图10 试验结果[ CINAR K, GUVEN I, ERSOY N. Effect of residual stress on the bending response of L-shaped composite laminates[J]. Composite Structures, 2020, 246: 112425. 13]
图11 仿真和试验的载荷–位移曲线
表1 AS4纤维和8552环氧树脂的性能参数[ WANG Q, LI T, YANG X F, et al. Multiscale numerical and experimental investigation into the evolution of process-induced residual strain/stress in 3D woven composite[J]. Composites Part A: Applied Science and Manufacturing, 2020, 135: 105913. 16]
表2 8552环氧树脂的固化动力学参数[ WANG Q, LI T, YANG X F, et al. Multiscale numerical and experimental investigation into the evolution of process-induced residual strain/stress in 3D woven composite[J]. Composites Part A: Applied Science and Manufacturing, 2020, 135: 105913. 16]
表3 AS4/8552复合材料的力学性能参数[ CINAR K, GUVEN I, ERSOY N. Effect of residual stress on the bending response of L-shaped composite laminates[J]. Composite Structures, 2020, 246: 112425. 13]
表4 AS4/8552复合材料的内聚力单元参数[ CINAR K, GUVEN I, ERSOY N. Effect of residual stress on the bending response of L-shaped composite laminates[J]. Composite Structures, 2020, 246: 112425. 13]
In this study, an integrated analytical and computational framework was established to relate the curing process and loading behavior, and the computational method was systematically verified by carrying out the four-point bending test for AS4/8552 composite, which overcame the previous reported separation between the curing molding analysis and damage mechanics analysis of carbon fiber reinforced plastic (CFRP) composite. During the analysis of curing process, the mechanical strain, thermal expansion strain, and chemical shrinkage strain of the fiber and resin matrix were comprehensively taken into account. Meanwhile, the CHILE model was introduced based on the time-varying evolution of material properties to characterize the changing law of temperature with material parameters, thereby, a coupled thermal–chemical–mechanical analysis model based on time-varying characteristic was established correspondingly. During the mechanical performance analysis, the curing residual stress field was considered as a predefined field, the Hashin failure criterion and Cohesive zone model were used to characterize the intralayer and interlayer damage of the composites, respectively. The results showed that the curing residual stresses not only affect the damage mode and distribution of material, but also reduce the ultimate load of damage failure. The predicted load–displacement curves and damage zone of the CFRP composites under the four-point bending were in good agreement with the experimental results, which verifies the effectiveness of the proposed method in this study.
碳纤维增强树脂(CFRP)基复合材料由于高比强度、高比刚度、抗疲劳、耐腐蚀和设计性强等优点,被广泛应用于航空航天、汽车工业、能源等领域,在工业生产中通常采用固化工艺进行成型[ HUI X Y, XU Y J, ZHANG W H. An integrated modeling of the curing process and transverse tensile damage of unidirectional CFRP composites[J]. Composite Structures, 2021, 263: 113681. 1]。CFRP复合材料固化成型过程受到热、化学、力等多场耦合作用,同时受到树脂基体的固化收缩、材料与模具之间热膨胀系数不匹配等多种因素的影响,其内部会产生非均匀的固化残余应力场,影响成型后复合材料的承载性能[ ZHAO L G, WARRIOR N A, LONG A C. A micromechanical study of residual stress and its effect on transverse failure in polymer-matrix composites[J]. International Journal of Solids and Structures, 2006, 43(18–19): 5449-5467. ANTUNES M B, ALMEIDA J H S JR, AMICO S C. Curing and seawater aging effects on mechanical and physical properties of glass/epoxy filament wound cylinders[J]. Composites Communications, 2020, 22: 100517. 2-3]。因此,在CFRP复合材料的力学性能评估过程中,需要合理考虑固化残余应力的影响。
