薄壁5A06铝合金双缝T型接头振荡激光–电弧复合焊接数值模拟研究*

基金项目

国家自然科学基金(52075393)。

中图分类号:

V26TG4

文献标识码:

A

通信作者

张臣,副教授,博士生导师,博士,主要从事复合激光制造新工艺、制造质量的智能在线监测和优化调控方面的研究。

编辑

责编 :晓月

引用格式

黄晓龙, 罗灿, 张臣. 薄壁5A06铝合金双缝T型接头振荡激光–电弧复合焊接数值模拟研究[J]. 航空制造技术, 2025, 68(9): 61–70.

Numerical Simulation of Thin-Walled 5A06 Aluminum Alloy Double-Seam T-Joint During Oscillating Laser–Arc Hybrid Welding

Citations

HUANG Xiaolong, LUO Can, ZHANG Chen. Numerical simulation of thin-walled 5A06 aluminum alloy double-seam T-joint during oscillating laser–arc hybrid welding[J]. Aeronautical Manufacturing Technology, 2025, 68(9): 61–70.

航空制造技术    第68卷    第9期    61-70
Aeronautical Manufacturing Techinology    Vol.68    No.9 : 61-70
DOI: 10.16080/j.issn1671-833x.2025.09.061
论坛 >> 激光复合热源焊接(FORUM >> Laser Hybrid Heat Source Welding)

薄壁5A06铝合金双缝T型接头振荡激光–电弧复合焊接数值模拟研究

  • 黄晓龙 1
  • 罗灿 2
  • 张臣 1
1.武汉大学工业科学研究院武汉 430072
2.武汉大学动力与机械学院武汉 430072

通信作者

张臣,副教授,博士生导师,博士,主要从事复合激光制造新工艺、制造质量的智能在线监测和优化调控方面的研究。

基金项目

国家自然科学基金(52075393)。

中图分类号:

V26TG4

文献标识码:

A

引用格式

黄晓龙, 罗灿, 张臣. 薄壁5A06铝合金双缝T型接头振荡激光–电弧复合焊接数值模拟研究[J]. 航空制造技术, 2025, 68(9): 61–70.

摘要

薄壁铝合金T型焊缝在传统激光焊接时存在焊接工位受限、过程稳定性难控制、易产生缺陷等问题。本研究提出双缝T型接头振荡激光–电弧复合焊接方法来解决上述难题,开展了焊接工艺试验和熔池流体动力学分析研究。结果表明,振荡激光–电弧复合焊接相较单道激光焊接,可以有效抑制单道焊接三面成形过程中的气孔、凹陷、咬边等缺陷。复合焊接中,熔滴过渡至熔池时,显著提升了熔池熔流速度,加快由熔池中心向两侧的传热传质,并且未影响锁孔稳定性,在提高熔流特性的同时保持了稳定性。

关键词

振荡激光–电弧复合焊接;薄壁结构;数值模拟;5A06铝合金;双缝T型接头;

Numerical Simulation of Thin-Walled 5A06 Aluminum Alloy Double-Seam T-Joint During Oscillating Laser–Arc Hybrid Welding

  • HUANG Xiaolong 1
  • LUO Can 2
  • ZHANG Chen 1
1.The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
2.School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China

Citations

HUANG Xiaolong, LUO Can, ZHANG Chen. Numerical simulation of thin-walled 5A06 aluminum alloy double-seam T-joint during oscillating laser–arc hybrid welding[J]. Aeronautical Manufacturing Technology, 2025, 68(9): 61–70.

Abstract

In the traditional laser welding of thin-walled aluminum alloy T-type welds, there are problems such as limited welding station, difficult control of process stability, and easy generation of defects. This study proposes a novel oscillating laser–arc hybrid welding method for aluminum alloy double-seam T-joints to solve the above problems, and welding process test and fluid dynamics analysis of weld pool were carried out. The results show that the oscillating laserarc hybrid welding can effectively inhibit the defects such as porosity, depression, and undercut in the three-sided welding process of single-pass laser welding. In laser–arc hybrid welding process, the transition of the droplet to the molten pool significantly enhances the flow rate, accelerates the heat and mass transfer from the center of the molten pool to the sides, which maintains the stability of keyhole while improving the melt flow characteristics.

