铝合金激光–电弧复合焊接技术的研究进展*

基金项目

国家自然科学基金(52305362)。

中图分类号:

V26TG4

文献标识码:

A

通信作者

高义皓,硕士研究生,研究方向为多能场复合焊接。

编辑

责编 :向阳

引用格式

陈超, 高义皓, 任柏桥, 等. 铝合金激光–电弧复合焊接技术的研究进展[J]. 航空制造技术, 2025, 68(9): 47–60.

Research Progress of Laser–Arc Hybrid Welding Technology for Aluminum Alloy

Citations

CHEN Chao, GAO Yihao, REN Boqiao, et al. Research progress of laser–arc hybrid welding technology for aluminum alloy[J]. Aeronautical Manufacturing Technology, 2025, 68(9): 47–60.

航空制造技术    第68卷    第9期    47-60
Aeronautical Manufacturing Techinology    Vol.68    No.9 : 47-60
DOI: 10.16080/j.issn1671-833x.2025.09.047
论坛 >> 激光复合热源焊接(FORUM >> Laser Hybrid Heat Source Welding)

铝合金激光–电弧复合焊接技术的研究进展

  • 陈超
  • 高义皓
  • 任柏桥
  • 隋昕晨
  • 傅彦
吉林大学材料科学与工程学院长春 130025

通信作者

高义皓,硕士研究生,研究方向为多能场复合焊接。

基金项目

国家自然科学基金(52305362)。

中图分类号:

V26TG4

文献标识码:

A

引用格式

陈超, 高义皓, 任柏桥, 等. 铝合金激光–电弧复合焊接技术的研究进展[J]. 航空制造技术, 2025, 68(9): 47–60.

摘要

铝合金因其优异的轻质、高强度和耐腐蚀等性能,在航空航天、汽车制造等领域得到了广泛应用。然而,铝合金的焊接一直是制造领域中的一个难题,传统焊接方法存在热输入大、变形严重等问题。近年来,激光–电弧复合焊接技术因结合了激光焊接与电弧焊接的优势,成为解决铝合金焊接难题的重要手段。本文系统综述了激光–电弧复合焊接在铝合金领域的研究进展,介绍了激光–电弧复合焊接的协同作用原理与技术优势,对焊接组织与力学性能及其影响因素进行分析,针对复合焊接接头目前存在的一系列问题总结了解决方法,并展望了该技术的未来发展方向及在工业领域的应用前景。

关键词

铝合金;激光–电弧复合焊接;焊接工艺;接头性能;工业应用;

Research Progress of Laser–Arc Hybrid Welding Technology for Aluminum Alloy

  • CHEN Chao
  • GAO Yihao
  • REN Boqiao
  • SUI Xinchen
  • FU Yan
School of Materials Science and Engineering, Jilin University, Changchun 130025, China

Citations

CHEN Chao, GAO Yihao, REN Boqiao, et al. Research progress of laser–arc hybrid welding technology for aluminum alloy[J]. Aeronautical Manufacturing Technology, 2025, 68(9): 47–60.

Abstract

Aluminum alloys are widely used in areas of aerospace, automobile manufacturing, etc., due to their low density, high strength and corrosion resistance. However, the welding of aluminum alloys is a challenge in manufacturing fields, in which, traditional welding methods have problems such as high heat input and serious deformation. In recent years, laser–arc hybrid welding technology, which combines the advantages of laser welding and arc welding, has become an important method to solve the problems existed in aluminum alloy welding. This paper systematically reviews the research progress of laser–arc hybrid welding for aluminum alloys. Synergistic mechanism and technology advantages of laser–arc hybrid welding are introduced; welding structure and mechanical properties and their influencing factors are analyzed; solutions to a series of problems existed in hybrid welding joint are summarized. Finally, the development directions and application prospects of the laser–arc hybrid welding technology are expected, including automatic and intelligent development, new protective gas and welding filling materials and novel applications of laser–arc hybrid welding technology.

Keywords

Aluminum alloy; Laser–arc hybrid welding; Welding process; Joint properties; Industrial application;



铝合金因其密度低、比强度高及优异的高温性能等优点,被广泛应用于航空航天、交通运输等领域[   PALANCO S, KLASSEN M, SKUPIN J, et al. Spectroscopic diagnostics on CW-laser welding plasmas of aluminum alloys[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2001, 56(6): 651-659.
  CHEN K, XIAO R S, ZUO T C, et al. Laser welding of Al–Mg alloy with the thin plate[C]//Lasers in Material Processing and Manufacturing II. Beijing: SPIE, 2005: 155.
  洪蕾, 吴钢, 陈武柱. 保护气流对CO2激光焊接铝合金的影响[J]. 中国激光, 2005, 32(11): 1571-1576.HONG Lei, WU Gang, CHEN Wuzhu. Influence of shielding gas flow on welding quality for CO2 laser welding of aluminum alloy[J]. Chinese Journal of Lasers, 2005, 32(11): 1571-1576.
1-3
]
。但独特的物理化学特性导致铝合金的焊接性较差,限制了该材料在实际工程应用中的进一步发展[   BOGUE R. Lasers in manufacturing: A review of technologies and applications[J]. Assembly Automation, 2015, 35(2): 161-165.
4
]
。传统的电弧焊接热源不够集中,能量密度较低,尤其是在焊接中厚板时通常需要多层多道焊,降低了焊接效率并增加了热输入,导致被焊工件产生较大的变形和热裂纹[   SOLÓRZANO I G, DARWISH F A, DE MACEDO M C, et al. Effect of weld metal microstructure on the monotonic and cyclic mechanical behavior of tig welded 2091 Al–Li alloy joints[J]. Materials Science and Engineering: A, 2003, 348(1–2): 251-261.
5
]
。此外,铝合金的热导率较高,致使焊接接头具有较大的热影响区,容易产生软化现象,导致接头强度系数降低[   农琪, 谢业东. Al–Mg–Si铝合金6061焊接接头组织软化与强化机理[J]. 热加工工艺, 2012(9): 148-150.NONG Qi, XIE Yedong. Mechanism of tissue softening and strengthening of Al–Mg–Si aluminium alloy 6061 welded joints[J]. Thermal Processing Technology, 2012(9): 148-150.
  林文超. 汽车铝合金车身焊接工艺开发与应用分析[J]. 时代汽车, 2023(15): 132-134.LIN Wenchao. Development and application analysis of automotive aluminum alloy body welding process[J]. Auto Time, 2023(15): 132-134.
  金聪聪, 黄立兵, 黄文彬, 等. 新型铝合金MIG焊接头微观组织与力学性能[J]. 焊接学报, 2024, 45(7): 74-82.JIN Congcong, HUANG Libing, HUANG Wenbin, et al. Microstructure and mechanical properties of new aluminum alloy MIG welded joint[J]. Transactions of the China Welding Institution, 2024, 45(7): 74-82.
6-8
]
。激光焊利用高能量密度的激光快速加热工件,弥补了传统电弧焊接的不足,在焊接生产中具有很大的应用潜力[   LAURENT C, MARYA S. Flux development to improve CO2 laser welding of aluminium application to alloy 6061[J]. Welding Research Abroad, 2000, 46(10): 4-11.
  ION J C. Laser beam welding of wrought aluminium alloys[J]. Science and Technology of Welding and Joining, 2000, 5(5): 265-276.
  MAHRLE A, BEYER E. Hybrid laser beam welding—Classification, characteristics, and applications[J]. Journal of Laser Applications, 2006, 18(3): 169-180.
9-11
]
,但该方法对铝合金构件焊接来说还存在较大的局限性。首先,铝合金表面具有较高的反射性,致使其能量利用效率较低,因此对激光器的要求很高[   陈彦宾, 曹丽杰. 铝合金激光焊接研究现状[J]. 焊接, 2001(3): 9-12.CHEN Yanbin, CAO Lijie. State of the study of laser welding of aluminium alloys[J]. Welding & Joining, 2001(3): 9-12.
12
]
;其次,铝合金液态金属流动性好,在大功率激光作用下会发生汽化,焊接过程中金属蒸气/光致等离子体云将影响铝合金对激光能量的吸收,导致深熔焊接过程不稳定,焊缝易于产生气孔、表面塌陷、咬边等缺陷[   BUNAZIV I, AKSELSEN O M, REN X B, et al. Laser beam and laser–arc hybrid welding of aluminium alloys[J]. Metals, 2021, 11(8): 1150.
  KATAYAMA S, KAWAGUCHI S, MIZUTANI M, et al. Welding phenomena and in-process monitoring in high-power YAG laser welding of aluminium alloy[J]. Welding International, 2009, 23(10): 753-762.
13-14
]
。对此,20世纪70年代末,英国帝国理工学院教授Steen[   STEEN W M. Arc augmented laser processing of materials[J]. Journal of Applied Physics, 1980, 51(11): 5636-5641.
15
]
提出了激光–电弧复合焊接技术,该技术结合了电弧焊接与激光焊接的优点,使得接头的桥接能力提高且焊缝熔深增加,焊缝在较高的焊接速度下也不产生咬边等缺陷,激光与电弧的协同作用可以进一步改善焊缝的微观组织和机械性能。随着高功率激光器与电弧焊接技术的不断发展,激光–电弧复合焊接技术已经成为目前复合热源焊接技术的又一大研究热点[   SWANSON P T, PAGE C J, READ E, et al. Plasma augmented laser welding of 6 mm steel plate[J]. Science and Technology of Welding and Joining, 2007, 12(2): 153-160.
  MAZAR ATABAKI M, NIKODINOVSKI M, CHENIER P, et al. Experimental and numerical investigations of hybrid laser arc welding of aluminum alloys in the thick T-joint configuration[J]. Optics & Laser Technology, 2014, 59: 68-92.
16-17
]

