Study on Impact Dynamics Behavior of an Auxetic Meta-Structure Made From Carbon Fiber Reinforced Composites
Citations
ZHAO Changfang. Study on impact dynamics behavior of an auxetic meta-structure made from carbon fiber reinforced composites[J]. Aeronautical Manufacturing Technology, 2025, 68(12): 24-31.
图1 碳纤维复合材料拉胀超结构的组合模具及测试样品[ ZHAO C F, HEOW PUEH L, LIM G K, et al. Preparation process and compression mechanics of carbon fiber reinforced plastics negative Poisson’s ratio structure (CFRP + NPRS)[J]. Composite Structures, 2022, 292: 115667. 26]
图2 大杆径SHPB冲击测试系统
图3 碳纤维复合材料拉胀超结构#2方向SHPB冲击有限元模型
图4 碳纤维复合材料拉胀超结构#2方向冲击
图5 碳纤维复合材料拉胀超结构#3方向冲击
图6 碳纤维复合材料拉胀超结构SHPB冲击失效结果
图7 碳纤维复合材料拉胀超结构SHPB冲击波形
图8 碳纤维复合材料拉胀超结构SHPB冲击的承载与吸能效果曲线
图9 碳纤维复合材料拉胀超结构#2方向SHPB冲击预测
图10 碳纤维复合材料拉胀超结构#2方向压缩的吸能及拉胀效应[ ZHONG J L, ZHAO C F, CHEN C Q, et al. Mechanical behaviors of composite auxetic structures under quasi-static compression and dynamic impact[J]. European Journal of Mechanics–A/Solids, 2025, 109: 105454. 27]
Study on Impact Dynamics Behavior of an Auxetic Meta-Structure Made From Carbon Fiber Reinforced Composites
ZHAO Changfang1,2
1.Department of Engineering Mechanics, CNMM and AML, Tsinghua University, Beijing100084, China
2.Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow119991, Russia
Citations
ZHAO Changfang. Study on impact dynamics behavior of an auxetic meta-structure made from carbon fiber reinforced composites[J]. Aeronautical Manufacturing Technology, 2025, 68(12): 24-31.
Abstract
With the emergence and development of meta-structures, many phenomena in the field of mechanics that are difficult to realize with conventional materials or structures are gradually becoming possible. Fibre reinforced composites have excellent mechanical properties and can meet the requirements of light weight and high strength. Combining the performance advantages of advanced fiber composites and the unconventional behavior of auxetic meta-structures, a negative Poisson’s ratio meta-structure (also called auxetic meta-structure) was prepared by hot pressing molding through a combination mould based on carbon fiber reinforced epoxy resin composite and the classical re-entrant configuration. Subsequently, studies on deformation, failure, buffering and energy absorption of the auxetic meta-structures were carried out by quasi-static and dynamic impact experiments, and the corresponding finite element analyses were also performed. The results show that the meta-structures have different load-bearing capacities, failure modes and auxetic effects in different characteristic directions (including re-entrant direction #1, vertical to the re-entrant direction #2 and out-of-plane normal direction #3). Specifically, there is an auxetic effect when the impact is in the #2 direction and the failure mode is wrinkle fracture, whereas when the impact is in the #3 direction, there is no progressive failure but rather buckling separation from the bond interface. The failure modes of auxetic meta-structures have been shifted compared to the quasi-static case, therefore, impact energy absorption, specific energy absorption and auxetic effect are weakened. In the future, triggering methods and filler materials can be further developed to improve the buffering and energy absorption of the auxetic meta-structures, so that they can be applied in the field of impact protection engineering.