Keywords

Oscillating laser–arc hybrid welding; Thin-wall structure; Numerical simulation; 5A06 aluminum alloy; Double-seam T-joint;



薄壁铝合金T形接头是航空航天设备中的典型结构,常用于机身、机翼覆盖件等部件[   ZHANG C, YU Y, CHEN C, et al. Suppressing porosity of a laser keyhole welded Al–6Mg alloy via beam oscillation[J]. Journal of Materials Processing Technology, 2020, 278: 116382.
1
]
。焊接的质量和完整性对于确保航空航天设备的结构强度、耐久性和安全性至关重要。激光焊接技术因具有焊接速度快、热影响区窄、焊缝深宽比大、变形小等特点被大量应用在铝合金薄壁T型接头的焊接中[   CHEN J C, WEI Y H, ZHAN X H, et al. Melt flow and thermal transfer during magnetically supported laser beam welding of thick aluminum alloy plates[J]. Journal of Materials Processing Technology, 2018, 254: 325-337.
2
]
。双激光束双侧同步焊接可以生成高质量的对称焊缝,成为被广泛认可的焊接方法[   XU F J, HE L, HOU Z, et al. Online welding status monitoring method of T–joint double-sided double arc welding based on multi–source information fusion[J]. Journal of Manufacturing Processes, 2024, 124: 1485-1505.
  LIU T, ZHAO Y Q, KANG Y, et al. Effect of micro morphology in different zones on mechanical properties of 2060 Al–Li alloy laser welded joints[J]. Journal of Manufacturing Processes, 2020, 50: 336-344.
  HAO K D, LI G, GAO M, et al. Weld formation mechanism of fiber laser oscillating welding of austenitic stainless steel[J]. Journal of Materials Processing Technology, 2015, 225: 77-83.
  CHEN S, ZHAO Y Q, TIAN S H, et al. Study on keyhole coupling and melt flow dynamic behaviors simulation of 2219 aluminum alloy T–joint during the dual laser beam bilateral synchronous welding[J]. Journal of Manufacturing Processes, 2020, 60: 200-212.
3-6
]
。但是,在此工艺中,激光头需要在T型结构的内侧施焊,限制了可焊接结构的尺寸和形状,只能应用于大型结构的焊接,且两束激光热量的累积并不利于薄板的变形控制。针对此难题,本团队提出了一种全新的双缝T型接头结构(采用三板拼合,形成双缝),可在接头的外侧施焊,极大提升了焊接工艺的适用范围,可以用于小尺寸复杂结构焊接工艺。但双缝的存在需要进行两道焊接,也存在热输入大的问题。因此,本文将采用振荡扫描的激光工艺,通过振荡光束较大的作用范围扩展焊缝宽度,实现单道焊接双缝成形。

振荡激光焊接技术根据预先设定的摆动轨迹一边焊接一边摆动,对熔池产生搅拌作用,改善熔池内部的热动力学条件,实现宏观变形和微观组织的双重控制。Hao等[   ZHANG X, CHEN W, BAO G, et al. Suppression of porosity in beam weaving laser welding[J]. Science and Technology of Welding and Joining, 2004, 9(4): 374-376.
7
]
发现振荡激光可以显著增大熔池宽度。而Zhang等[   KIM C, KANG M, KANG N. Solidification crack and morphology for laser weave welding of Al 5J32 alloy[J]. Science and Technology of Welding and Joining, 2013, 18(1): 57-61.
8
]
研究了振荡激光对焊接气孔缺陷的影响,研究结果表明,振荡激光加速了熔池内部气泡的逸出,进而降低接头孔隙率。Kim等[   WANG L, GAO M, ZHANG C, et al. Effect of beam oscillating pattern on weld characterization of laser welding of AA6061–T6 aluminum alloy[J]. Materials & Design, 2016, 108: 707-717.
9
]
比较了激光波形焊接对微观组织和裂纹的影响,发现振荡激光可以有效抑制凝固裂纹并细化晶粒。Wang[   WANG Z M, OLIVEIRA J P, ZENG Z, et al. Laser beam oscillating welding of 5A06 aluminum alloys: Microstructure, porosity and mechanical properties[J]. Optics & Laser Technology, 2019, 111: 58-65.
10
]
和Chen[   CHEN G Y, WANG B, MAO S, et al. Research on the "∞"–shaped laser scanning welding process for aluminum alloy[J]. Optics & Laser Technology, 2019, 115: 32-41.
11
]
等比较了多种激光振荡模式对铝合金显微组织的影响,结果表明,圆形振荡模式对晶粒细化和减少飞溅的影响较为明显,具有较少的焊接缺陷和较好的力学性能。除了激光振荡模式外,一些研究者还研究了振荡参数对焊接性能的影响[   WAN Z X, WANG H P, LI J J, et al. Effect of beam oscillation frequency on spattering in remote laser stitch welding of thin-gage zinc-coated steel with keyhole penetration[J]. Journal of Materials Processing Technology, 2022, 302: 117482.
  LI S R, MI G Y, WANG C M. A study on laser beam oscillating welding characteristics for the 5083 aluminum alloy: Morphology, microstructure and mechanical properties[J]. Journal of Manufacturing Processes, 2020, 53: 12-20.
  KANG S, SHIN J. Laser beam oscillation welding of aluminum alloy using the spatially modulated beam by diffractive optical element (DOE)[J]. Journal of Manufacturing Processes, 2021, 66: 387-396.
12-14
]
。但对于薄壁双缝T形接头,本团队发现采用激光振荡焊接非常容易出现咬边、塌陷、焊缝不饱满等缺陷。