目前,围绕复合材料固化成型分析[ DING A X, LI S X, SUN J X, et al. A thermo-viscoelastic model of process-induced residual stresses in composite structures with considering thermal dependence[J]. Composite Structures, 2016, 136: 34-43. LI D N, LI X D, DAI J F, et al. A comparison of curing process-induced residual stresses and cure shrinkage in micro-scale composite structures with different constitutive laws[J]. Applied Composite Materials, 2018, 25(1): 67-84. 孙勇毅, 许英杰, 唐闻远, 等. 共固化成型复合材料加筋壁板的固化变形仿真技术研究[J]. 航空制造技术, 2022, 65(4): 107-114, 120.SUN Yongyi, XU Yingjie, TANG Wenyuan, et al. Simulation of curing deformation for co-cured stiffened composite panel[J]. Aeronautical Manufacturing Technology, 2022, 65(4): 107-114, 120. 4-6]和力学行为分析[ XU Y N, GAO Y K, WU C, et al. On design of carbon fiber reinforced plastic (CFRP) laminated structure with different failure criteria[J]. International Journal of Mechanical Sciences, 2021, 196: 106251. GU F W, YUAN X Y, ZHU X L, et al. Numerical study of composite laminates subjected to low-velocity impact using a localized damage algorithm of Puck’s 3D IFF criterion[J]. Engineering Fracture Mechanics, 2020, 228: 106901. CAO D F, DUAN Q F, HU H X, et al. Computational investigation of both intra-laminar matrix cracking and inter-laminar delamination of curved composite components with cohesive elements[J]. Composite Structures, 2018, 192: 300-309. 7-9]方面的研究取得了一定进展,但是二者大多处于割裂状态,CFRP复合材料的力学行为分析中鲜有系统性考虑固化残余应力影响的研究。如孙亮亮等[ 孙亮亮, 丁安心, 祖磊, 等. 三维粘弹性复合材料层合板固化残余应力研究[J]. 应用力学学报, 2016, 33(5): 779-785, 933.SUN Liangliang, DING Anxin, ZU Lei, et al. Research on process-induced residual stress for composite laminates based on three-dimensional viscoelasticity[J]. Chinese Journal of Applied Mechanics, 2016, 33(5): 779-785, 933. 10]采用三维粘弹性模型对固化残余应力进行了计算,预测了复合材料层合板可能出现分层的位置。Wen等[ WEN Z M, GONG X L. Influence of residual stresses on the damage of composite laminates under tensile loading[J]. Applied Mechanics and Materials, 2015, 784: 361-368. 11]利用增量打孔法对不同固化成型工艺下[02/θ2]s复合材料的残余应力分布进行了测量,并从理论上预测了承载条件下的复合材料损伤形貌。Bondarchuk等[ BONDARCHUK D A, FEDULOV B N, FEDORENKO A N. The effect of residual stress induced by manufacturing on strength on free edge of carbon–epoxy composite with [00/900]n layup[J]. Procedia Structural Integrity, 2019, 18: 353-367. 12]通过数值模拟方法对残余应力进行了预测,并比较了固化残余应力对复合材料单轴加载下损伤分布的影响。Cinar等[ CINAR K, GUVEN I, ERSOY N. Effect of residual stress on the bending response of L-shaped composite laminates[J]. Composite Structures, 2020, 246: 112425. 13]建立了固化过程和受载损伤行为分析的耦合模型,总结了残余应力对层间分层和初始破坏载荷的影响规律。然而,上述工作仍有待进一步完善。首先固化成型分析与力学性能分析的割裂,难以实现固化成型到力学性能分析的全过程预测;其次固化残余应力的精确计算是研究其影响的重要基础,而对材料性能时变演化规律的忽略难以保证固化残余应力场的计算精度;最后固化残余应力对损伤失效形式的影响规律尚需深化。