负泊松比结构(也称拉胀超结构)是一种典型的力学超材料,具有良好的吸能、抗剪切、抗断裂、抗压痕及曲面同向等性能[ REN X, DAS R, TRAN P, et al. Auxetic metamaterials and structures: A review[J]. Smart Materials and Structures, 2018, 27(2): 023001. HUANG C W, CHEN L. Negative Poisson’s ratio in modern functional materials[J]. Advanced Materials, 2016, 28(37): 8079–8096. 于靖军, 谢岩, 裴旭. 负泊松比超材料研究进展[J]. 机械工程学报, 2018, 54(13): 1–14.YU Jingjun, XIE Yan, PEI Xu. State-of-art of metamaterials with negative Poisson’s ratio[J]. Journal of Mechanical Engineering, 2018, 54(13): 1–14. EVANS K E, NKANSAH M A, HUTCHINSON I J, et al. Molecular network design[J]. Nature, 1991, 353: 124. 1-4],从而具备隔音、减振、承载、轻量化和抗冲击等功能,有望应用于航空航天薄壁曲壳及腹板、武器舰船的冲击防护夹层、交通医疗的多功能轻质箱体等方面[ 任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展[J]. 力学学报, 2019, 51(3): 656–687.REN Xin, ZHANG Xiangyu, XIE Yimin. Research progress in auxetic materials and structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 656–687. 史炜, 杨伟, 李忠明, 等. 负泊松比材料研究进展[J]. 高分子通报, 2003(6): 48–57.SHI Wei, YANG Wei, LI Zhongming, et al. Advances in negative Poisson’s ratio materials[J]. Polymer Bulletin, 2003(6): 48–57. ALDERSON A, RASBURN J, AMEER-BEG S, et al. An auxetic filter: A tuneable filter displaying enhanced size selectivity or defouling properties[J]. Industrial & Engineering Chemistry Research, 2000, 39(3): 654–665. LIU Y Z, ZHAO C F, XU C, et al. Auxetic meta-materials and their engineering applications: A review[J]. Engineering Research Express, 2023, 5(4): 042003. 5-8]。相关研究表明,负泊松比行为不受尺度的限制,既可以是宏观整体现象,也可以是微观局部现象,如内凹六边形蜂窝和黄铁矿晶体等[ 杨智春, 邓庆田. 负泊松比材料与结构的力学性能研究及应用[J]. 力学进展, 2011, 41(3): 335–350.YANG Zhichun, DENG Qingtian. Mechanical property and application of materials and structures with negative Poisson’s ratio[J]. Advances in Mechanics, 2011, 41(3): 335–350. 9]。通常,负泊松比效应(Negative Poisson’s ratio effect,NPRE)或称拉胀效应(Auxetic effect,AUE),表示负泊松比材料或结构在外载作用下产生的反常力学现象和行为,是拉胀超材料的特有性质。
目前研究较多的拉胀超结构包含泊松比值可调的拉胀超结构[ FARZANEH A, PAWAR N, PORTELA C M, et al. Sequential metamaterials with alternating Poisson’s ratios[J]. Nature Communications, 2022, 13(1): 1041. 10]、智能变构的拉胀超结构[ XIN X Z, LIU L W, LIU Y J, et al. 4D printing auxetic metamaterials with tunable, programmable, and reconfigurable mechanical properties[J]. Advanced Functional Materials, 2020, 30(43): 2004226. 11]及多平台拉胀超结构[ LI N, LIU S Z, WU X N, et al. Mechanical characteristics of a novel rotating star-rhombic auxetic structure with multi-plateau stages[J]. Thin-Walled Structures, 2023, 191: 111081. ZHAO C F, CHEN C Q. Multi-plateau auxetic metamaterials constructed by intracellular and intercellular gradients for energy absorption in space[C]//Proseedings of 75th International Astronautical Congress. Milan: The International Astronautical Federation (IAF), 2024. 12-13]等。然而,大多数拉胀超结构的选材为金属和聚合物[ ZHAO C F, ZHOU Z T, LIU X X, et al. The in-plane stretching and compression mechanics of negative Poisson’s ratio structures: Concave hexagon, star shape, and their combination[J]. Journal of Alloys and Compounds, 2021, 859: 157840. PAPADOPOULOU A, LAUCKS J, TIBBITS S. Auxetic materials in design and architecture[J]. Nature Reviews Materials, 2017, 2(12): 17078. 14-15],不属于轻质、高强先进复合材料范畴,在刚度和强度方面具有一定的局限性。为此,一些学者采用增材制造技术(Additive manufacturing technology,AMT)来制备碳纤维增强复合材料拉胀超结构[ LI X, PENG W T, WU W W, et al. Auxetic mechanical metamaterials: From soft to stiff[J]. International Journal of Extreme Manufacturing, 2023, 5(4): 042003. 16],以实现材料和结构性能的叠加。例如,Chen等[ CHEN Y, YE L. Designing and tailoring effective elastic modulus and negative Poisson’s ratio with continuous carbon fibres using 3D printing[J]. Composites Part A: Applied Science and Manufacturing, 2021, 150: 106625. 