本文系统介绍激光–电弧复合焊接的原理与协同机理,以及复合焊接技术的工艺优势,概括了工艺参数对焊缝质量的影响;对复合焊接接头的显微组织、综合性能进行分析,讨论了接头缺陷的产生机理及解决途径,并针对铝合金厚板复合焊接中的一系列挑战提供了解决方法;总结概括了激光–电弧复合焊接技术在航空航天、汽车制造、船舶及电力设备等领域的应用;最后展望了复合焊接技术未来的发展方向。

1     激光–电弧复合焊接的原理与工艺特点

1.1     激光–电弧复合焊接的工作原理

1.1.1     激光焊接的基本原理

激光焊接技术是指利用激光束热能将工件加热至熔化或汽化状态,通过固化形成焊缝的一种焊接方法,根据焊接方法的不同可分为激光热传导焊接和激光深熔焊接,如图1所示[   安晶. 激光焊接技术在航空工业机械制造中的应用[J]. 现代工业经济和信息化, 2024, 14(4): 121-123.AN Jing. Application of laser welding technology in aerospace industry mechanical manufacturing[J]. Modern Industrial Economy and Informatization, 2024, 14(4): 121-123.
18
]
,其基本原理是利用激光束高能量密度的特点,将激光束聚焦到焊接接头上,迅速熔化材料,使熔池扩大并深入,从而实现焊接。焊接过程主要包括激光产生、激光聚焦和激光熔化[   安晶. 激光焊接技术在航空工业机械制造中的应用[J]. 现代工业经济和信息化, 2024, 14(4): 121-123.AN Jing. Application of laser welding technology in aerospace industry mechanical manufacturing[J]. Modern Industrial Economy and Informatization, 2024, 14(4): 121-123.
  徐同乐. 现代激光技术在航空机械加工中的应用实践[J]. 中国机械, 2023(5): 68-71.XU Tongle. Application practice of modern laser technology in aerospace machining[J]. Machine China, 2023(5): 68-71.
18-19
]
。激光波长通常为红外波段,常用波长有1064 nm、808 nm和532 nm等。其中,1064 nm波长激光适用于大多数金属材料的焊接,808 nm波长激光适用于铝和铜等高反射材料的焊接,532 nm波长激光适用于一些非金属材料的焊接[   滕彬, 范成磊, 徐锴, 等. 厚板窄间隙焊接技术研究现状与应用进展[J]. 焊接学报, 2024, 45(1): 116-128.TENG Bin, FAN Chenglei, XU Kai, et al. Research status and application progress of narrow gap welding technology for thick plates[J]. Transactions of the China Welding Institution, 2024, 45(1): 116-128.
20
]

图1     激光焊接原理示意图[   安晶. 激光焊接技术在航空工业机械制造中的应用[J]. 现代工业经济和信息化, 2024, 14(4): 121-123.AN Jing. Application of laser welding technology in aerospace industry mechanical manufacturing[J]. Modern Industrial Economy and Informatization, 2024, 14(4): 121-123.
18
]
Fig.1     Schematic diagram of laser welding principle[   安晶. 激光焊接技术在航空工业机械制造中的应用[J]. 现代工业经济和信息化, 2024, 14(4): 121-123.AN Jing. Application of laser welding technology in aerospace industry mechanical manufacturing[J]. Modern Industrial Economy and Informatization, 2024, 14(4): 121-123.
18
]