振荡激光与低输入的电弧结合形成的振荡激光–电弧复合焊接工艺有望实现薄壁的高质量焊接。激光和电弧这两种不同性质热源的协同效应可以使焊接过程更加稳定,并优化焊缝的形态[   ZHANG C, GAO M, ZENG X Y. Influences of synergy effect between laser and arc on laser–arc hybrid welding of aluminum alloys[J]. Optics & Laser Technology, 2019, 120: 105766.
  KRISTIANSEN M, FARROKHI F, KRISTIANSEN E, et al. Application of hybrid laser arc welding for the joining of large offshore steel foundations[J]. Physics Procedia, 2017, 89: 197-204.
  BUNAZIV I, AKSELSEN O M, FROSTEVARG J, et al. Application of laserarc hybrid welding of steel for low-temperature service[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(5): 2601-2613.
  BUNAZIV I, AKSELSEN O M, REN X B, et al. Laser beam and laser-arc hybrid welding of aluminium alloys[J]. Metals, 2021, 11(8): 1150.
  YANG X Y, CHEN H, LI M V, et al. Porosity suppressing and grain refining of narrow-gap rotating laser–MIG hybrid welding of 5A06 aluminum alloy[J]. Journal of Manufacturing Processes, 2021, 68: 1100-1113.
15-19
]
,电弧熔滴向熔池的过渡是对熔池形成填充,该工艺可以克服焊接面咬边、塌陷、焊缝不饱满等缺陷,优化焊缝质量[   ZHANG Z D, SUN C S, XU X K, et al. Surface quality and forming characteristics of thin-wall aluminium alloy parts manufactured by laser assisted MIG arc additive manufacturing[J]. International Journal of Lightweight Materials and Manufacture, 2018, 1(2): 89-95.
  LI R S, WANG G L, DING Y Y, et al. Optimization of the geometry for the end lateral extension path strategy to fabricate intersections using laser and cold metal transfer hybrid additive manufacturing[J]. Additive Manufacturing, 2020, 36: 101546.
20-21
]
。同时,激光的加入可促进熔池流动,有利于细化晶粒和强化性能[   MIAO Q Y, WU D J, CHAI D S, et al. Comparative study of microstructure evaluation and mechanical properties of 4043 aluminum alloy fabricated by wire-based additive manufacturing[J]. Materials & Design, 2020, 186: 108205.
  LIU M R, MA G Y, LIU D H, et al. Microstructure and mechanical properties of aluminum alloy prepared by laser-arc hybrid additive manufacturing[J]. Journal of Laser Applications, 2020, 32(2): 022052.
22-23
]

但在振荡激光–电弧复合焊接过程中,复杂的流体动力学很难通过实时试验来测试验证,而数值模拟可以实现焊接过程中熔池动态行为的可视化描述。相关学者针对气孔形成过程的数值模拟开展了大量研究。Ai等[   AI Y W, LIU J B, YE C L, et al. Analysis of the dynamic behaviors of molten pool and keyhole for the oscillating laser welding of dissimilar materials stake welded T–joints with a gap[J]. International Journal of Heat and Mass Transfer, 2024, 232: 125877.
24
]
建立了带间隙的异种材料T形接头焊接的熔池和锁孔动态模型,分析了焊缝成形过程中间隙对熔池和锁孔动态行为的影响。Zheng等[   ZHENG Z G, SHAO C D, LAN L, et al. Numerical simulation on pore formation and suppression for dual-beam laser welding of sandwich structure[J]. The International Journal of Advanced Manufacturing Technology, 2024, 130(11): 6011-6025.
25
]
提出了一种考虑双光束光线追踪的数值模型,研究了平行双光束激光焊接T型结构过程中光斑间距对孔形成的影响。目前,对铝合金激光摆动焊接的数值模拟研究大多集中在气孔生成和抑制的机理上,在振荡激光与电弧的共同作用下对熔池传热、传质过程影响的研究较少。

本研究采用一种沿圆形摆动路径分布的激光振荡模式,开展5A06铝合金在双缝T型板振荡激光–电弧复合焊接中的数值仿真研究,结合工艺试验结果研究激光功率分布与振荡路径共同作用对焊接过程中熔池动态行为、焊缝成形、气孔缺陷的影响机制。采用振荡激光–电弧复合焊接技术实现了5A06铝合金T型接头的高质量连接。基于数值模拟的结果,根据温度、压力、速度场等云图讨论了振荡激光–电弧复合焊接的焊缝成形机理,以及焊接参数对铝合金振荡激光–电弧复合激光焊接质量的影响。发现振荡激光–电弧复合焊接通过填充材料和提升振荡频率加快了传热传质,有效避免了生成凹陷类缺陷并抑制了气孔生成。