CFRP复合材料固化过程的温度场计算取决于两个方面:(1)包括热压罐温度、预浸料和模具传热在内的外部热量;(2)预浸料固化反应释放的内部热量。因此,温度场计算需要综合考虑传热和固化反应耦合过程,可以采用如下所示的耦合固化放热项的热传导方程[ ZHU Q, GEUBELLE P H, LI M, et al. Dimensional accuracy of thermoset composites: Simulation of process-induced residual stresses[J]. Journal of Composite Materials, 2001, 35(24): 2171-2205. 14]。
对于横向各向同性材料的单向层,导热系数Kyy、Kzz在垂直于纤维方向的两个方向上相等,所以得到[ LI X Y, WANG J H, LI S X, et al. Cure-induced temperature gradient in laminated composite plate: Numerical simulation and experimental measurement[J]. Composite Structures, 2020, 253: 112822. 15]
(5)
式中,;Klf和Ktf分别为纤维纵向和横向的导热系数;Kr为树脂基体的导热系数。本文所用材料为AS4/8552复合材料,其中AS4纤维和8552环氧树脂的性能参数如表1所示[ WANG Q, LI T, YANG X F, et al. Multiscale numerical and experimental investigation into the evolution of process-induced residual strain/stress in 3D woven composite[J]. Composites Part A: Applied Science and Manufacturing, 2020, 135: 105913. 16]。
表1 AS4纤维和8552环氧树脂的性能参数[ WANG Q, LI T, YANG X F, et al. Multiscale numerical and experimental investigation into the evolution of process-induced residual strain/stress in 3D woven composite[J]. Composites Part A: Applied Science and Manufacturing, 2020, 135: 105913. 16]
Table 1 Property parameters of AS4 fiber and 8552 epoxy resin[ WANG Q, LI T, YANG X F, et al. Multiscale numerical and experimental investigation into the evolution of process-induced residual strain/stress in 3D woven composite[J]. Composites Part A: Applied Science and Manufacturing, 2020, 135: 105913. 16]
性能参数
数值或计算式
Kr/(W/(m·K))
0.148+3.43×10–3×T
Klf/(W/(m·K))
2.4+5.07×10–3×T
Ktf/(W/(m·K))
7.69+1.56×10–2×T
Cr/(J/(kg·K))
931+3.47T
Cf/(J/(kg·K))
750+2.05T
ρ/(kg/m3)
1790Vf+1300(1–Vf)
Vf
0.574
式(2)中树脂固化速率dα/dt由以下固化动力学模型(式(6)和(7))[ LI X Y, WANG J H, LI S X, et al. Cure-induced temperature gradient in laminated composite plate: Numerical simulation and experimental measurement[J]. Composite Structures, 2020, 253: 112822. 15, ERSOY N, GARSTKA T, POTTER K, et al. Modelling of the spring-in phenomenon in curved parts made of a thermosetting composite[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(3): 410-418. ERSOY N, GARSTKA T, POTTER K, et al. Development of the properties of a carbon fibre reinforced thermosetting composite through cure[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(3): 401-409. 17-18]和材料类型确定。其中,m和n为反应级数,通过DSC试验结果拟合得到;αC为与温度相关的临界固化度。
(6)
(7)
式中,K为固化反应速率常数;R、T和A分别为普适气体常数、绝对温度和频率因子;ΔE为反应活化能;αC=αC0+αCTT,Cα、αC0和αCT均为相关拟合系数。与式(6)相关的固化动力学参数如表2所示[ WANG Q, LI T, YANG X F, et al. Multiscale numerical and experimental investigation into the evolution of process-induced residual strain/stress in 3D woven composite[J]. Composites Part A: Applied Science and Manufacturing, 2020, 135: 105913. 16]。
表2 8552环氧树脂的固化动力学参数[ WANG Q, LI T, YANG X F, et al. Multiscale numerical and experimental investigation into the evolution of process-induced residual strain/stress in 3D woven composite[J]. Composites Part A: Applied Science and Manufacturing, 2020, 135: 105913. 16]
Table 2 Curing kinetic constants of 8552 epoxy resin[ WANG Q, LI T, YANG X F, et al. Multiscale numerical and experimental investigation into the evolution of process-induced residual strain/stress in 3D woven composite[J]. Composites Part A: Applied Science and Manufacturing, 2020, 135: 105913. 16]