1.1.2     电弧焊接的基本原理

电弧焊接的基本原理是利用电流通过焊条和工件之间的空气间隙产生电离现象,形成稳定的电弧,将待焊工件或填充焊丝熔化后再凝固,达到物体连接的目的[   ARORA H, SINGH R, BRAR G S. Thermal and structural modelling of arc welding processes: A literature review[J]. Measurement and Control, 2019, 52(7–8): 955-969.
21
]
。钨极惰性气体保护电弧焊接(TIG焊)和熔化极惰性气体保护电弧焊接(MIG焊)是常见的两种电弧焊接技术,焊接原理如图2所示[   LAWAL S L, AFOLALU S A. Innovations in TIG and MIG welding technologies: Recent developments and future trends[C]//2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG). Omu-Aran: IEEE, 2024: 1–6.
22
]
。TIG焊以钨棒和待焊工件为两个电极,利用钨电极与工件间产生的电弧热熔化母材或填充焊丝,采用惰性气体(氩、氦或氩–氦混合)保护电弧、熔池及热影响区。因钨极在焊接过程中不熔化,所以此方法又常被称为非熔化极惰性气体保护焊。MIG焊以连续送进的焊丝和待焊工件为两个电极,将燃烧的电弧作为热源熔化焊丝与母材金属,在惰性气体的保护下焊丝不断熔化并以熔滴形式过渡到焊池中,与熔化的母材金属熔合、凝固后形成焊缝金属[   LAWAL S L, AFOLALU S A. Innovations in TIG and MIG welding technologies: Recent developments and future trends[C]//2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG). Omu-Aran: IEEE, 2024: 1–6.
22
]

图2     TIG焊与MIG焊原理示意图[   LAWAL S L, AFOLALU S A. Innovations in TIG and MIG welding technologies: Recent developments and future trends[C]//2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG). Omu-Aran: IEEE, 2024: 1–6.
22
]
Fig.2     Schematic diagram of TIG and MIG welding principle[   LAWAL S L, AFOLALU S A. Innovations in TIG and MIG welding technologies: Recent developments and future trends[C]//2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG). Omu-Aran: IEEE, 2024: 1–6.
22
]

1.1.3     激光与电弧的协同作用机理

在激光–电弧复合焊接过程中,激光束和电弧作为两种热源同时加热母材,使之熔化并产生熔池,由于铝合金液态熔池的反射率低于固态金属,此时激光束能够直接辐射到液态熔池表面从而提高激光能量的利用率[   CASALINO G, MORTELLO M, LEO P, et al. Study on arc and laser powers in the hybrid welding of AA5754 Al-alloy[J]. Materials & Design, 2014, 61: 191-198.
  ACHERJEE B. Hybrid laser arc welding: State-of-art review[J]. Optics & Laser Technology, 2018, 99: 60-71.
23-24
]
,激光–电弧复合焊接原理如图3所示[   ACHERJEE B. Hybrid laser arc welding: State-of-art review[J]. Optics & Laser Technology, 2018, 99: 60-71.
24
]
。当复合热源作用于材料表面时,材料部分区域上升直至变成金属蒸气,在受热状态下,蒸气加速运动而产生一种反冲压力作用于材料表面,使得金属表面下凹形成匙孔。电弧与激光的协同作用机理主要包括以下4点[   GAO M, ZENG X Y, HU Q W. Effects of welding parameters on melting energy of CO2 laser–GMA hybrid welding[J]. Science and Technology of Welding and Joining, 2006, 11(5): 517-522.
  HU B, DEN OUDEN G. Laser induced stabilisation of the welding arc[J]. Science and Technology of Welding and Joining, 2005, 10(1): 76-81.
  FUJINAGA S, OHASHI R, KATAYAMA S, et al. Improvements of welding characteristics of aluminum alloys with YAG laser and TIG arc hybrid system[C]//First International Symposium on High-Power Laser Macroprocessing. Osaka: SPIE, 2003: 301.
  TIX C, GRATZKE U, SIMON G. Absorption of the laser beam by the plasma in deep laser beam welding of metals[J]. Journal of Applied Physics, 1995, 78(11): 6448-6453.
  BIBIK O, BRODYAQIN V, ROKLADOV Y. Special features of interaction of laser radiation with the electric welding arc in the combined laser–arc welding[J]. Physics and Chemistry of Materials Treatment, 1990, 24(2): 176-178.
25-29
]
:(1)激光为电弧提供稳定的阴、阳极斑点,从而减弱电弧飘逸现象;(2)电弧等离子体对激光小孔的孔壁施加压力,以防止激光小孔塌陷;(3)激光诱导等离子体与电弧诱导等离子体的电阻相互作用,使大量带电粒子进入电弧,降低了电弧等离子体的电阻,依据最小电压原理,电弧发生收缩,电弧能量密度提升;(4)激光诱导等离子体的带电粒子密度高于电弧等离子体,二者相互作用时大量带电粒子进入电弧,使得激光诱导等离子体被稀释,降低了激光诱导等离子体对激光的聚焦效应。

图3     激光–电弧复合焊接原理示意图[   ACHERJEE B. Hybrid laser arc welding: State-of-art review[J]. Optics & Laser Technology, 2018, 99: 60-71.
24
]
Fig.3     Schematic diagram of laser–arc hybrid welding principle[   ACHERJEE B. Hybrid laser arc welding: State-of-art review[J]. Optics & Laser Technology, 2018, 99: 60-71.
24
]

1.2     激光–电弧复合焊接的工艺优势

1.2.1     热输入控制与焊接速度提升

激光–电弧复合热源并不是激光和电弧两种热源简单叠加的过程,而是将两种热源的优势融合到一起,从而弥补两种热源不足的高效复合热源[   GU X Y, LI H, YANG L J, et al. Coupling mechanism of laser and arcs of laser–twin-arc hybrid welding and its effect on welding process[J]. Optics & Laser Technology, 2013, 48: 246-253.
30
]
。相比于单独电弧焊接,复合热源焊接的焊缝熔深更大、变形更小[   ASCARI A, FORTUNATO A, ORAZI L, et al. The influence of process parameters on porosity formation in hybrid LASER–GMA welding of AA6082 aluminum alloy[J]. Optics & Laser Technology, 2012, 44(5): 1485-1490.
31
]
。相比于单独激光焊接,电弧热源对铝合金的预热提高了铝合金对激光的吸收率,可以在较低的激光功率下得到更大的熔深和焊接速度,焊缝的热输入由此减少[   DILTHEY U, LUDER F, WIESCHEMANN A. Expanded capabilities in the welding of aluminum alloys with the laser–MIG hybrid process[J]. Aluminum, 1999, 75(1): 64-75.
32
]
。张熊等[   张熊, 黎硕, 米高阳, 等. 厚板16MnDR窄间隙激光–MIG复合焊接工艺研究[J]. 中国激光, 2016, 43(1): 103002.ZHANG Xiong, LI Shuo, MI Gaoyang, et al. A study of 16MnDR steel thick plate narrow gap laser–MIG hybrid welding[J]. Chinese Journal of Lasers, 2016, 43(1): 103002.
33
]
的研究表明,在达到相同的焊缝成形条件下,激光–MIG复合焊接所需的线能量仅约为传统MIG焊接的一半,而焊接效率提高了255%。Beyer等[   BEYER E, DILTHEY U, IMHOFF R, et al. New aspects in laser welding with an increased efficiency[C]//International Congress on Applications of Lasers & Electro-Optics. Orlando: Laser Institute of America, 1994: 183–192.
34
]
在激光–电弧复合焊接的基础上提出了激光复合双电极焊接(HyDRA),其单位长度的能量输入较普通激光复合单电热源焊接降低25%,较电弧焊接降低83%。Vollertsen等[   VOLLERTSEN F, THOMY C. Welding with fiber lasers from 200 to 17000 W[C]//International Congress on Applications of Lasers & Electro-Optics. Miami: Laser Institute of America, 2005.
35
]
对铝合金4 mm板进行光纤激光–MIG复合焊接,结果表明,相比于单独MIG焊接,激光–MIG复合焊接的焊接速度提升了近10倍。王伟等[   王伟, 王浩, 陈辉, 等. 6N01S–T5铝合金高速激光–MIG复合焊接工艺[J]. 焊接学报, 2019, 40(7): 55-60, 66, 163.WANG Wei, WANG Hao, CHEN Hui, et al. Investigation on high speed laser–MIG hybrid welding process of 6N01S–T5 aluminum alloy[J]. Transactions of the China Welding Institution, 2019, 40(7): 55-60, 66, 163.
36
]
对6N01S–T5铝合金进行高速激光–MIG复合焊接,发现当焊接速度达到4.8 m/min时,焊缝没有出现飞溅、裂纹等缺陷,仅有小部分气孔。Vorontsov等[   VORONTSOV A, ZYKOVA A, CHUMAEVSKII A, et al. Outstanding features of high-speed hybrid laser–arc welding compared to high-speed laser welding of AA5059 aluminum alloys[J]. Vacuum, 2022, 196: 110736.
37
]
对AA5059铝合金进行激光–电弧复合焊接,结果表明,在焊接速度高达7 m/min时,焊缝仍能保持较低的气孔数量。