17]采用AMT制备了连续碳纤维增强纯聚酰胺星形拉胀超结构,并通过压缩试验证明加入连续碳纤维能够提升结构的强度和负泊松比值。Quan等[ QUAN C, HAN B, HOU Z H, et al. 3D printed continuous fiber reinforced composite auxetic honeycomb structures[J]. Composites Part B: Engineering, 2020, 187: 107858. 18]采用AMT制备了Kevlar R纤维增强聚乳酸复合材料内凹拉胀超结构,并进行了面内压缩力学理论和试验研究。此外,在纤维增强复合材料异形结构制备方面,Mei等[ MEI J, TAN P J, BOSI F, et al. Fabrication and mechanical characterization of CFRP X–core sandwich panels[J]. Thin-Walled Structures, 2021, 158: 107144. 19]通过组合模具和高温热压法制备了复杂的X–core结构;Zhao等[ ZHAO Y, CHEN L M, WU Z X, et al. Lateral crushing behavior of novel carbon fiber/epoxy composite bidirectional self-locked thin-walled tubular structure and system[J]. Thin-Walled Structures, 2020, 157: 107063. 20]也采用组合模具制备了双向自锁的胞结构;但两者均未实现拉胀效应。
AMT采用热塑性基体包裹碳纤维丝/束制备产品,而高温热压成型法常用热固性树脂浸渍碳纤维布制备产品,两者在原理和工艺上存在差别[ ZHONG J L, ZHAO C F, LIU Y Z, et al. Meta-materials of re-entrant negative Poisson’s ratio structures made from fiber-reinforced plastics: A short review[J]. Fibers and Polymers, 2024, 25(2): 395–406. 21]。AMT的优点是易于制备异形构件,但存在价格昂贵、材料性能不稳定、产品尺寸受限、需要使用辅助支架等问题[ TANG H B, SUN Q P, LI Z A, et al. Longitudinal compression failure of 3D printed continuous carbon fiber reinforced composites: An experimental and computational study[J]. Composites Part A: Applied Science and Manufacturing, 2021, 146: 106416. WANG K, LONG H M, CHEN Y, et al. Heat-treatment effects on dimensional stability and mechanical properties of 3D printed continuous carbon fiber-reinforced composites[J]. Composites Part A: Applied Science and Manufacturing, 2021, 147: 106460. TIAN X Y, LIU T F, YANG C C, et al. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites[J]. Composites Part A: Applied Science and Manufacturing, 2016, 88: 198–205. 22-24]。相比之下,高温热压成型法具有技术成熟、成型容易、纤维含量易控制、重复性和互换性好、生产成本低等优点,且可以采用成熟的本构模型进行数值模拟,已被广泛用于生产先进纤维复合材料/结构[ ZHONG J L, ZHAO C F, LIU Y Z, et al. Meta-materials of re-entrant negative Poisson’s ratio structures made from fiber-reinforced plastics: A short review[J]. Fibers and Polymers, 2024, 25(2): 395–406. 21]。近期,通过热压成型工艺制备超结构也有了一定进展,有学者制备了碳纤维复合材料平面拉胀超结构[ ZHAO C F, ZHOU Z T, ZHANG K B, et al. Experimental study on tensile mechanics of arrow combination structure with carbon fiber–epoxy resin composite[J]. Arabian Journal for Science and Engineering, 2021, 46(3): 2891–2900. 25]、空间拉胀超结构[ ZHAO C F, HEOW PUEH L, LIM G K, et al. Preparation process and compression mechanics of carbon fiber reinforced plastics negative Poisson’s ratio structure (CFRP + NPRS)[J]. Composite Structures, 2022, 292: 115667. ZHONG J L, ZHAO C F, CHEN C Q, et al. Mechanical behaviors of composite auxetic structures under quasi-static compression and dynamic impact[J]. European Journal of Mechanics–A/Solids, 2025, 109: 105454. 26-27]及其泡沫铝填充结构[ ZHAO C F, GOH K L, LEE H P, et al. Experimental study and finite element analysis on energy absorption of carbon fiber reinforced composite auxetic structures filled with aluminum foam[J]. Composite Structures, 2023, 303: 116319. ZHAO C F, ZHONG J L, WANG H X, et al. Impact behaviour and protection performance of a CFRP NPR skeleton filled with aluminum foam[J]. Materials & Design, 2024, 246: 113295. 