考虑到树脂基体的时变特性,引入CHILE 模型描述固化过程中树脂基体模量Er随温度和固化度的演化过程,如式(10)所示[ JOHNSTON A, VAZIRI R, POURSARTIP A. A plane strain model for process-induced deformation of laminated composite structures[J]. Journal of Composite Materials, 2001, 35(16): 1435-1469. 19]。通过式(11)~(12)计算相应温度下的泊松比υr和剪切模量Gr。
考虑树脂基体和纤维的热膨胀与化学收缩效应,引入Bogetti等[ BOGETTI T A, GILLESPIE J W. Process-induced stress and deformation in thick-section thermoset composite laminates[J]. Journal of Composite Materials, 1992, 26(5): 626-660. 20]提出的计算方法,采用下式分别计算复合材料的化学收缩应变和有效热膨胀系数。
Fig.2 Geometric model of the composite under four-point bending
2.1 L型试件固化残余应力计算
按照图3(a)所示的固化工艺曲线对AS4/8552复合材料进行固化成型[ CHEN J L, WANG J H, LI X Y, et al. Monitoring of temperature and cure-induced strain gradient in laminated composite plate with FBG sensors[J]. Composite Structures, 2020, 242: 112168. 21],树脂在固化过程中经历了复杂的化学和物理变化,性能具有显著的时变特性。第1阶段树脂基体受热从固态向黏流态转变,此阶段应力松弛时间短,无法积累应力;第2阶段以凝胶点(固化度α=0.3)为起始,树脂基体交联反应产生的热膨胀和固化收缩效应对残余应力积累产生一定贡献,但该阶段树脂基体仍处于黏流态,与纤维之间力的传递微弱,所以只积累了小部分应力;第3阶段为玻璃化转变后的保温阶段,此阶段树脂基体固化度提高较小,但固化收缩和热膨胀效应引起非机械应变的变化,因此在此阶段积累了一定的残余应力;第4阶段为降温阶段,树脂基体此时呈玻璃态,固化残余应力在降温阶段积累显著(图3(b))。
图3 复合材料的典型固化工艺曲线和残余应力变化情况
Fig.3 Typical curing process curve and residual stress variation of the composite
3D Hashin损伤准则被广泛应用于复合材料层内损伤失效预测,包括纤维拉伸失效、纤维压缩失效、基体拉伸失效和基体压缩失效4种失效模式,具体形式如式(17)~(20)所示[ CHANG F K, CHANG K Y. A progressive damage model for laminated composites containing stress concentrations[J]. Journal of Composite Materials, 1987, 21(9): 834-855. MOHAMMED M A, TARFAOUI M. A progressive damage modelling of glass/epoxy cylindrical structure subjected to low-velocity impact[J]. Engineering Failure Analysis, 2022, 134: 106036. 22-23]。本文使用Fortran语言在Vumat子程序中实现对材料损伤起始的判断。
纤维拉伸失效(σ1≥0):
(17)
纤维压缩失效(σ1<0):
(18)
基体拉伸失效(σ2+σ3≥0):
(19)
基体压缩失效(σ2+σ3<0):
(20)
式中,XT、XC、YT、YC分别为层合板纵向拉伸、纵向压缩、横向拉伸和横向压缩强度;Sij(i,j=1,2,3)为层合板的剪切强度;σi(i=1,2,3)和σij(i,j=1,2,3)分别为有效法向应力和剪切应力。参考文献[ CINAR K, GUVEN I, ERSOY N. Effect of residual stress on the bending response of L-shaped composite laminates[J]. Composite Structures, 2020, 246: 112425. 13]中的AS4/8552复合材料相关力学参数,具体如表3所示[ CINAR K, GUVEN I, ERSOY N. Effect of residual stress on the bending response of L-shaped composite laminates[J]. Composite Structures, 2020, 246: 112425. 13]。
表3 AS4/8552复合材料的力学性能参数[ CINAR K, GUVEN I, ERSOY N. Effect of residual stress on the bending response of L-shaped composite laminates[J]. Composite Structures, 2020, 246: 112425. 13]
Table 3 Mechanical property parameters of AS4/8552 composite[ CINAR K, GUVEN I, ERSOY N. Effect of residual stress on the bending response of L-shaped composite laminates[J]. Composite Structures, 2020, 246: 112425. 13]
参数
数值
E1/MPa
142800
E2=E3/MPa
10000
G12=G13/MPa
5571
G23/MPa
3278
υ12=υ13
0.263
υ23
0.525
XT/MPa
2105
XC/MPa
1531
YT/MPa
51
YC/MPa
267
S12=S13=S23/MPa
114.5
ρ/(kg/m3)
1590
2.2.2 层间损伤表征