1     试验与仿真方法

1.1     焊接试验

图1(a)为传统T型接头,采用双激光束双侧同步焊接;图1(b)和(c)为双缝T型接头,采用三板拼合,形成双缝,在接头的外侧施焊。其中,图1(b)为双光束同侧同步焊接工艺;图1(c)为振荡激光焊接工艺,单道激光一次扫描成形,为本文主要研究的工艺形式。试验使用的振荡激光–电弧复合焊接试验平台如图2所示,该平台包括YLS–4000型光纤激光器(IPG公司,德国)、M–710iC型工业机器人(FANUC公司,日本)、TPS4000–Advanced电弧焊机(Fronius公司,奥地利)和激光焊接头。复合焊接过程的试验设置如图3所示,激光光束通过光纤传输到焊接头中进行振荡扫描,振荡激光作用于熔池前部,熔丝伸长14 mm,前端距离振荡中心2 mm,进行焊接,得到焊缝长度为90 mm。焊接前,用不锈钢刷磨去母材待焊部位的氧化膜后用体积分数99%工业乙醇清理表面。振荡激光焊接相关参数如表1所示,依据T型接头焊件厚度1.5 mm和激光功率3.2 kW,选取了振幅为0.3~0.7 mm,振荡频率为0~200 Hz作为参照。表2为复合焊接相关参数,依据T型接头焊件厚度和激光功率,选用的送丝速度为2~5 m/min,振荡频率为100~200 Hz。

图1     不同T型接头焊接工艺中激光热源方位对比
Fig.1     Comparison of the orientation of laser heat source under different laser welding process with variant T–shape joint mode
图2     振荡激光–电弧复合焊接系统实物
Fig.2     Oscillating laser– arc hybrid welding system
图3     激光–电弧复合焊接过程的试验设置
Fig.3     Experimental setup of oscillating laser–arc hybrid welding process
表1     激光焊接参数
Table 1     Parameters of laser welding
序号 焊接速度/(mm/s) 功率/kW 振荡频率/Hz 振幅/mm
1 30 3.2 50 0.5
2 100 0.5
3 150 0.5
4 200 0.5
5 100 0.3
6 100 0.7
7 straight 0

表2     振荡激光–电弧复合焊接参数
Table 2     Parameters of oscillating laser–arc hybrid welding
序号 焊接速度/(mm/s) 激光功kW 送丝速度/(m/min) 振荡频率/Hz 振幅/mm
1 50 3 2 100 0.5
2 3 100
3 4 100
4 5 100
5 5 200

焊接后,使用ZXF–A–130数字射线实时成像系统(科迈特公司,中国)进行焊缝的无损检测,检测过程中射线源与垂直板夹角为45°(图4)。使用ImageJ图像处理软件对无损检测的图像进行处理,并使用区域标记法筛选出目标感兴趣区(Region of interest,ROI);通过ROI图与降噪图像之间的数学操作计算出差分图,并利用Otsu阈值分割得到焊接点气孔的精确分布;最后通过区域标记法统计出气孔的面积参数以及所占焊接区域比例,得出焊缝的气孔率。无损测试后,制备焊缝横截面和纵截面试样,进行焊缝形貌观测,测量焊缝横截面的熔宽与熔深,得到焊缝成形系数(深宽比)。

图4     双缝T型接头焊缝的X射线检测
Fig.4     X–ray detection of weld seams

1.2     数值模拟方法

图5为振荡激光–电弧复合焊接过程仿真的几何模型。为提高计算效率,将仿真模型简化为T型流体域及其上表面和两侧的空气层,选用计算规模相对小,多用于动力学分析,且计算收敛性在流体计算中表现良好的六面体网格。用加粗线标出的区域为主要计算域,该区域流动传热行为复杂,精度要求高,因此,网格密度在0.2 mm以下方可收敛。蓝色区域设为金属相,其余区域为气相,上表面为熔滴入口,模型中使用的材料参数如表34所示。在焊接时表面上考虑热输入、表面张力、重力和浮力等情况。以金属相上表面为热源起始位置,设置用户自定义的高斯热源和双椭球热源源项,随后在边界条件处设置电磁力、激光反冲压力、浮力、表面张力等用户自定义源项,以10–5 s为时间步开始数值模拟。