28-29],并开展了一系列静动态压缩力学行为试验[ ZHAO C F, ZHOU Z T, ZHANG K B, et al. Experimental study on tensile mechanics of arrow combination structure with carbon fiber–epoxy resin composite[J]. Arabian Journal for Science and Engineering, 2021, 46(3): 2891–2900. ZHAO C F, HEOW PUEH L, LIM G K, et al. Preparation process and compression mechanics of carbon fiber reinforced plastics negative Poisson’s ratio structure (CFRP + NPRS)[J]. Composite Structures, 2022, 292: 115667. ZHONG J L, ZHAO C F, CHEN C Q, et al. Mechanical behaviors of composite auxetic structures under quasi-static compression and dynamic impact[J]. European Journal of Mechanics–A/Solids, 2025, 109: 105454. ZHAO C F, GOH K L, LEE H P, et al. Experimental study and finite element analysis on energy absorption of carbon fiber reinforced composite auxetic structures filled with aluminum foam[J]. Composite Structures, 2023, 303: 116319. ZHAO C F, ZHONG J L, WANG H X, et al. Impact behaviour and protection performance of a CFRP NPR skeleton filled with aluminum foam[J]. Materials & Design, 2024, 246: 113295. 25-29]、模拟[ ZHAO C F, ZHONG J L, GOH K L, et al. Mechanics of carbon fiber reinforced plastics negative Poisson’s ratio structures[J/OL]. Materials Today: Proceedings, 2023. https://doi.org/10.1016/j.matpr.2022.12.157. 30]和理论研究[ 赵昌方, GOH Kheng Lim, 乐贵高, 等. 复合材料负泊松比结构等效弹性力学理论建模[J]. 青岛科技大学学报(自然科学版), 2023, 44(5): 87–99.ZHAO Changfang, GOH K L, LE Guigao, et al. A preliminary theoretical model of equivalent elastic mechanics for composite structures with negative Poisson’s ratio[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2023, 44(5): 87–99. 31],但关于多胞结构面内外动态冲击性能研究方面的报道仍然较少。
拉胀超结构的母材为碳纤维复合材料层合板,密度1.45 g/cm3。层合板由T300/3K单向碳纤维预浸料(辽宁中科新材科技有限公司)制备而成,其基体为WP–R1312环氧树脂(惠柏新材料科技(上海)股份有限公司)。预浸料的面密度为150 g/m2,纤维体积分数为72%,单层厚度0.13 mm。碳纤维复合材料拉胀超结构是一种异形结构,难以通过常规模具一次成型,需设计组合模具并将树脂经高温固化粘接后才能获得。制备时,将10层单向预浸料按照[0°/90°]10的规律铺设于组合模具上,抽真空后放入高温热压罐进行固化,详细制备工艺见文献[ ZHAO C F, HEOW PUEH L, LIM G K, et al. Preparation process and compression mechanics of carbon fiber reinforced plastics negative Poisson’s ratio structure (CFRP + NPRS)[J]. Composite Structures, 2022, 292: 115667. ZHONG J L, ZHAO C F, CHEN C Q, et al. Mechanical behaviors of composite auxetic structures under quasi-static compression and dynamic impact[J]. European Journal of Mechanics–A/Solids, 2025, 109: 105454. 26-27]。得到初始产品后,进一步通过数控机床切割可得到拉胀超结构,其试件如图1所示[ ZHAO C F, HEOW PUEH L, LIM G K, et al. Preparation process and compression mechanics of carbon fiber reinforced plastics negative Poisson’s ratio structure (CFRP + NPRS)[J]. Composite Structures, 2022, 292: 115667. 26]。
图1 碳纤维复合材料拉胀超结构的组合模具及测试样品[ ZHAO C F, HEOW PUEH L, LIM G K, et al. Preparation process and compression mechanics of carbon fiber reinforced plastics negative Poisson’s ratio structure (CFRP + NPRS)[J]. Composite Structures, 2022, 292: 115667. 26]
Fig.1 Combination mould and test specimens of CFRP auxetic meta-structure [ ZHAO C F, HEOW PUEH L, LIM G K, et al. Preparation process and compression mechanics of carbon fiber reinforced plastics negative Poisson’s ratio structure (CFRP + NPRS)[J]. Composite Structures, 2022, 292: 115667. 26]
准静态测试使用CSS44300型万能电子试验机,加载应变率为0.002 s–1,期间引入XTOP 3D全场应变测量和分析系统采集试件的应变场,设备详情见文献[ ZHAO C F, HEOW PUEH L, LIM G K, et al. Preparation process and compression mechanics of carbon fiber reinforced plastics negative Poisson’s ratio structure (CFRP + NPRS)[J]. Composite Structures, 2022, 292: 115667. ZHONG J L, ZHAO C F, CHEN C Q, et al. Mechanical behaviors of composite auxetic structures under quasi-static compression and dynamic impact[J]. European Journal of Mechanics–A/Solids, 2025, 109: 105454. ZHAO C F, GOH K L, LEE H P, et al. Experimental study and finite element analysis on energy absorption of carbon fiber reinforced composite auxetic structures filled with aluminum foam[J]. Composite Structures, 2023, 303: 116319. 26-28]。大杆径分离式霍普金森压杆(Split Hopkinson pressure bar,SHPB)冲击测试系统(图2)包含4部分:气动装置、分离的杆、数据采集装置及制动装置。其中,杆的材料为弹簧钢,直径为100 mm;圆柱子弹长400 mm(质量8.83 kg);入射杆长3000 mm;透射杆长3000 mm。试件夹持用的钢板尺寸为135 mm×110 mm×15 mm(长×宽×厚)。使用应变片采集应变,其系统为ALT0000超动态数据采集系统,采样频率2.5 MHz。冲击过程通过摄影机记录,拍摄帧率为480 fps。冲击能量通过改变气动压力实现,分别为#2方向冲击0.1 MPa(296 J)和0.2 MPa(487 J),#3方向冲击0.2 MPa(432 J)和0.3 MPa(604 J)。拉胀超结构的压缩测试包括#2和#3方向2类、静态和动态冲击2种,动态中每类还包括了2种冲击能量,具体的测试参数见表1。
