Structural Optimization Design and Simulation Research of Typical Rotor Engine Cooling Fin
Citations
HAN Bin, LIU Zhipeng, WANG Yinuo, et al. Structural optimization design and simulation research of typical rotor engine cooling fin[J]. Aeronautical Manufacturing Technology, 2025, 68(12): 42-50.
Structural Optimization Design and Simulation Research of Typical Rotor Engine Cooling Fin
HAN Bin1
LIU Zhipeng1
WANG Yinuo1
ZHANG Zhaoxing2
ZHANG Qi1
1.School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an710049, China
2.BYD Product Planning and Automotive New Technology Research Institute, Xi’an710065, China
Citations
HAN Bin, LIU Zhipeng, WANG Yinuo, et al. Structural optimization design and simulation research of typical rotor engine cooling fin[J]. Aeronautical Manufacturing Technology, 2025, 68(12): 42-50.
Abstract
The rotor engine is of uneven temperature distribution inside the cylinder block during its working process, which would cause thermal stress, thermal fatigue and other problems, affecting service life of the engine. To improve safety of the rotor engine during operation, extend its service life and address the main issue of high temperature in the high-temperature region, three optimization methods including lengthening fins, grid structure, and copper–aluminum integration are proposed based on the theory of heat transfer of the rotor engine. Based on the premise of verifying the simulation correctness, the heat exchange processes of different models are simulated using Fluent. The simulation results show that the proposed three schemes can improve heat dissipation performance of the rotor engine. Compared with the unoptimized model, surface area of the lengthened-fin model increased by 124.4%, heat dissipation capacity increased by 4.9%, these of the grid-structure model increased by 158.5% and 8.3%, respectively. As for the copper–aluminum integration model, with the synergistic effect of structure and material, has an increase of 15.2% in the heat dissipation capacity. The experiment demonstrates that rational optimization of fin structure and material can improve heat dissipation capability of the rotor engine.
转子发动机组成系统包括进气系统、润滑系统、冷却系统、燃油供给系统、点火系统等[ 辛动. 三角转子发动机[M]. 北京: 科学出版社, 1981.XIN Dong. Delta rotor engine[M]. Beijing: Science Press, 1981. 1],而其工作循环包括进气、压缩、做功、排气。与往复活塞式发动机相比,转子发动机内部三角转子的旋转运动取代了活塞的往复直线运动[ FAN B W, WANG J X, PAN J F, et al. Computational study of hydrogen injection strategy on the combustion performance of a direct injection rotary engine fueled with natural gas/hydrogen blends[J]. Fuel, 2022, 328: 125190. 2],具有功率高、结构紧凑、传动平稳、体积小、质量轻等特点,在无人机领域具有广阔的应用前景[ 李辉, 孙非. 转子发动机应用发展与关键技术[J]. 小型内燃机与车辆技术, 2023, 52(3): 68–74.LI Hui, SUN Fei. The application development and key technologies of rotary engine[J]. Small Internal Combustion Engine and Vehicle Technique, 2023, 52(3): 68–74. 甄欣, 刘金祥. 变形对小型Wankel转子发动机端面漏气的影响研究[J]. 内燃机工程, 2018, 39(1): 73–80.ZHEN Xin, LIU Jinxiang. Study on influence of deformation on the end face leakage of a small wankel rotary engine[J]. Chinese Internal Combustion Engine Engineering, 2018, 39(1): 73–80. 3-4]。
然而,转子发动机存在油耗高、冷却性差的缺点[ 潘剑锋, 陈瑞, 范宝伟, 等. LPG转子发动机缸内燃烧影响因素研究[J]. 农业机械学报, 2015, 46(1): 329–337.PAN Jianfeng, CHEN Rui, FAN Baowei, et al. Affecting factors on combustion progress in LPG rotary engine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(1): 329–337. 5],在转子发动机的缸体上,存在热弧区和冷弧区,因此各个部位的受热和热载荷情况不均匀,会出现局部温度较高的情况,特别是在缸体火花塞附近。高温会导致缸体发生热蠕变或高温腐蚀,对结构安全性产生隐患。因此,排出发动机内部热量以降低发动机整体温度,对发动机的使用安全性极为重要[ 张志清, 姜年朝, 李湘萍, 等. 基于ANSYS的转子发动机缸体传热过程有限元分析[J]. 农业装备与车辆工程, 2011, 49(3): 25–28.ZHANG Zhiqing, JIANG Nianzhao, LI Xiangping, et al. The finite element analysis for heat transfer of rotary engine chamber based on ansys[J]. Agricultural Equipment & Vehicle Engineering, 2011, 49(3): 25–28. 6]。
