进行了增强,确保了载荷向内部结构的有效传递,提高了结构的协同承载能力。Daynes等[ DAYNES S, FEIH S, LU W F, et al. Optimisation of functionally graded lattice structures using isostatic lines[J]. Materials & Design, 2017, 127: 215–223. 9]利用拓扑优化对点阵结构的相对密度进行优化,并结合结构主应力分布对点阵结构的拓扑构型进行优化,生成了承载能力更强的点阵结构。上述研究所针对的点阵结构以立方体单元为主,然而,实际应用中常出现点阵结构与复杂构件外形特征不匹配的问题。点阵结构在填充复杂构件时,需要利用裁剪法将设计区域外多余的结构进行去除[ WETTERGREEN M A, BUCKLEN B S, SUN W, et al. Computer-aided tissue engineering of a human vertebral body[J]. Annals of Biomedical Engineering, 2005, 33(10): 1333–1343. 10],但该方法会破坏边界点阵结构的完整性,影响结构承载性能。因此急需新的设计方法,在保证点阵结构完整性的前提下实现点阵与设计区域几何特征的匹配。
共形点阵等微结构在自然界中普遍存在,如鲨鱼盾鳞在表皮上的共形分布实现了有效减阻;蜂窝的共形六边形结构高效地利用了空间,并实现了载荷的均匀分布。微结构的共形可以保证结构的完整性,使结构的功能性得到更好的发挥。Zhou等[ ZHOU Y, GAO L, LI H. Graded infill design within free-form surfaces by conformal mapping[J]. International Journal of Mechanical Sciences, 2022, 224: 107307. 11]使用共形映射技术将二维的超材料结构向三维自由曲面进行映射,结合拓扑优化对点阵结构的相对密度进行了优化,实现了共形点阵的变密度设计,提高了结构力学性能。Jiang等[ JIANG L, GU X D, CHEN S K. Generative design of bionic structures via concurrent multiscale topology optimization and conformal geometry method[J]. Journal of Mechanical Design, 2021, 143(1): 011701. 12]将保角映射和多材料水平集拓扑优化相结合,设计了包含多种共形点阵结构的仿生结构,减少了点阵结构的局部畸变。上述方法可以对二维平面曲面壳体进行点阵结构的共形和梯度设计,却难以推广至三维。为了实现点阵结构在三维设计空间内的共形设计,Yoo等[ YOO D J. Computer-aided porous scaffold design for tissue engineering using triply periodic minimal surfaces[J]. International Journal of Precision Engineering and Manufacturing, 2011, 12(1): 61–71. 13]利用形函数将三周期极小曲面结构的网格模型直接映射到体网格中,避免了布尔运算对结构的裁剪。Liu等[ LIU Y B, QU Z P, LI Y F. Design method of the conformal lattice structures[J]. Advanced Engineering Materials, 2022, 24(8): 2101423. 14]利用类似的方法将规则设计域内的点阵结构映射至体网格中,实现了共形点阵的设计,仿真结果表明,相比于阵列填充的点阵结构,共形点阵结构的屈服强度和断裂强度分别提高了45.83%和15.03%。此外,扫掠法可使点阵单元变形以适应特定表面形状[ WANG H Q, CHEN Y, ROSEN D W. A hybrid geometric modeling method for large scale conformal cellular structures[C]//ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Long Beach: ASME, 2008: 421–427. 15]。通过对表面上的点进行法向、切向信息的计算,更新点阵单元的几何数据信息,从而构建与表面曲率相匹配的共形点阵结构。Zhou等[ ZHOU Y, GAO L, LI H. Topology optimization design of graded infills for 3D curved volume by a conformal sweeping method[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 412: 116009. 16]提出了共形扫掠方法,可将变密度点阵结构填充至扫掠得到的设计区域内,但该方法计算复杂,且仅适用于扫掠法构造的参数化曲面。
廖文和, 戴宁. 航空航天结构轻量化设计制造技术发展现状与挑战[J]. 南京航空航天大学学报, 2023, 55(3): 347–360. LIAOWenhe, DAINing. Development and challenge of lightweight design and manufacturing technology for aerospace structures[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2023, 55(3): 347–360.