图2 大杆径SHPB冲击测试系统
Fig.2 SHPB impact test system with large rod diameter
表1 碳纤维复合材料拉胀超结构的测试参数
Table 1 Test parameters of CFRP auxetic meta-structures
试件名称
加载速率或冲击能量
试件质量/g
Q–#2
3.6 mm/min
148.9
Q–#3
12.0 mm/min
146.4
D–#2–1
296 J
148.8
D–#2–2
432 J
150.2
D–#3–1
487 J
149.9
D–#3–2
604 J
148.2
注:Q表示准静态测试、D表示动态测试;#2和#3代表加载方向,其后的数字1和2代表测试样品的编号。
基于ABAQUS/Explicit的拉胀超结构SHPB冲击有限元模型如图3所示。模型包括子弹、入射杆、透射杆及钢板辅助夹具,材料均为弹簧钢,密度为7.83 g/cm3,弹性模量为210 GPa,泊松比为0.33,模拟时采用弹性本构。碳纤维复合材料拉胀超结构的壁厚约2 mm,其层与层之间的界面通过Cohesive接触方式定义,边界条件为初始速度,具体细节见文献[ ZHONG J L, ZHAO C F, CHEN C Q, et al. Mechanical behaviors of composite auxetic structures under quasi-static compression and dynamic impact[J]. European Journal of Mechanics–A/Solids, 2025, 109: 105454. ZHAO C F, GOH K L, LEE H P, et al. Experimental study and finite element analysis on energy absorption of carbon fiber reinforced composite auxetic structures filled with aluminum foam[J]. Composite Structures, 2023, 303: 116319. ZHAO C F, ZHONG J L, WANG H X, et al. Impact behaviour and protection performance of a CFRP NPR skeleton filled with aluminum foam[J]. Materials & Design, 2024, 246: 113295. 27-29]。CFRP为各向异性材料,采用开发的热–力耦合用户自定义材料子程序(VUMAT)进行模拟[ ZHAO C F, ZHONG J L, WANG H X, et al. Complete constitutive model of CFRP including continuous damage in low strain rate compression and temperature generation in high strain rate impact[J]. Polymer Composites, 2024, 45(5): 3965–3989. 32],包含应变率效应和损伤演化行为,初始温度条件为273 K,材料参数见文献[ ZHAO C F, ZHONG J L, WANG H X, et al. Complete constitutive model of CFRP including continuous damage in low strain rate compression and temperature generation in high strain rate impact[J]. Polymer Composites, 2024, 45(5): 3965–3989. 32]。整个模型均采用三维八节点减缩积分实体单元(C3D8R)进行离散,各CFRP层需根据0°/90°的规律赋予材料方向,超结构的网格数量依照文献[ ZHAO C F, GOH K L, LEE H P, et al. Experimental study and finite element analysis on energy absorption of carbon fiber reinforced composite auxetic structures filled with aluminum foam[J]. Composite Structures, 2023, 303: 116319. 28]中完成收敛性检验的尺寸进行设置。钢板与杆之间的接触设置为通用接触,法向为硬接触、切向摩擦系数0.05;钢板与拉胀超结构之间采用面–节点接触,接触属性与钢板–杆的相同。准静态模拟与动态的相似,均通过速度边界施加载荷。
图3 碳纤维复合材料拉胀超结构#2方向SHPB冲击有限元模型
Fig.3 Finite element model of CFRP auxetic meta-structure under SHPB impact in the #2 direction
2 结果与讨论
2.1 冲击动力学行为
SPHB冲击过程如图4和5所示,两者分别对应于#2方向和#3方向下不同能量的冲击,识图顺序为从左往右并换行。图4(a)所示为0.1 MPa发射压力下#2方向的测试结果,冲击过程归结为:子弹射出后撞击入射杆,经过夹具对试件造成接触式冲击;试件受压后快速收缩,实现了压缩–收缩的负泊松比效应;接着,内凹结构的内部发生接触,一些内凹角的折痕断裂,诱导胞元统一偏斜;随后,在剪切力的作用下,粘接界面脱粘,一些折痕完全断裂,形成多个失效后的半胞结构,失效结果见图6(a)。当发射压力增加到0.2 MPa后,如图4(b)所示,变形和失效过程与0.1 MPa时相同,但此时折痕已完全分裂,形成以横梁和侧壁为特征的碎片,失效结果见图6(b),说明发射压力越大,失效程度越严重。然而,相比于图6(c)中的准静态压缩失效结果[ ZHONG J L, ZHAO C F, CHEN C Q, et al. Mechanical behaviors of composite auxetic structures under quasi-static compression and dynamic impact[J]. European Journal of Mechanics–A/Solids, 2025, 109: 105454. 27],动态加载下的分层失效减少、碎裂情况加剧,说明失效模式发生了由侧壁分层破坏向折痕断裂、胞元脱粘的转变。综上,#2方向冲击时,折痕的失效会诱导胞元发生偏斜(即拉胀超结构上、下端面发生横向的剪切移动)并被压碎,结构吸收的外力转化为横向的移动而减小了结构的内力,从而降低了材料失效带来的吸能。
图4 碳纤维复合材料拉胀超结构#2方向冲击
Fig.4 Impact of CFRP auxetic meta-structure in the #2 direction
图5 碳纤维复合材料拉胀超结构#3方向冲击
Fig.5 Impact of CFRP auxetic meta-structure in the #3 direction
图6 碳纤维复合材料拉胀超结构SHPB冲击失效结果
Fig.6 Failure results of CFRP auxetic meta-structures under SHPB impact