目前,针对转子发动机的散热已有广泛报道。Wu等[ WU W, LIN Y R, CHOW L. A heat pipe assisted air-cooled rotary wankel engine for improved durability, power and efficiency[C]//SAE Technical Paper Series. Cincinnati: SAE International, 2014. 7]通过在转子发动机中添加热管,在热管中通入冷却水来降低高温区的温度,进而降低发动机外壳和侧板的温度梯度,有限元仿真验证了该方法可以有效降低热应力与热变形。何光宇等[ 何光宇, 杨正浩, 耿琪. 小型航空Wankel发动机转子结构优化仿真[J]. 空军工程大学学报, 2022, 23(5): 1–8.HE Guangyu, YANG Zhenghao, GENG Qi. Research on simulation and optimization of triangle rotor of small aviation wankel engine[J]. Journal of Air Force Engineering University, 2022, 23(5): 1–8. 8]针对多重载荷耦合工况,提出了在转子腰部圆孔边缘处加工圆角及在冷却孔处布置散热片的优化方法,并使用有限元仿真对小型航空Wankel发动机转子进行温度场、应力场与变形量的仿真分析,从而降低了转子的温度、热应力和热变形;Durgam等[ DURGAM S, KALE A, KENE N, et al. Thermal analysis of fin materials for engine cylinder heat transfer enhancement[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1126(1): 012071. 9]研究了发动机上不同材料换热翅片对发动机的换热影响,使用有限元仿真分析了不同材料翅片对气缸内部壁面温度和热通量的影响;罗宝洋等[ 罗保洋, 刘金祥. 翅片参数对小型转子发动机端盖传热特性影响[J]. 机械设计与制造, 2024(5): 214–218.LUO Baoyang, LIU Jinxiang. The influence of fin parameters on the heat transfer characteristics of the end cover of a small rotary engine[J]. Machinery Design & Manufacture, 2024(5): 214–218. 10]基于Fluent建立了风冷转子发动机与冷却风室的流固耦合模型,分析了端盖散热翅片结构参数与传热特性之间的关系,发现对于发动机换热,翅片长度存在一个最佳值。综上所述,转子发动机的散热问题已得到广泛关注,但目前对于发动机的换热问题并没有具体的针对性解决方法。
FANB W, WANGJ X, PANJ F, et al. Computational study of hydrogen injection strategy on the combustion performance of a direct injection rotary engine fueled with natural gas/hydrogen blends[J]. Fuel, 2022, 328: 125190.
[3]
李辉, 孙非. 转子发动机应用发展与关键技术[J]. 小型内燃机与车辆技术, 2023, 52(3): 68–74. LIHui, SUNFei. The application development and key technologies of rotary engine[J]. Small Internal Combustion Engine and Vehicle Technique, 2023, 52(3): 68–74.
[4]
甄欣, 刘金祥. 变形对小型Wankel转子发动机端面漏气的影响研究[J]. 内燃机工程, 2018, 39(1): 73–80. ZHENXin, LIUJinxiang. Study on influence of deformation on the end face leakage of a small wankel rotary engine[J]. Chinese Internal Combustion Engine Engineering, 2018, 39(1): 73–80.
[5]
潘剑锋, 陈瑞, 范宝伟, 等. LPG转子发动机缸内燃烧影响因素研究[J]. 农业机械学报, 2015, 46(1): 329–337. PANJianfeng, CHENRui, FANBaowei, et al. Affecting factors on combustion progress in LPG rotary engine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(1): 329–337.
[6]
张志清, 姜年朝, 李湘萍, 等. 基于ANSYS的转子发动机缸体传热过程有限元分析[J]. 农业装备与车辆工程, 2011, 49(3): 25–28. ZHANGZhiqing, JIANGNianzhao, LIXiangping, et al. The finite element analysis for heat transfer of rotary engine chamber based on ansys[J]. Agricultural Equipment & Vehicle Engineering, 2011, 49(3): 25–28.
[7]
WUW, LINY R, CHOWL. A heat pipe assisted air-cooled rotary wankel engine for improved durability, power and efficiency[C]//SAE Technical Paper Series. Cincinnati: SAE International, 2014.
[8]
何光宇, 杨正浩, 耿琪. 小型航空Wankel发动机转子结构优化仿真[J]. 空军工程大学学报, 2022, 23(5): 1–8. HEGuangyu, YANGZhenghao, GENGQi. Research on simulation and optimization of triangle rotor of small aviation wankel engine[J]. Journal of Air Force Engineering University, 2022, 23(5): 1–8.
[9]
DURGAMS, KALEA, KENEN, et al. Thermal analysis of fin materials for engine cylinder heat transfer enhancement[J]. IOP Conference Series: Materials Science and Engineering, 2021, 1126(1): 012071.
[10]
罗保洋, 刘金祥. 翅片参数对小型转子发动机端盖传热特性影响[J]. 机械设计与制造, 2024(5): 214–218. LUOBaoyang, LIUJinxiang. The influence of fin parameters on the heat transfer characteristics of the end cover of a small rotary engine[J]. Machinery Design & Manufacture, 2024(5): 214–218.