1.2.2     焊缝成形质量的提高

气孔一直是困扰铝合金熔化焊的问题。在传统焊接过程中,随着熔池温度降低,气体在熔池内的溶解度大幅度下降,由于液态金属的凝固速度较快,气体不能及时从焊缝中逸出,最终形成气孔。而在激光焊接过程中,由于金属蒸气导致的匙孔不稳定、熔池塌陷等,将进一步限制气体逸出[   LEO P, RENNA G, CASALINO G, et al. Effect of power distribution on the weld quality during hybrid laser welding of an Al–Mg alloy[J]. Optics & Laser Technology, 2015, 73: 118-126.
38
]
,极易引起应力集中从而导致焊缝力学性能下降[   王长才, 胡连海, 许昌玲, 等. 光纤激光焊熔池及匙孔动态行为数值模拟[J]. 热加工工艺, 2019, 48(11): 134-137, 142.WANG Changcai, HU Lianhai, XU Changling, et al. Numerical simulation of dynamic behavior of molten pool and keyhole in fiber laser welding[J]. Hot Working Technology, 2019, 48(11): 134-137, 142.
39
]
。在激光–电弧复合焊接中,熔池的凝固时间比传统激光焊接长,并且可以利用电弧搅拌熔池,加速熔池内气体逸出[   WIESNER S, RETHMEIER M, WOHFAHRT H. MIG and laser beam welding of aluminum castings with wrought aluminum profiles[J]. Welding in the World: Journal of the International Institute of Welding, 2001, 45(S): 143-149.
40
]
,因此铝合金复合焊接的焊缝气孔、孔穴、裂纹等焊接缺陷远远少于激光焊接。此外复合热源下,熔融金属与母材的润湿性得到改善,提高了焊缝的成形质量[   PETRING D, KAIERLE S, KASIMIR M. Extended range of applications for laser beam welding by laser–MIG hybrid technique[J]. Laser Opto: offizielles Organ der Wissenschaftlichen Gesellschaft Lasertechnik e.V, 2001, 33(1): 50-56.
41
]
。Zhang等[   ZHANG C, GAO M, WANG D Z, et al. Relationship between pool characteristic and weld porosity in laser arc hybrid welding of AA6082 aluminum alloy[J]. Journal of Materials Processing Technology, 2017, 240: 217-222.
42
]
提出,激光–MIG焊接样品中的气孔主要是由匙孔引起的,并推导出了焊缝内气体的逸出条件,这对于减少焊缝气孔具有重要意义。Miao等[   MIAO H B, YU G, HE X L, et al. Comparative study of hybrid laser–MIG leading configuration on porosity in aluminum alloy bead-on-plate welding[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(5): 2681-2688.
43
]
提出了熔池体积特性系数(Φ),用于预测焊缝气孔率,并通过优化参数对8 mm厚的AA6082–T6铝合金进行激光–电弧复合焊接,得到了气孔率小于0.5%的一级焊缝。Fujinaga等[   FUJINAGA S, OHASHI R, KATAYAMA S, et al. Improvements of welding characteristics of aluminum alloys with YAG laser and TIG arc hybrid system[C]//First International Symposium on High-Power Laser Macroprocessing. Osaka: SPIE, 2003: 301.
27
]
将YAG激光器与TIG电弧进行结合,对A6061铝合金进行激光–电弧复合焊接,结果表明,复合热源焊接可以显著改善铝合金焊缝成形差的问题,当TIG电弧位于YAG激光之后时,可以获得表面成形良好、无明显缺陷的焊缝。

1.2.3     焊接变形和残余应力的控制

铝合金具有较大的线膨胀系数和热膨胀系数,凝固时体积收缩率达6.5%~6.8%,因此焊接过程中熔融金属在凝固时会产生过大的收缩内应力,从而导致焊接变形。相比于电弧焊接,激光复合电弧焊接因焊接速度的提升与热输入的降低,使得焊缝的变形量明显小于电弧焊接[   KONG F R, KOVACEVIC R. 3D finite element modeling of the thermally induced residual stress in the hybrid laser/arc welding of lap joint[J]. Journal of Materials Processing Technology, 2010, 210(6–7): 941-950.
44
]
。此外,得益于复合热源下的熔池快速加热和冷却过程及更小的熔池体积,焊接接头的残余应力显著降低[   GRAF T, STAUFER H. Laser-hybrid welding drives VW improvements[J]. Welding Journal, 2003, 82(1): 42-48.
45
]
。赵耀邦等[   赵耀邦, 张小龙, 李中权, 等. 铝合金激光焊接技术研究进展[J]. 电焊机, 2017, 47(2): 8-12.ZHAO Yaobang, ZHANG Xiaolong, LI Zhongquan, et al. Development of laser welding for aluminum alloy[J]. Electric Welding Machine, 2017, 47(2): 8-12.
46
]
对3 mm厚LF6铝合金分别进行TIG焊接与激光–MIG复合焊接,并对比测量了焊接中的横向角变形和纵向挠曲变形,结果表明,复合焊接能够更好地控制铝合金焊接变形。Dilthey等[   DILTHEY U, BRANDENBURG A, REICH F. Investigation of the strength and quality of aluminium laser–MIG-hybrid welded joints[J]. Welding in the World, 2006, 50(7): 7-10.
47
]
采用激光–MIG复合焊接技术焊接了铝合金车体,发现与MIG焊接相比,激光–MIG复合焊接导致的变形大幅减少。Casalino等[   CASALINO G, MORTELLO M, LEO P, et al. Study on arc and laser powers in the hybrid welding of AA5754 Al-alloy[J]. Materials & Design, 2014, 61: 191-198.
23
]
通过增量钻孔法测量了焊接后的残余应力,发现降低焊接热输入有利于减小残余应力。