在#3方向的准静态压缩试验中,拉胀超结构发生了稳定的渐进失效,结果如图6(d)所示。但在冲击条件下,出现了不一样的现象。0.2 MPa的冲击过程见图5(a),试件受压后并没有稳定地发生渐进失效,而是在冲击端产生局部的纤维/基体压碎失效;接着,粘接界面受横向拉力作用而发生脱粘,致使后续过程中试件没有受到垂直的冲击载荷,而是从SHPB杆的夹持端脱落或飞出。此处,横向拉力是来自拉胀超结构受压产生的横向屈曲内力。将发射压力增大到0.3 MPa后,冲击结果与0.2 MPa时相同,如图5(b)所示,其冲击过程中喷出的碎屑为局部失效的纤维和基体,也有粘接界面上剥落的树脂。#3方向的冲击失效结果见图6(e)和图6(f),分别对应于0.2 MPa发射压力和0.3 MPa发射压力。由此可见,粘接界面处环氧树脂发生剥落,且冲击端有较小的压溃失效。在#3特征方向,拉胀超结构没有实现稳定的材料破坏或结构变形,而是发生突发的屈曲失效,失去了缓冲和吸能效果。因此,需增加渐进失效触发机制,如设置倒角、改变结构形状、增强粘接界面强度等[ SUN G Y, LI S F, LI G Y, et al. On crashing behaviors of aluminium/CFRP tubes subjected to axial and oblique loading: An experimental study[J]. Composites Part B: Engineering, 2018, 145: 47–56. ZHU G H, LIAO J P, SUN G Y, et al. Comparative study on metal/CFRP hybrid structures under static and dynamic loading[J]. International Journal of Impact Engineering, 2020, 141: 103509. 33-34],以改善结构在此方向上的冲击吸能。冲击屈曲属于一种突发的破坏,与边界条件、结构几何等有关,可直接诱导粘接的结构发生分离,限制了结构的吸能潜力。
2.2 动力学参数分析
SHPB高速冲击采集到的应变电压波形如图7所示。通过波信号经一维应力波传递理论[ AL-MOUSAWI M M, REID S R, DEANS W F. The use of the split Hopkinson pressure bar techniques in high strain rate materials testing[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 1997, 211(4): 273–292. 35],可反算出冲击力、冲击能、冲击位移、冲击速度等力学和运动学参数。经典波形通常包括入射杆上的入射波(子弹撞击入射杆产生的弹性波)和反射波(入射波在靠近试件的自由端反射产生的弹性波),以及透射杆上的透射波(经试件传递过去的入射波)[ ZHAO C F, ZHOU Z T, REN J, et al. Investigation of compression mechanics of strain rate-dependent forged/laminated carbon fiber–epoxy resin composites[J]. Composites: Mechanics, Computations, Applications, 2020, 11(4): 341–367. 36]。#2方向的冲击波形见图7(a),入射波和反射波的幅值随子弹发射压力的增大而增大,但透射波幅值却有所降低。反射波第一个波峰后试件已经被撞坏,后面的波峰是继续撞击损坏试件产生的结果,与图4中的现象相对应。第一个波峰与波谷的距离越大,说明拉胀超结构的冲击失效越严重。同时,发射压力增大、透射波幅值减小,也说明了试件失效严重,所以没有较强的应变波传递到透射杆上。#3方向的冲击波形见图7(b),两次冲击的波形幅值和脉宽基本相同,但反射波的形状有所差别。反射波呈上升趋势,说明试件没有发生失效而是继续受压,直到完成一次冲击。透射波能够反映材料/结构的波阻抗,其幅值越高则材料/结构的波阻抗越低、强度越高[ 周风华, 陈亮. SHPB实验中粘弹性试件内部应力波的传播[J]. 固体力学学报, 2010, 31(2): 149–156.ZHOU Fenghua, CHEN Liang. Stress wave propagation in a viscoelastic specimen during SHPB tests[J]. Chinese Journal of Solid Mechanics, 2010, 31(2): 149–156. 37]。
图7 碳纤维复合材料拉胀超结构SHPB冲击波形
Fig.7 Wave forms of CFRP auxetic meta-structures under SHPB impact
Fig.9 Prediction of CFRP auxetic meta-structure in the #2 direction under SHPB impact
2.3 吸能和拉胀效应
#2方向冲击时,拉胀超结构具有较好的稳定性,且具有拉胀效应,因此分析其冲击压缩的吸能、比吸能和泊松比,如图10所示。准静态由于载荷稳定、失效类型多,其吸能和比吸能远大于冲击加载情况;SHPB冲击的最大吸能为135.1 J,仅为准静态的33.1%,如图10(a)所示。两次SHPB冲击的吸能有所不同,原因在于发射压力的波动。对比准静态和动态冲击的吸能可知,动态冲击的吸能低于准静态压缩的吸能。准静态吸能并不代表结构的所有吸收能量,因为在超高压力或冲击能量面前,材料的失效模式还会进一步发生变化,且应变率强化效应会更明显,只有让结构发生完全压溃、材料发生极细碎裂,吸能才接近于极限吸能。面对高能冲击,缓冲吸能的机制是通过结构和材料的变形和失效吸收入射能量;而对于更高能量的冲击,由于入射能量与结构吸能总量的差距很大,因此结构的缓冲吸能效果甚微。可见,碳纤维复合材料拉胀超结构的抗冲击性能与入射能量息息相关,需提前估算出所需防护结构的层数[ ZHONG J L, ZHAO C F, CHEN C Q, et al. Mechanical behaviors of composite auxetic structures under quasi-static compression and dynamic impact[J]. European Journal of Mechanics–A/Solids, 2025, 109: 105454. 27],以确保防护性能。在拉胀效应方面,如图10(b)所示,SHPB冲击仍然能实现拉胀效应,但相比于准静态压缩降低,这是因为动态冲击时结构的变形更加剧烈,纵向变形较横向变形要大得多。值得注意的是,动态冲击时泊松比曲线在一定区间内稳定性较好。
图10 碳纤维复合材料拉胀超结构#2方向压缩的吸能及拉胀效应[ ZHONG J L, ZHAO C F, CHEN C Q, et al. Mechanical behaviors of composite auxetic structures under quasi-static compression and dynamic impact[J]. European Journal of Mechanics–A/Solids, 2025, 109: 105454. 27]
Fig.10 Energy absorption and auxetic effect of CFRP auxetic meta-structure under the #2 direction compression[ ZHONG J L, ZHAO C F, CHEN C Q, et al. Mechanical behaviors of composite auxetic structures under quasi-static compression and dynamic impact[J]. European Journal of Mechanics–A/Solids, 2025, 109: 105454. 27]
RENX, DASR, TRANP, et al. Auxetic metamaterials and structures: A review[J]. Smart Materials and Structures, 2018, 27(2): 023001.