张钱城, 卢天健, 闻婷. 轻质高强点阵金属材料的制备及其力学性能强化的研究进展[J]. 力学进展, 2010, 40(2): 157–169. ZHANGQiancheng, LUTianjian, WENTing. Processes in the study on enhanced mechanical properties of high-performance lightweight lattice metallic materials[J]. Advances in Mechanics, 2010, 40(2): 157–169.
[4]
张磊, 邱志平. 碳纤维增强点阵夹芯结构的散热承载协同优化[J]. 航空动力学报, 2012, 27(1): 89–96. ZHANGLei, QIUZhiping. Collaborative optimization of heat dissipation and load capacity for sandwich structures with carbon fiber reinforced lattice truss cores[J]. Journal of Aerospace Power, 2012, 27(1): 89–96.
[5]
朱凌雪, 朱晓磊. 芯体截面梯度变化的点阵夹层结构吸能特性研究[J]. 振动与冲击, 2018, 37(14): 115–121. ZHULingxue, ZHUXiaolei. Energy absorption characteristics of lattice truss structures with graded cross-section core member[J]. Journal of Vibration and Shock, 2018, 37(14): 115–121.
[6]
赵芳垒, 敬石开, 刘晨燕. 基于局部相对密度映射的变密度多孔结构设计方法[J]. 机械工程学报, 2018, 54(19): 121–128. ZHAOFanglei, JINGShikai, LIUChenyan. Variable density cellular structure design method base on local relative density mapping[J]. Journal of Mechanical Engineering, 2018, 54(19): 121–128.
[7]
LID W, LIAOW H, DAIN, et al. Anisotropic design and optimization of conformal gradient lattice structures[J]. Computer-Aided Design, 2020, 119: 102787.
[8]
任利民, 戴宁, 程筱胜, 等. 点阵结构填充模型的边界强化设计方法[J]. 中国机械工程, 2021, 32(5): 594–599. RENLimin, DAINing, CHENGXiaosheng, et al. Method of boundary strengthening design for lattice structure filling model[J]. China Mechanical Engineering, 2021, 32(5): 594–599.
[9]
DAYNESS, FEIHS, LUW F, et al. Optimisation of functionally graded lattice structures using isostatic lines[J]. Materials & Design, 2017, 127: 215–223.
[10]
WETTERGREENM A, BUCKLENB S, SUNW, et al. Computer-aided tissue engineering of a human vertebral body[J]. Annals of Biomedical Engineering, 2005, 33(10): 1333–1343.
[11]
ZHOUY, GAOL, LIH. Graded infill design within free-form surfaces by conformal mapping[J]. International Journal of Mechanical Sciences, 2022, 224: 107307.
[12]
JIANGL, GUX D, CHENS K. Generative design of bionic structures via concurrent multiscale topology optimization and conformal geometry method[J]. Journal of Mechanical Design, 2021, 143(1): 011701.
[13]
YOOD J. Computer-aided porous scaffold design for tissue engineering using triply periodic minimal surfaces[J]. International Journal of Precision Engineering and Manufacturing, 2011, 12(1): 61–71.
[14]
LIUY B, QUZ P, LIY F. Design method of the conformal lattice structures[J]. Advanced Engineering Materials, 2022, 24(8): 2101423.
[15]
WANGH Q, CHENY, ROSEND W. A hybrid geometric modeling method for large scale conformal cellular structures[C]//ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Long Beach: ASME, 2008: 421–427.
[16]
ZHOUY, GAOL, LIH. Topology optimization design of graded infills for 3D curved volume by a conformal sweeping method[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 412: 116009.