1.3     主要工艺参数及对焊接质量的影响

1.3.1     激光功率与焦点位置

激光功率与焦点位置是激光–电弧复合焊接中至关重要的参数,共同决定了焊接的质量和效率。激光功率决定了焊接过程中的热输入,当激光功率密度小于106 W/cm2时,为热导焊接模式;激光功率密度大于106 W/cm2时,为深熔焊接模式[   高明. CO2激光–电弧复合焊接工艺、机理及质量控制规律研究[D]. 武汉: 华中科技大学, 2007.GAO Ming. Study on technology, mechanism and quality controlling of CO2 laser–arc hybrid welding[D]. Wuhan: Huazhong University of Science and Technology, 2007.
48
]
。Katayama等[   KATAYAMA S, KAWAHITO Y, MIZUTANI M, et al. Laser welding and hybrid welding of aluminium alloys[M]//New Frontiers in Light Metals. Amsterdam: IOS Press, 2010: 79-90.
49
]
对A5052铝合金进行激光–MIG复合焊接,结果表明,激光功率在2~10 kW范围内,焊缝的熔深随着激光功率的增加而增大。此外,增加激光功率还可以改变熔池特性,从而降低焊缝气孔率[   ZHANG C, GAO M, WANG D Z, et al. Relationship between pool characteristic and weld porosity in laser arc hybrid welding of AA6082 aluminum alloy[J]. Journal of Materials Processing Technology, 2017, 240: 217-222.
42
]
。罗震等[   罗震, 苏杰, 王小华, 等. 激光–电弧复合焊接铝合金的研究进展分析[J]. 华南理工大学学报(自然科学版), 2024, 52(3): 57-74.LUO Zhen, SU Jie, WANG Xiaohua, et al. Research progress analysis of laser–arc hybrid welding of aluminum alloys[J]. Journal of South China University of Technology (Natural Science Edition), 2024, 52(3): 57-74.
50
]
总结了激光功率对不同型号铝合金接头连接效率的影响(图4),可以看出,随着激光功率的增加,接头的连接效率增大。

图4     激光功率对铝合金激光–电弧复合焊接连接效率的影响[   罗震, 苏杰, 王小华, 等. 激光–电弧复合焊接铝合金的研究进展分析[J]. 华南理工大学学报(自然科学版), 2024, 52(3): 57-74.LUO Zhen, SU Jie, WANG Xiaohua, et al. Research progress analysis of laser–arc hybrid welding of aluminum alloys[J]. Journal of South China University of Technology (Natural Science Edition), 2024, 52(3): 57-74.
50
]
Fig.4     Effect of laser power on welding efficiency of laser–arc hybrid welding for aluminum alloy[   罗震, 苏杰, 王小华, 等. 激光–电弧复合焊接铝合金的研究进展分析[J]. 华南理工大学学报(自然科学版), 2024, 52(3): 57-74.LUO Zhen, SU Jie, WANG Xiaohua, et al. Research progress analysis of laser–arc hybrid welding of aluminum alloys[J]. Journal of South China University of Technology (Natural Science Edition), 2024, 52(3): 57-74.
50
]

焦点位置则直接影响焊缝的几何尺寸与成形,当激光束的焦点位于工件表面以下时,通常可以得到最大的熔深[   EL RAYES M, WALZ C, SEPOLD G. The influence of various hybrid welding parameters on bead geometry[J]. Welding Journal, 2004, 83(5): 147-153.
51
]
。此外,当激光束穿过熔池时,其焦点也会发生变化。由于复合热源作用下的熔池体积远大于激光焊接,在焊接时,熔池顶部的杯状区域使得熔池表面曲率增大,因此激光束的焦点位置发生变化。Hyatt等[   HYATT C V, MAGEE K H, PORTER J F, et al. Laser-assisted gas metal arc welding of 25-mm-thick HY–80 plate[J]. Welding Journal, 2001, 80(7): 163-172.
52
]
的测量结果表明,激光–MIG复合焊接时的激光束焦点比单独激光焊接时减小了0.7 mm。Kutsuna等[   KUTSUNA M, CHEN L. Interaction of both plasmas in CO2 laser–MAG hybrid welding of carbon steel[C]//First International Symposium on High-Power Laser Macroprocessing. Osaka: SPIE, 2003.
53
]
通过试验发现,以0.6 m/min的焊接速度对低碳钢进行激光–熔化极活性气体保护电弧(MAG)焊接时,激光束的最佳焦点从距离工件表面2 mm处移至4 mm处。

1.3.2     电弧电流与电压

根据电弧的动态特性可知,在焊接过程中其电流和电压是不断变化的。电流越大,焊条、焊丝等填充金属的熔化速率越快,热输入越高;电压越大,电弧长度越长[   LIU L M, HAO X F. Improvement of laser keyhole formation with the assistance of arc plasma in the hybrid welding process of magnesium alloy[J]. Optics and Lasers in Engineering, 2009, 47(11): 1177-1182.
54
]
。合理控制电弧电流的大小,可以优化焊缝的成形、减少气孔、提高工艺稳定性及提升能量利用率。张正浩等[   张正浩, 刘天亮, 刘云婷, 等. 2219铝合金激光–电弧复合焊接工艺优化[J]. 航天制造技术, 2024(1): 16-21.ZHANG Zhenghao, LIU Tianliang, LIU Yunting, et al. Optimization of laser–TIG hybrid welding technology of 2219 aluminum alloy[J]. Aerospace Manufacturing Technology, 2024(1): 16-21.
55
]
研究了2219铝合金热导焊接模式与深熔焊接模式下电流对焊缝质量的影响,结果表明,在两种焊接模式下,增大焊接电流均能增加焊缝熔宽,但当电流过大时,熔池会出现塌陷现象。Li等[   LI Z Y, SRIVATSAN T S, LI Y, et al. Coupling of laser with plasma arc to facilitate hybrid welding of metallic materials: A review[J]. Journal of Materials Engineering and Performance, 2013, 22(2): 384-395.
56
]
的研究表明,电弧电压对焊缝熔深的影响不明显,但可以改善复合焊接的熔滴过渡效果。因此,适当增加焊接电流有助于增大焊缝熔深,并可促进熔池中液态金属的流动。