通过牵引分离定律的Cohesive zone模型表征层间损伤行为,开始受载时界面表现为线弹性,当载荷增加到临界强度后,界面发生损伤,承载能力持续减弱,直至完全消失,此时界面发生脱粘失效,材料出现层间分层损伤。内聚力单元参数如表4所示[ CINAR K, GUVEN I, ERSOY N. Effect of residual stress on the bending response of L-shaped composite laminates[J]. Composite Structures, 2020, 246: 112425. 13],其中σ13C和σ33C分别表示剪切载荷下的名义应力和法向载荷下的名义应力,GIC和GIIC表示应变能释放率。内聚力单元的本构模型可参考文献[ CAO D F, DUAN Q F, HU H X, et al. Computational investigation of both intra-laminar matrix cracking and inter-laminar delamination of curved composite components with cohesive elements[J]. Composite Structures, 2018, 192: 300-309. 9, CAO D F, HU H X, DUAN Q F, et al. Experimental and three-dimensional numerical investigation of matrix cracking and delamination interaction with edge effect of curved composite laminates[J]. Composite Structures, 2019, 225: 111154. 24]中的描述。
表4 AS4/8552复合材料的内聚力单元参数[ CINAR K, GUVEN I, ERSOY N. Effect of residual stress on the bending response of L-shaped composite laminates[J]. Composite Structures, 2020, 246: 112425. 13]
Table 4 Cohesive element parameters of AS4/8552 composite[ CINAR K, GUVEN I, ERSOY N. Effect of residual stress on the bending response of L-shaped composite laminates[J]. Composite Structures, 2020, 246: 112425. 13]
将仿真结果与试验结果进行对比,需要说明的是,本文根据文献[ CINAR K, GUVEN I, ERSOY N. Effect of residual stress on the bending response of L-shaped composite laminates[J]. Composite Structures, 2020, 246: 112425. 13]中的固化工艺和力学性能测试条件进行仿真建模,因此可将该试验结果(图10)作为本文计算方法的试验验证。由图10可知,损伤出现在第8层和第10层,仿真结果(图9)与试验结果基本吻合。由此可见,引入固化残余应力将直接影响复合材料受载的损伤形式和损伤位置。图11对比了四点弯试验仿真和试验(文献[ CINAR K, GUVEN I, ERSOY N. Effect of residual stress on the bending response of L-shaped composite laminates[J]. Composite Structures, 2020, 246: 112425. 13]中的3次试验)的载荷–位移曲线,可以看出,考虑固化残余应力的有限元模型在较小的位移下就能引起材料的损伤,失效载荷略有降低。
图10 试验结果[ CINAR K, GUVEN I, ERSOY N. Effect of residual stress on the bending response of L-shaped composite laminates[J]. Composite Structures, 2020, 246: 112425. 13]
Fig.10 Experimental results[ CINAR K, GUVEN I, ERSOY N. Effect of residual stress on the bending response of L-shaped composite laminates[J]. Composite Structures, 2020, 246: 112425. 13]
图11 仿真和试验的载荷–位移曲线
Fig.11 Simulation and experimental load–displacement curves
HUIX Y, XUY J, ZHANGW H. An integrated modeling of the curing process and transverse tensile damage of unidirectional CFRP composites[J]. Composite Structures, 2021, 263: 113681.
[2]
ZHAOL G, WARRIORN A, LONGA C. A micromechanical study of residual stress and its effect on transverse failure in polymer-matrix composites[J]. International Journal of Solids and Structures, 2006, 43(18–19): 5449-5467.
[3]
ANTUNESM B, ALMEIDAJ H SJR, AMICOS C. Curing and seawater aging effects on mechanical and physical properties of glass/epoxy filament wound cylinders[J]. Composites Communications, 2020, 22: 100517.
[4]
DINGA X, LIS X, SUNJ X, et al. A thermo-viscoelastic model of process-induced residual stresses in composite structures with considering thermal dependence[J]. Composite Structures, 2016, 136: 34-43.
[5]
LID N, LIX D, DAIJ F, et al. A comparison of curing process-induced residual stresses and cure shrinkage in micro-scale composite structures with different constitutive laws[J]. Applied Composite Materials, 2018, 25(1): 67-84.