图5     振荡激光–电弧复合焊接过程仿真的几何模型
Fig.5     Simulation model of oscillating laser–arc hybrid welding
表3     5A06铝合金的物理性能参数
Table 3     Physical properties of 5A06 Al alloy
材料参数 数值
密度/(kg/m3 2700
固相线/K 833.01
液相线/K 905.49
融化潜热/(J/kg) 3.97×105
固相比热容/(J/(kg·K)) 940
液相比热容/(J/(kg·K)) 1180
动态黏滞度/(kg/(m·s)) 0.013
摩尔质量/(kg/kmol) 27
固相导热系数/(W/(m·K)) 243

表4     保护气的物理性能参数
Table 4     Physical properties of shielding gas
材料参数 数值
液体密度/(kg/m3 1416.6
气体密度/(kg/m3 1.7841
沸点/K 112.25
融化热/(J/kg) 29.43
汽化热/(J/kg) 160.81
黏度/(kg/(m·s)) 0.02
摩尔质量/(kg/kmol) 39.948
导热系数/(W/(m·k)) 0.0162

使用激光高斯热源模型,其能量分布方程为

Q(xyz)=3csQπH(1-1e3)exp[-3cs(x2+y2)log(Hz)]
(1)

cs=3/R02
(2)

式中,xyz分别为三轴坐标轴;cs为旋转高斯热源的形状集中系数;H为热源作用深度;R0为热源的开口半径;Q为热源功率。

激光热源运动路径方程为

x(t)=vt+Acos(2πft)
(3)

y(t)=Asin(2πft)
(4)

式中,v为焊接速度;A为振幅;f为振荡频率;t为热源作用时长。

目前,对于电弧加热过程中的能量分布计算多采用双椭球热源模型,热源qarcfqarcr可表示为

qarcf=63ffParcafbcππexp[-3(x-vt)2af2]×exp[-3(y-y0)2b2]×exp[-3(z-z0)2c2]
(5)

qarcr=63frParcarbcππexp[-3(x-vt)2ar2]×exp[-3(y-y0)2b2]×exp[-3(z-z0)2c2]
(6)

式中,afarbc为双椭球体热源模型的形状参数;Parc为热输入功率;fffr为模型前后部分能量系数且ff+fr=2;y0z0分别为热源中心在工件上表面的y轴和z轴坐标值。

浮力使用Boussinesq近似计算,可表示为

Fb=-ρgβ(T-T1)
(7)

式中,β为热膨胀系数;T为温度;T1为液相线温度。

受热源移动影响,液态金属表面温度分布不均,存在表面张力梯度,促使产生 Marangoni 对流,Marangoni 力FMa大小为

FMa=δyδtδTδs
(8)

式中,s为自由表面切向矢量;T为温度。

电弧等离子体的存在使熔池表面产生一个电弧压力,假设电弧压力呈高斯分布[   HAO K D, LI G, GAO M, et al. Weld formation mechanism of fiber laser oscillating welding of austenitic stainless steel[J]. Journal of Materials Processing Technology, 2015, 225: 77-83.
5
]
,则大小为

Fa=μ0I24π2σp2exp(-r22σp2)
(9)

式中,μ0为真空磁导率(4π×10–7 N/A2);I为焊接电流;r为与电弧中心的距离;σp为电弧压力分布形状参数。CMT焊接过程中,磁场与电场相互作用产生电磁力,根据Maxwell 方程,熔池中径向和轴向电磁力FrFz大小为

Fr=μ0I24π2σj2exp(-r22σj2)[1-exp(-r22σj2)](1-zzL)
(10)

Fz=μ0I24π2zLr2(1-zzL)[1-exp(-r22σj2)]
(11)

式中,σj为电流密度分布参数;zL为基板厚度。

金属蒸汽反冲压力Pr采用的反冲压力模型为

Pr=0.54P0exp(ΔHvT-TbRTTb)
(12)

式中,P0为环境压力;ΔHv为材料蒸发潜热;Tb是材料沸点;R为理想气体常数。

2     结果与讨论

2.1     宏观成形

选取多组工艺参数进行对照试验,比较不同振荡频率和振幅对熔池和焊缝形貌的影响。如图6所示,通过不同焊接方式的试验和数值模拟可以发现不同焊缝截面轮廓宽度和深度都较一致。因此,该数值模型可靠地分析了激光焊和复合焊熔池温度场、速度场和气孔形成过程。

图6     不同焊接方式下焊缝截面试验模拟结果对比
Fig.6     Comparison of simulation results of weld cross-section test under different welding methods

不同工艺参数下的振荡激光–电弧复合焊接的焊缝截面如图7所示,在不同振荡频率、振幅的激光作用下,焊缝的两个侧成形面容易出现咬边、凹陷、焊缝不饱满现象,会导致焊接结构机械性能恶化。

图7     不同工艺参数下振荡激光–电弧复合焊缝截面
Fig.7     Weld cross section of oscillating laser–arc welding with different process parameters