[2]
HUANGC W, CHENL. Negative Poisson’s ratio in modern functional materials[J]. Advanced Materials, 2016, 28(37): 8079–8096.
[3]
于靖军, 谢岩, 裴旭. 负泊松比超材料研究进展[J]. 机械工程学报, 2018, 54(13): 1–14. YUJingjun, XIEYan, PEIXu. State-of-art of metamaterials with negative Poisson’s ratio[J]. Journal of Mechanical Engineering, 2018, 54(13): 1–14.
[4]
EVANSK E, NKANSAHM A, HUTCHINSONI J, et al. Molecular network design[J]. Nature, 1991, 353: 124.
[5]
任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展[J]. 力学学报, 2019, 51(3): 656–687. RENXin, ZHANGXiangyu, XIEYimin. Research progress in auxetic materials and structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 656–687.
[6]
史炜, 杨伟, 李忠明, 等. 负泊松比材料研究进展[J]. 高分子通报, 2003(6): 48–57. SHIWei, YANGWei, LIZhongming, et al. Advances in negative Poisson’s ratio materials[J]. Polymer Bulletin, 2003(6): 48–57.
[7]
ALDERSONA, RASBURNJ, AMEER-BEGS, et al. An auxetic filter: A tuneable filter displaying enhanced size selectivity or defouling properties[J]. Industrial & Engineering Chemistry Research, 2000, 39(3): 654–665.
[8]
LIUY Z, ZHAOC F, XUC, et al. Auxetic meta-materials and their engineering applications: A review[J]. Engineering Research Express, 2023, 5(4): 042003.
[9]
杨智春, 邓庆田. 负泊松比材料与结构的力学性能研究及应用[J]. 力学进展, 2011, 41(3): 335–350. YANGZhichun, DENGQingtian. Mechanical property and application of materials and structures with negative Poisson’s ratio[J]. Advances in Mechanics, 2011, 41(3): 335–350.
[10]
FARZANEHA, PAWARN, PORTELAC M, et al. Sequential metamaterials with alternating Poisson’s ratios[J]. Nature Communications, 2022, 13(1): 1041.
[11]
XINX Z, LIUL W, LIUY J, et al. 4D printing auxetic metamaterials with tunable, programmable, and reconfigurable mechanical properties[J]. Advanced Functional Materials, 2020, 30(43): 2004226.
[12]
LIN, LIUS Z, WUX N, et al. Mechanical characteristics of a novel rotating star-rhombic auxetic structure with multi-plateau stages[J]. Thin-Walled Structures, 2023, 191: 111081.
[13]
ZHAOC F, CHENC Q. Multi-plateau auxetic metamaterials constructed by intracellular and intercellular gradients for energy absorption in space[C]//Proseedings of 75th International Astronautical Congress. Milan: The International Astronautical Federation (IAF), 2024.
[14]
ZHAOC F, ZHOUZ T, LIUX X, et al. The in-plane stretching and compression mechanics of negative Poisson’s ratio structures: Concave hexagon, star shape, and their combination[J]. Journal of Alloys and Compounds, 2021, 859: 157840.
[15]
PAPADOPOULOUA, LAUCKSJ, TIBBITSS. Auxetic materials in design and architecture[J]. Nature Reviews Materials, 2017, 2(12): 17078.
[16]
LIX, PENGW T, WUW W, et al. Auxetic mechanical metamaterials: From soft to stiff[J]. International Journal of Extreme Manufacturing, 2023, 5(4): 042003.
[17]
CHENY, YEL. Designing and tailoring effective elastic modulus and negative Poisson’s ratio with continuous carbon fibres using 3D printing[J]. Composites Part A: Applied Science and Manufacturing, 2021, 150: 106625.