1.3.3     焊接角度与送丝速度

对于复杂结构工件,改变焊接位置会导致焊接角度β的变化,使得焊缝池的重力方向与工件法线不重合,从而影响锁孔稳定性和焊缝液态金属流动[   KATAYAMA S, UCHIUMI S, MIZUTANI M, et al. Penetration and porosity prevention mechanism in YAG laser–MIG hybrid welding[J]. Welding International, 2007, 21(1): 25-31.
57
]
。Chen等[   CHEN C, SHEN Y P, GAO M, et al. Influence of welding angle on the weld morphology and porosity in laser–arc hybrid welding of AA2219 aluminum alloy[J]. Welding in the World, 2020, 64(1): 37-45.
58
]
研究了AA2219铝合金激光–电弧复合焊接中焊接角度β对气孔特性的影响,结果表明,当β从0°增至90°时,孔隙率先减小后增大;其中,当β从0°增至60°的过程中,锁孔逐渐稳定,液态金属流动更快,有利于气泡逸出,但当β增至60°时,由于金属蒸气压力过大,锁孔不稳定,熔池容易坍塌形成气孔。

当焊接间隙增大时,通常需要更高的送丝速度,意味着需要更大的焊接电流来提高沉积速率[   LE GUEN E, FABBRO R, CARIN M, et al. Analysis of hybrid Nd∶YAG laser–MAG arc welding processes[J]. Optics & Laser Technology, 2011, 43(7): 1155-1166.
59
]
。杨海锋等[   杨海锋, 梁晓梅, 王吉孝, 等. 5A06铝合金激光–TIG电弧复合填丝焊的特性[J]. 焊接, 2016(6): 30-34, 70.YANG Haifeng, LIANG Xiaomei, WANG Jixiao, et al. Properties of 5A06 aluminum alloy by laser–TIG arc hybrid filler wire welding[J]. Welding & Joining, 2016(6): 30-34, 70.
60
]
对6 mm厚5A06铝合金板进行激光–TIG电弧复合填丝工艺的对接焊接,结果表明,送丝速度对熔深的影响较为明显,送丝速度越大,熔深越小,此外试验还得到了焊接速度与送丝速度的匹配关系。

2     铝合金激光–电弧复合焊接的研究进展

2.1     焊接接头的显微组织特征及力学性能

2.1.1     焊接接头热影响区的显微组织特征

由于存在温度梯度,焊接接头热影响区的显微组织与性能不均匀,是焊接接头的薄弱位置,往往最先开始断裂。热影响区显微组织的晶粒形态一般可分为柱状晶、等轴晶与等轴枝晶,晶粒形态与所受热输入有关,而热影响区的力学性能通常与晶粒形态有关。表1[   ZHAN X H, ZHAO Y Q, LIU Z M, et al. Microstructure and porosity characteristics of 5A06 aluminum alloy joints using laser–MIG hybrid welding[J]. Journal of Manufacturing Processes, 2018, 35: 437-445.
  YAN J, GAO M, LI G, et al. Microstructure and mechanical properties of laser–MIG hybrid welding of 1420 Al–Li alloy[J]. The International Journal of Advanced Manufacturing Technology, 2013, 66(9): 1467-1473.
  ZHANG D Q, JIN X, GAO L X, et al. Effect of laser–arc hybrid welding on fracture and corrosion behaviour of AA6061–T6 alloy[J]. Materials Science and Engineering: A, 2011, 528(6): 2748-2754.
  YANG M, LU J X, WANG H Y, et al. Effect of the laser power on the microstructure and mechanical properties of the laser–MIG hybrid welding joints of the 2195 Al–Li alloy[J]. Science and Technology of Welding and Joining, 2020, 26: 75-83.
  HUANG L J, WU D S, HUA X M, et al. Effect of the welding direction on the microstructural characterization in fiber laser–GMAW hybrid welding of 5083 aluminum alloy[J]. Journal of Manufacturing Processes, 2018, 31: 514-522.
  GU J X, YANG S L, XIONG Q, et al. Microstructure and mechanical study on laser–arc-welded Al–Zn–Mg alloy[J]. Materials Transactions, 2020, 61(1): 119-126.
  ZHOU G A, XU J F, SHEN Z W, et al. Microstructure and mechanical properties of simultaneously explosively-welded steel/Cu pipes and Al/Cu pipe/rod[J]. Journal of Manufacturing Processes, 2019, 47: 244-253.
61-67
]
统计了不同牌号铝合金激光–电弧复合焊接的热影响区宽度与晶粒形态,可以看出,当热影响区宽度较小时,趋向于生成等轴枝晶,宽度较大时趋向于生成柱状晶。

表1     铝合金激光–电弧复合焊接热影响区的显微组织
Table 1     Microstructure of heat-affected zone of laser–arc hybrid welded aluminum alloy
铝合金牌号 热影响区宽度/mm 晶粒形态 文献
AA5A06 0.5 等轴枝晶 [   ZHAN X H, ZHAO Y Q, LIU Z M, et al. Microstructure and porosity characteristics of 5A06 aluminum alloy joints using laser–MIG hybrid welding[J]. Journal of Manufacturing Processes, 2018, 35: 437-445.
61
]
AA1420 1.0 等轴枝晶 [   YAN J, GAO M, LI G, et al. Microstructure and mechanical properties of laser–MIG hybrid welding of 1420 Al–Li alloy[J]. The International Journal of Advanced Manufacturing Technology, 2013, 66(9): 1467-1473.
62
]
AA6061 1.0 等轴枝晶 [   ZHANG D Q, JIN X, GAO L X, et al. Effect of laser–arc hybrid welding on fracture and corrosion behaviour of AA6061–T6 alloy[J]. Materials Science and Engineering: A, 2011, 528(6): 2748-2754.
63
]
AA2195 5.0 等轴枝晶 [   YANG M, LU J X, WANG H Y, et al. Effect of the laser power on the microstructure and mechanical properties of the laser–MIG hybrid welding joints of the 2195 Al–Li alloy[J]. Science and Technology of Welding and Joining, 2020, 26: 75-83.
64
]
AA5083 6.0 柱状晶 [   HUANG L J, WU D S, HUA X M, et al. Effect of the welding direction on the microstructural characterization in fiber laser–GMAW hybrid welding of 5083 aluminum alloy[J]. Journal of Manufacturing Processes, 2018, 31: 514-522.
65
]
AA7075 7.0 柱状晶 [   GU J X, YANG S L, XIONG Q, et al. Microstructure and mechanical study on laser–arc-welded Al–Zn–Mg alloy[J]. Materials Transactions, 2020, 61(1): 119-126.
66
]
AA6N01 20.0 纤维状晶粒 [   ZHOU G A, XU J F, SHEN Z W, et al. Microstructure and mechanical properties of simultaneously explosively-welded steel/Cu pipes and Al/Cu pipe/rod[J]. Journal of Manufacturing Processes, 2019, 47: 244-253.
67
]