T型接头右侧焊缝截面的熔池演变过程如图8所示,0.067 s时(图8(a)),在T型接头右侧焊缝形成了当前最大熔池,设其为循环起始时刻。随后,热源向对侧移动,表面熔池随之冷却缩小,至0.071 s时(图8(c)),右侧表面熔池几乎不可见。0.073 s时(图8(d)),可见外围凝固凹陷,产生面积不小的缺陷(椭圆框区域)。热源作用在0.075 s时(图8(e)),热源回到右侧并将部分凝固区域重熔,熔池向外扩张,至0.077 s时(图8(f)),激光已作用完成一个振荡周期。此时熔池跟随激光向后移动一小段,但未能将之前形成的凹陷区域全部重熔,余下了保留缺陷的后端区域。在激光周期性振荡作用下,缺陷将持续形成并不断积累。因此,单纯靠振荡激光无法实现高质量焊接。

图8     振荡激光–电弧复合焊缝截面
Fig.8     Weld cross section of oscillating laser–arc welding

不同工艺参数下振荡激光–电弧复合焊接的焊缝截面如图9所示,在振荡频率为100 Hz,振幅为0.5 mm和3 kW的激光作用下,电弧送丝速度为2 m/min时,出现熔池塌陷和过焊透现象;送丝速度为3m/min时,出现熔宽不足,导致无法覆盖T型接头下方全部区域;送丝速度为4 m/min和5 m/min时,右侧出现轻微内凹缺陷;而当送丝速度为5 m/min,振荡频率增大至200 Hz后,凹陷类的缺陷会更少。试验说明,送丝速度增加后,熔池的填充材料增加,可以有效降低咬边、凹陷等因材料填充不足形成的缺陷。同时,振荡频率增加后,熔池不同凝固区域的连续性得到提升,也有助于提升熔池材料凝固后的分布均匀性。因此,后续激光–电弧复合焊接选用送丝速度5 mm/min、振荡频率200 Hz和振幅0.5 mm的工艺参数开展试验。

图9     不同工艺参数下振荡激光–电弧复合焊接焊缝截面
Fig.9     Weld cross section of oscillating laser–arc welding with different process parameters

2.2     气孔缺陷

单道直线激光、振荡激光、激光–电弧复合焊接焊缝气孔分布如图10所示,气孔率统计结果和焊缝深宽比如图11所示。单道直线激光焊缝气孔率约1.2%,振荡激光焊缝气孔率约0.4%,激光–电弧复合焊缝气孔数量少于前者,气孔率约0.5%,但气孔面积略大。从图11可以看出,单道直线激光焊缝深宽比较大,对锁孔稳定性与焊缝质量有负面影响;振荡激光焊接与振荡激光–电弧复合焊接的深宽比较小,有利于气孔的溢出。

图10     焊缝X射线检测结果
Fig.10     X–ray test results of weld seam
图11     焊缝气孔率和焊缝深宽比
Fig.11     Weld porosity and depth-width ratio

为了研究激光振荡对锁孔诱发气孔缺陷程度的影响,试验对熔池压力分布进行分析和比较。图12描述了3种焊接过程中熔池和锁孔壁的压力分布图。如图12(a)所示,单道直线激光焊接的锁孔开度较小,熔池深而窄,锁孔两侧压力方向朝内,产生收缩趋势。如图12(b)所示,当光束产生振荡后,锁孔开度增大,熔池明显变宽,因此,在振荡激光焊接过程中,锁孔的后壁更稳定,从而抑制凸起的形成,降低孔隙率。如图12(c)所示,复合熔池的锁孔压力从中心开始向外逐渐减小,外扩趋势明显,压力分布更均匀,且锁孔周围压力明显增大,锁孔易于保持稳定。而在相同的激光参数下,振荡激光–电弧复合焊接熔池的锁孔宽,且深度下降,有助于气泡溢出,减少锁眼坍塌的可能性,抑制了气孔缺陷。

图12     不同焊接模式下熔池压力分布对比
Fig.12     Comparison of pressure distribution under different welding modes

模拟熔池的动态过程揭示了气孔消除的机制。如图13(a)所示,单道直线激光焊接在第21 ms时,锁孔后部形成1个凸起的气相区域,在锁孔向前移动时扩大;在第30 ms时,气泡与熔池分离,形成气孔。而在图13(b)中,采用频率为100 Hz的振荡激光焊接在第11 ms时,锁孔分成上下两段,在下方形成气泡;在第13 ms时,锁孔左移,带动气泡缩小并向后方移动;在第15 ms时,锁孔吞并气泡,保持相对稳定。试验结果表明,振荡激光焊熔池锁孔随激光扫描来回摆动,使得不稳定锁孔生成气泡后,能迅速向后扫掠将气泡吞并。振荡激光–电弧复合焊接过程同理,如图13(c)所示,在第40 ms时,锁孔上下两段分离,下方形成1个逐渐增大的气泡;而在第41.5 ms时,锁孔扩张,压缩气泡空间,气泡明显减小;在42 ms时被扩张锁孔吞并完全消失。