[18]
QUANC, HANB, HOUZ H, et al. 3D printed continuous fiber reinforced composite auxetic honeycomb structures[J]. Composites Part B: Engineering, 2020, 187: 107858.
[19]
MEIJ, TANP J, BOSIF, et al. Fabrication and mechanical characterization of CFRP X–core sandwich panels[J]. Thin-Walled Structures, 2021, 158: 107144.
[20]
ZHAOY, CHENL M, WUZ X, et al. Lateral crushing behavior of novel carbon fiber/epoxy composite bidirectional self-locked thin-walled tubular structure and system[J]. Thin-Walled Structures, 2020, 157: 107063.
[21]
ZHONGJ L, ZHAOC F, LIUY Z, et al. Meta-materials of re-entrant negative Poisson’s ratio structures made from fiber-reinforced plastics: A short review[J]. Fibers and Polymers, 2024, 25(2): 395–406.
[22]
TANGH B, SUNQ P, LIZ A, et al. Longitudinal compression failure of 3D printed continuous carbon fiber reinforced composites: An experimental and computational study[J]. Composites Part A: Applied Science and Manufacturing, 2021, 146: 106416.
[23]
WANGK, LONGH M, CHENY, et al. Heat-treatment effects on dimensional stability and mechanical properties of 3D printed continuous carbon fiber-reinforced composites[J]. Composites Part A: Applied Science and Manufacturing, 2021, 147: 106460.
[24]
TIANX Y, LIUT F, YANGC C, et al. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites[J]. Composites Part A: Applied Science and Manufacturing, 2016, 88: 198–205.
[25]
ZHAOC F, ZHOUZ T, ZHANGK B, et al. Experimental study on tensile mechanics of arrow combination structure with carbon fiber–epoxy resin composite[J]. Arabian Journal for Science and Engineering, 2021, 46(3): 2891–2900.
[26]
ZHAOC F, HEOW PUEHL, LIMG K, et al. Preparation process and compression mechanics of carbon fiber reinforced plastics negative Poisson’s ratio structure (CFRP + NPRS)[J]. Composite Structures, 2022, 292: 115667.
[27]
ZHONGJ L, ZHAOC F, CHENC Q, et al. Mechanical behaviors of composite auxetic structures under quasi-static compression and dynamic impact[J]. European Journal of Mechanics–A/Solids, 2025, 109: 105454.
[28]
ZHAOC F, GOHK L, LEEH P, et al. Experimental study and finite element analysis on energy absorption of carbon fiber reinforced composite auxetic structures filled with aluminum foam[J]. Composite Structures, 2023, 303: 116319.
[29]
ZHAOC F, ZHONGJ L, WANGH X, et al. Impact behaviour and protection performance of a CFRP NPR skeleton filled with aluminum foam[J]. Materials & Design, 2024, 246: 113295.
[30]
ZHAOC F, ZHONGJ L, GOHK L, et al. Mechanics of carbon fiber reinforced plastics negative Poisson’s ratio structures[J/OL]. Materials Today: Proceedings, 2023. https://doi.org/10.1016/j.matpr.2022.12.157.
[31]
赵昌方, GOH KhengLim, 乐贵高, 等. 复合材料负泊松比结构等效弹性力学理论建模[J]. 青岛科技大学学报(自然科学版), 2023, 44(5): 87–99. ZHAOChangfang, GOHK L, LEGuigao, et al. A preliminary theoretical model of equivalent elastic mechanics for composite structures with negative Poisson’s ratio[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2023, 44(5): 87–99.
[32]
ZHAOC F, ZHONGJ L, WANGH X, et al. Complete constitutive model of CFRP including continuous damage in low strain rate compression and temperature generation in high strain rate impact[J]. Polymer Composites, 2024, 45(5): 3965–3989.
[33]
SUNG Y, LIS F, LIG Y, et al. On crashing behaviors of aluminium/CFRP tubes subjected to axial and oblique loading: An experimental study[J]. Composites Part B: Engineering, 2018, 145: 47–56.
[34]
ZHUG H, LIAOJ P, SUNG Y, et al. Comparative study on metal/CFRP hybrid structures under static and dynamic loading[J]. International Journal of Impact Engineering, 2020, 141: 103509.
[35]
AL-MOUSAWIM M, REIDS R, DEANSW F. The use of the split Hopkinson pressure bar techniques in high strain rate materials testing[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 1997, 211(4): 273–292.
[36]
ZHAOC F, ZHOUZ T, RENJ, et al. Investigation of compression mechanics of strain rate-dependent forged/laminated carbon fiber–epoxy resin composites[J]. Composites: Mechanics, Computations, Applications, 2020, 11(4): 341–367.
[37]
周风华, 陈亮. SHPB实验中粘弹性试件内部应力波的传播[J]. 固体力学学报, 2010, 31(2): 149–156. ZHOUFenghua, CHENLiang. Stress wave propagation in a viscoelastic specimen during SHPB tests[J]. Chinese Journal of Solid Mechanics, 2010, 31(2): 149–156.