XUY N, GAOY K, WUC, et al. On design of carbon fiber reinforced plastic (CFRP) laminated structure with different failure criteria[J]. International Journal of Mechanical Sciences, 2021, 196: 106251.
[8]
GUF W, YUANX Y, ZHUX L, et al. Numerical study of composite laminates subjected to low-velocity impact using a localized damage algorithm of Puck’s 3D IFF criterion[J]. Engineering Fracture Mechanics, 2020, 228: 106901.
[9]
CAOD F, DUANQ F, HUH X, et al. Computational investigation of both intra-laminar matrix cracking and inter-laminar delamination of curved composite components with cohesive elements[J]. Composite Structures, 2018, 192: 300-309.
[10]
孙亮亮, 丁安心, 祖磊, 等. 三维粘弹性复合材料层合板固化残余应力研究[J]. 应用力学学报, 2016, 33(5): 779-785, 933. SUNLiangliang, DINGAnxin, ZULei, et al. Research on process-induced residual stress for composite laminates based on three-dimensional viscoelasticity[J]. Chinese Journal of Applied Mechanics, 2016, 33(5): 779-785, 933.
[11]
WENZ M, GONGX L. Influence of residual stresses on the damage of composite laminates under tensile loading[J]. Applied Mechanics and Materials, 2015, 784: 361-368.
[12]
BONDARCHUKD A, FEDULOVB N, FEDORENKOA N. The effect of residual stress induced by manufacturing on strength on free edge of carbon–epoxy composite with [00/900]n layup[J]. Procedia Structural Integrity, 2019, 18: 353-367.
[13]
CINARK, GUVENI, ERSOYN. Effect of residual stress on the bending response of L-shaped composite laminates[J]. Composite Structures, 2020, 246: 112425.
[14]
ZHUQ, GEUBELLEP H, LIM, et al. Dimensional accuracy of thermoset composites: Simulation of process-induced residual stresses[J]. Journal of Composite Materials, 2001, 35(24): 2171-2205.
[15]
LIX Y, WANGJ H, LIS X, et al. Cure-induced temperature gradient in laminated composite plate: Numerical simulation and experimental measurement[J]. Composite Structures, 2020, 253: 112822.
[16]
WANGQ, LIT, YANGX F, et al. Multiscale numerical and experimental investigation into the evolution of process-induced residual strain/stress in 3D woven composite[J]. Composites Part A: Applied Science and Manufacturing, 2020, 135: 105913.
[17]
ERSOYN, GARSTKAT, POTTERK, et al. Modelling of the spring-in phenomenon in curved parts made of a thermosetting composite[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(3): 410-418.
[18]
ERSOYN, GARSTKAT, POTTERK, et al. Development of the properties of a carbon fibre reinforced thermosetting composite through cure[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(3): 401-409.
[19]
JOHNSTONA, VAZIRIR, POURSARTIPA. A plane strain model for process-induced deformation of laminated composite structures[J]. Journal of Composite Materials, 2001, 35(16): 1435-1469.
[20]
BOGETTIT A, GILLESPIEJ W. Process-induced stress and deformation in thick-section thermoset composite laminates[J]. Journal of Composite Materials, 1992, 26(5): 626-660.
[21]
CHENJ L, WANGJ H, LIX Y, et al. Monitoring of temperature and cure-induced strain gradient in laminated composite plate with FBG sensors[J]. Composite Structures, 2020, 242: 112168.
[22]
CHANGF K, CHANGK Y. A progressive damage model for laminated composites containing stress concentrations[J]. Journal of Composite Materials, 1987, 21(9): 834-855.
[23]
MOHAMMEDM A, TARFAOUIM. A progressive damage modelling of glass/epoxy cylindrical structure subjected to low-velocity impact[J]. Engineering Failure Analysis, 2022, 134: 106036.
[24]
CAOD F, HUH X, DUANQ F, et al. Experimental and three-dimensional numerical investigation of matrix cracking and delamination interaction with edge effect of curved composite laminates[J]. Composite Structures, 2019, 225: 111154.