图13     不同焊接模式锁孔–气孔演变对比
Fig.13     Evolution of keyhole and pore compared for different welding modes

2.3     激光–电弧复合焊接熔池动态行为

在优化后的焊接参数条件下(激光功率3 kW、焊接速度3 m/min、振幅0.5 mm、振荡频率200 Hz、送丝速度5 m/min),熔池截面的熔流运动规律如图14所示。激光作用于熔池前端,该区域因激光扫描,流速较快。而熔池中后段在熔滴未滴落时,流速较慢。但在熔滴与熔池接触时,熔滴冲击带来的速度和热量使得接触区域速度场内出现明显流速增大现象。待熔滴与熔池完全融合后,熔流迅速下降,并回复至初始状态。

图14     熔池中截面速度场演变
Fig.14     Evolution of the cross–sectional velocity field in the molten pool

图15为激光–电弧复合焊接熔池上表面速度场演变过程。激光作用于熔池前端,该区域因激光扫描,形成流速较快区域,并带动熔池外圈区域流速增加。而熔池中后段在熔滴未滴落时,流速较小。但当熔滴与熔池接触时,熔滴冲击带来的动能和热效应导致接触区域速度场显著增强,并向外扩张。待熔滴与熔池完全融合后,熔池从中心向两侧传热、传质,形成类似水波的熔流波。但传热、传质形成的熔流波与激光振荡形成的高流速区域并未产生交互作用。图16为振荡激光–电弧复合焊接熔池锁孔演变动态,此阶段锁孔始终保持稳定,印证熔滴过渡对熔池传热、传质有极大促进作用且不影响锁孔稳定性。

图15     熔池上表面速度场演变
Fig.15     Evolution of velocity field on the upper surface of the molten pool
图16     熔滴过渡阶段锁孔演变
Fig.16     Evolution of keyhole during the transition phase of the molten droplet

3     结论

本研究开展了铝合金双缝T形接头振荡激光–CMT电弧复合焊接研究并得出以下3项主要结论。

(1)由于振荡激光熔池凝固区域不连续,且缺少材料填充,振荡激光焊接过程容易导致T型焊缝两侧成形面形成凹陷和咬边缺陷。而振荡激光–电弧复合焊接通过填充材料和提升振荡频率,可以有效避免凹陷类缺陷的产生。

(2)单道直线激光焊缝深宽比较大,对锁孔稳定性与焊缝质量有负面影响。单振荡激光焊接对焊缝气孔有明显的抑制作用,相比非振荡激光焊接,此焊接方式扩大了锁孔开口面积,提高了锁孔稳定性,降低了穿透深度,增加了锁孔重叠比,有利于消除气泡。振荡激光焊接与振荡激光–电弧复合焊接抑制气孔缺陷效果较好。

(3)振荡激光–电弧复合焊接过程中,熔滴与熔池接触时,熔滴带来的速度和热量使得接触区域速度场转变为高流速区域,并向外扩张,形成熔流波(熔流波为波及振荡激光形成的高速熔流区域)。熔滴过渡对熔池传热、传质有极大促进作用且不影响锁孔稳定性。

作者介绍



黄晓龙 博士研究生,主要从事激光制造新工艺的研究。

参考文献

[1]

ZHANG C, YU Y, CHEN C, et al. Suppressing porosity of a laser keyhole welded Al–6Mg alloy via beam oscillation[J]. Journal of Materials Processing Technology, 2020, 278: 116382.

[2]

CHEN J C, WEI Y H, ZHAN X H, et al. Melt flow and thermal transfer during magnetically supported laser beam welding of thick aluminum alloy plates[J]. Journal of Materials Processing Technology, 2018, 254: 325-337.

[3]

XU F J, HE L, HOU Z, et al. Online welding status monitoring method of T–joint double-sided double arc welding based on multi–source information fusion[J]. Journal of Manufacturing Processes, 2024, 124: 1485-1505.

[4]

LIU T, ZHAO Y Q, KANG Y, et al. Effect of micro morphology in different zones on mechanical properties of 2060 Al–Li alloy laser welded joints[J]. Journal of Manufacturing Processes, 2020, 50: 336-344.

[5]

HAO K D, LI G, GAO M, et al. Weld formation mechanism of fiber laser oscillating welding of austenitic stainless steel[J]. Journal of Materials Processing Technology, 2015, 225: 77-83.