2.1.2     焊接接头的力学性能

激光–电弧复合热源一方面能改善焊缝成形,减少气孔、热裂纹等缺陷;另一方面能控制热输入,减小热影响区尺寸,以此提高焊缝的综合力学性能。但接头软化仍是影响其力学性能的主要原因,目前主要通过两种方法来缓解接头软化的影响:(1)通过焊后热处理使接头产生固溶强化或第二相强化,如Hu等[   HU B, RICHARDSON I M. Microstructure and mechanical properties of AA7075 (T6) hybrid laser/GMA welds[J]. Materials Science and Engineering: A, 2007, 459(1–2): 94-100.
68
]
将AA7075铝合金的复合焊接头在480 ℃盐浴中浸泡60 min,然后淬火至室温,发现接头的抗拉强度提高了64%;(2)调整焊缝成分,因为镁元素及金属间化合物的蒸发会降低固溶强化及第二相强化的效果[   FROSTEVARG J, KAPLAN A F H. Undercut suppression in laser–arc hybrid welding by melt pool tailoring[J]. Journal of Laser Applications, 2014, 26(3): 031501.
69
]
,所以在焊丝中添加镁元素及其他合金元素将有利于提高接头强度[   CASALINO G, MORTELLO M, LEO P, et al. Study on arc and laser powers in the hybrid welding of AA5754 Al-alloy[J]. Materials & Design, 2014, 61: 191-198.
23
]
。此外,通过优化工艺参数来提高接头整体性能也能缓解接头软化带来的影响[   程永明, 梁晓梅, 邹吉鹏, 等. 铝合金激光–MIG电弧复合焊接工艺[J]. 焊接, 2017(11): 6-9.CHENG Yongming, LIANG Xiaomei, ZOU Jipeng, et al. Laser–MIG arc hybrid welding technology for aluminum alloy [J]. Welding & Joining, 2017(11): 6-9.
70
]

在实际工程应用中材料的疲劳性能十分重要,铝合金接头中气孔、裂纹均会引起应力集中,从而导致材料的疲劳性能下降。Wu等[   WU S C, HU Y N, SONG X P, et al. On the microstructural and mechanical characterization of hybrid laser-welded Al–Zn–Mg–Cu alloys[J]. Journal of Materials Engineering and Performance, 2015, 24(4): 1540-1550.
71
]
对7075–T6铝合金复合焊接接头的疲劳断裂行为进行了研究,结果表明,焊接接头的疲劳裂纹主要在气孔处萌生并以穿晶方式扩展,裂纹的向前扩展是由裂纹尖端的钝化引起的。此外,Zhang等[   ZHANG C, GAO M, ZENG X Y. Effect of microstructural characteristics on high cycle fatigue properties of laser–arc hybrid welded AA6082 aluminum alloy[J]. Journal of Materials Processing Technology, 2016, 231: 479-487.
72
]
研究了AA6082铝合金复合焊接接头的疲劳性能,结果表明,复合焊接接头的疲劳极限远高于单独激光焊接接头和电弧焊接接头,复合焊接产生的晶粒细化及较低的气孔率是其接头疲劳极限提高的主要原因。

2.2     焊接缺陷的种类及控制方法

2.2.1     气孔与热裂纹的产生机理

激光–电弧复合焊接接头中的常见缺陷包括气孔、热裂纹等,其中气孔主要分为氢气孔和工艺气孔两种。在较高的焊接温度下,铝合金熔池对氢气的溶解度较高,随着熔池的冷却,氢气溶解度急剧下降,较快的凝固速度使氢气无法完全逸出,最终形成氢气孔[   陈彦宾, 曹丽杰. 铝合金激光焊接研究现状[J]. 焊接, 2001(3): 9-12.CHEN Yanbin, CAO Lijie. State of the study of laser welding of aluminium alloys[J]. Welding & Joining, 2001(3): 9-12.
12
  赵耀邦, 张小龙, 李中权, 等. 铝合金激光焊接技术研究进展[J]. 电焊机, 2017, 47(2): 8-12.ZHAO Yaobang, ZHANG Xiaolong, LI Zhongquan, et al. Development of laser welding for aluminum alloy[J]. Electric Welding Machine, 2017, 47(2): 8-12.
46
  罗震, 苏杰, 王小华, 等. 激光–电弧复合焊接铝合金的研究进展分析[J]. 华南理工大学学报(自然科学版), 2024, 52(3): 57-74.LUO Zhen, SU Jie, WANG Xiaohua, et al. Research progress analysis of laser–arc hybrid welding of aluminum alloys[J]. Journal of South China University of Technology (Natural Science Edition), 2024, 52(3): 57-74.
50
]
;工艺气孔主要是由激光匙孔不稳定造成的塌陷导致的[   LEO P, RENNA G, CASALINO G, et al. Effect of power distribution on the weld quality during hybrid laser welding of an Al–Mg alloy[J]. Optics & Laser Technology, 2015, 73: 118-126.
38
]
,可以通过优化工艺参数来减少此类气孔[   WIESNER S, RETHMEIER M, WOHFAHRT H. MIG and laser beam welding of aluminum castings with wrought aluminum profiles[J]. Welding in the World: Journal of the International Institute of Welding, 2001, 45(S): 143-149.
40
  ZHANG C, GAO M, WANG D Z, et al. Relationship between pool characteristic and weld porosity in laser arc hybrid welding of AA6082 aluminum alloy[J]. Journal of Materials Processing Technology, 2017, 240: 217-222.
42
]
,常见工艺气孔的形成机理见图5(a)[   LEO P, RENNA G, CASALINO G, et al. Effect of power distribution on the weld quality during hybrid laser welding of an Al–Mg alloy[J]. Optics & Laser Technology, 2015, 73: 118-126.
38
]
。在铝合金凝固过程中,随着柱状晶的生长,低熔点共晶物被挤压到中心部位,形成了割裂晶粒连接的液态薄膜,在焊接拉应力的作用下最终形成热裂纹(图5(b)[   杨明. 焊接材料对7075铝合金焊接性能及组织的影响探讨[J]. 云南冶金, 2020, 49(2): 65-68.YANG Ming. Discussion on influence of welding material on welding property and microstructure of 7075 aluminum alloy[J]. Yunnan Metallurgy, 2020, 49(2): 65-68.
73
]
)。

图5     焊接接头的内部缺陷形成机理示意图
Fig.5     Schematic diagram of formation mechanism of internal defects in welded joints

2.2.2     飞溅与驼峰的产生机理

图6所示[   BUNAZIV I, AKSELSEN O M, REN X B, et al. Laser beam and laser–arc hybrid welding of aluminium alloys[J]. Metals, 2021, 11(8): 1150.
13
]
,飞溅主要是由激光锁孔开口周围液态金属较高的流速造成的,液态金属向上流动的方向与从锁孔中逸出的向上流动的金属蒸气相结合,从而形成了飞溅。驼峰的形成主要归因于熔池中液态金属的重力和表面张力之间的不平衡[   BUNAZIV I, AKSELSEN O M, REN X B, et al. Laser beam and laser–arc hybrid welding of aluminium alloys[J]. Metals, 2021, 11(8): 1150.
13
  WU D S, HUA X M, YE Y X, et al. Experimental and numerical study of spatter formation and composition change in fiber laser welding of aluminum alloy[J]. Journal of Physics D: Applied Physics, 2018, 51(18): 185604.
74
]
。Zhang等[   ZHANG R L, TANG X H, XU L D, et al. Study of molten pool dynamics and porosity formation mechanism in full penetration fiber laser welding of Al-alloy[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119089.
75
]
通过试验和数值研究表明,激光锁孔底部强大的反冲压力克服了表面张力,阻止了流体向上流动,从而形成驼峰。