[6]

CHEN S, ZHAO Y Q, TIAN S H, et al. Study on keyhole coupling and melt flow dynamic behaviors simulation of 2219 aluminum alloy T–joint during the dual laser beam bilateral synchronous welding[J]. Journal of Manufacturing Processes, 2020, 60: 200-212.

[7]

ZHANG X, CHEN W, BAO G, et al. Suppression of porosity in beam weaving laser welding[J]. Science and Technology of Welding and Joining, 2004, 9(4): 374-376.

[8]

KIM C, KANG M, KANG N. Solidification crack and morphology for laser weave welding of Al 5J32 alloy[J]. Science and Technology of Welding and Joining, 2013, 18(1): 57-61.

[9]

WANG L, GAO M, ZHANG C, et al. Effect of beam oscillating pattern on weld characterization of laser welding of AA6061–T6 aluminum alloy[J]. Materials & Design, 2016, 108: 707-717.

[10]

WANG Z M, OLIVEIRA J P, ZENG Z, et al. Laser beam oscillating welding of 5A06 aluminum alloys: Microstructure, porosity and mechanical properties[J]. Optics & Laser Technology, 2019, 111: 58-65.

[11]

CHEN G Y, WANG B, MAO S, et al. Research on the "∞"–shaped laser scanning welding process for aluminum alloy[J]. Optics & Laser Technology, 2019, 115: 32-41.

[12]

WAN Z X, WANG H P, LI J J, et al. Effect of beam oscillation frequency on spattering in remote laser stitch welding of thin-gage zinc-coated steel with keyhole penetration[J]. Journal of Materials Processing Technology, 2022, 302: 117482.

[13]

LI S R, MI G Y, WANG C M. A study on laser beam oscillating welding characteristics for the 5083 aluminum alloy: Morphology, microstructure and mechanical properties[J]. Journal of Manufacturing Processes, 2020, 53: 12-20.

[14]

KANG S, SHIN J. Laser beam oscillation welding of aluminum alloy using the spatially modulated beam by diffractive optical element (DOE)[J]. Journal of Manufacturing Processes, 2021, 66: 387-396.

[15]

ZHANG C, GAO M, ZENG X Y. Influences of synergy effect between laser and arc on laser–arc hybrid welding of aluminum alloys[J]. Optics & Laser Technology, 2019, 120: 105766.

[16]

KRISTIANSEN M, FARROKHI F, KRISTIANSEN E, et al. Application of hybrid laser arc welding for the joining of large offshore steel foundations[J]. Physics Procedia, 2017, 89: 197-204.

[17]

BUNAZIV I, AKSELSEN O M, FROSTEVARG J, et al. Application of laserarc hybrid welding of steel for low-temperature service[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(5): 2601-2613.

[18]

BUNAZIV I, AKSELSEN O M, REN X B, et al. Laser beam and laser-arc hybrid welding of aluminium alloys[J]. Metals, 2021, 11(8): 1150.

[19]

YANG X Y, CHEN H, LI M V, et al. Porosity suppressing and grain refining of narrow-gap rotating laser–MIG hybrid welding of 5A06 aluminum alloy[J]. Journal of Manufacturing Processes, 2021, 68: 1100-1113.

[20]

ZHANG Z D, SUN C S, XU X K, et al. Surface quality and forming characteristics of thin-wall aluminium alloy parts manufactured by laser assisted MIG arc additive manufacturing[J]. International Journal of Lightweight Materials and Manufacture, 2018, 1(2): 89-95.

[21]

LI R S, WANG G L, DING Y Y, et al. Optimization of the geometry for the end lateral extension path strategy to fabricate intersections using laser and cold metal transfer hybrid additive manufacturing[J]. Additive Manufacturing, 2020, 36: 101546.

[22]

MIAO Q Y, WU D J, CHAI D S, et al. Comparative study of microstructure evaluation and mechanical properties of 4043 aluminum alloy fabricated by wire-based additive manufacturing[J]. Materials & Design, 2020, 186: 108205.

[23]

LIU M R, MA G Y, LIU D H, et al. Microstructure and mechanical properties of aluminum alloy prepared by laser-arc hybrid additive manufacturing[J]. Journal of Laser Applications, 2020, 32(2): 022052.

[24]

AI Y W, LIU J B, YE C L, et al. Analysis of the dynamic behaviors of molten pool and keyhole for the oscillating laser welding of dissimilar materials stake welded T–joints with a gap[J]. International Journal of Heat and Mass Transfer, 2024, 232: 125877.

[25]

ZHENG Z G, SHAO C D, LAN L, et al. Numerical simulation on pore formation and suppression for dual-beam laser welding of sandwich structure[J]. The International Journal of Advanced Manufacturing Technology, 2024, 130(11): 6011-6025.

目录