图6     飞溅与驼峰产生机理示意图[   BUNAZIV I, AKSELSEN O M, REN X B, et al. Laser beam and laser–arc hybrid welding of aluminium alloys[J]. Metals, 2021, 11(8): 1150.
13
]
Fig.6     Schematic diagram of generation mechanism of spatter and hump [   BUNAZIV I, AKSELSEN O M, REN X B, et al. Laser beam and laser–arc hybrid welding of aluminium alloys[J]. Metals, 2021, 11(8): 1150.
13
]

2.2.3     焊接缺陷的预防与控制方法

根据目前铝合金复合焊接的相关研究可知,对于改善焊接接头成形、预防焊接缺陷产生,优化工艺参数是最简单、最有效的方法。马明明等[   马明明, 廖宁宁, 张弛. 激光–MIG电弧复合焊接6082–T6铝合金气孔抑制机理研究[J]. 机车车辆工艺, 2023(2): 1-6.MA Mingming, LIAO Ningning, ZHANG Chi. Research on pore restraining mechanism for 6082–T6 aluminum alloy welded by laser–MIG arc hybrid welding[J]. Locomotive & Rolling Stock Technology, 2023(2): 1-6.
76
]
研究了不同工艺参数对6082–T6铝合金激光–MIG复合焊接接头性能的影响,结果表明,在复合焊接的光斑摆动路径下,熔池区域扩大,焊缝的气孔率显著降低,气孔基本被抑制,此外,减小能量密度也能降低气孔率。Tan等[   TAN B, WANG Y Q, CHENG D G, et al. Study of the laser–MIG hybrid welded Al–Mg alloy[J]. Rare Metal Materials and Engineering, 2011(S4): 115-119.
77
]
采用激光–电弧复合焊接法,在较快的焊接速度下对10 mm厚的5052铝合金进行焊接,得到了焊接变形小、成形良好的焊接接头。对于焊缝中的热裂纹,可以通过优化影响熔池冷却速度的焊接参数来降低焊缝的热裂纹敏感性,从而有效减少热裂纹[   CROSS C E. On the origin of weld solidification cracking[M]//BOLLINGHAUS T, HEROLD H. Hot Cracking Phenomena in Welds. Berlin: Springer Nature, 2005: 3-18.
78
]
。另有一些研究发现,通过外加磁场的方式抑制马兰戈尼对流从而降低熔化速度,也能够有效抑制飞溅和驼峰[   BACHMANN M, AVILOV V, GUMENYUK A, et al. Numerical assessment and experimental verification of the influence of the Hartmann effect in laser beam welding processes by steady magnetic fields[J]. International Journal of Thermal Sciences, 2016, 101: 24-34.
  BACHMANN M, AVILOV V, GUMENYUK A, et al. Experimental and numerical investigation of an electromagnetic weld pool control for laser beam welding[J]. Physics Procedia, 2014, 56: 515-524.
  XU L D, TANG X H, ZHANG R L, et al. Weld bead characteristics for full-penetration laser welding of aluminum alloy under electromagnetic field support[J]. Journal of Materials Processing Technology, 2021, 288: 116896.
79-81
]

此外,保护气体种类及占比对焊缝成形也有重要影响。Cai等[   CAI C, HE S, CHEN H, et al. The influences of Ar–He shielding gas mixture on welding characteristics of fiber laser–MIG hybrid welding of aluminum alloy[J]. Optics Laser Technology, 2019, 113: 37-45.
82
]
研究了不同保护气体占比对铝合金激光–MIG复合焊接的影响,结果表明,在纯氩气中加入氦气后,等离子体高度降低,电弧等离子体向激光匙孔靠近,当氦气体积分数从0增加到50%时,焊缝熔深增大。此外,氩–氦混合气体保护能够在复合焊接过程中抑制等离子体对激光小孔的作用,从而提高激光小孔的稳定性,有效减少复合焊缝的气孔等缺陷。

2.3     铝合金厚板焊接中的挑战与解决方案

2.3.1     厚板焊接的热输入需求

铝合金厚板焊接在船舶、火箭、军工领域的应用十分广泛。MIG焊接的熔透能力较弱,在厚板焊接中需要较大的坡口角度和较小的钝边高度,并且需要较多的焊接层道数,而多道MIG焊接过程中累积的焊接热输入大,导致焊接变形大、残余应力高、力学性能差,因此影响接头的使用寿命[   高翔, 许祥平, 刘兆龙, 等. 厚板5083铝合金MIG焊工艺与性能研究[J]. 江苏科技大学学报(自然科学版), 2024, 38(4): 36-42.GAO Xiang, XU Xiangping, LIU Zhaolong, et al. Research on MIG welding process and performance of thick plate 5083 aluminium alloy[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2024, 38(4): 36-42.
83
]
。激光–电弧复合焊接更强的熔透性可以减少焊接道次,降低焊道之间的缺陷,更小的热输入还可以减少焊接变形的产生,最终降低焊接接头的内应力[   农琪, 谢业东, 金长义, 等. 铝合金焊接技术的研究现状与展望[J]. 热加工工艺, 2013, 42(9): 160-162, 165.NONG Qi, XIE Yedong, JIN Changyi, et al. Research status and perspectives of welding process for aluminum alloy[J]. Hot Working Technology, 2013, 42(9): 160-162, 165.
84
]
。盛立康[   盛立康. 20 mm厚铝合金激光–MIG复合焊工艺及接头组织性能研究[D]. 大连: 大连交通大学, 2024.SHENG Likang. 20 mm thick aluminum alloy laser–MIG composite welding process and joint organization performance research[D]. Dalian: Dalian Jiaotong University, 2024.
85
]
对20 mm厚铝合金的激光–MIG复合焊接工艺进行研究,得到了成形良好的焊缝,同时复合焊接接头具有良好的塑性。彭云等[   彭云, 许良红, 田志凌, 等. 焊接热输入对高强铝合金接头组织和性能的影响[J]. 焊接学报, 2008, 29(2): 17-21.PENG Yun, XU Lianghong, TIAN Zhiling, et al. Effect of heat input on microstructure and mechanical properties of the high strength aluminum alloy welds[J]. Transactions of the China Welding Institution, 2008, 29(2): 17-21.
86
]
对20 mm厚铝合金板进行焊接,结果表明,热输入较大时,焊缝中心溶质元素含量降低,θ′相分布不均匀,晶界处共晶组织呈长条网状分布,断裂方式由穿晶断裂转变为沿晶断裂,不利于接头强度的提升。

2.3.2     焊接熔透能力的提高与激光–电弧协同作用

使用电弧焊对铝合金进行焊接时能得到成形良好的接头,但其熔透能力较弱,焊接时所需的热输入较高,导致焊件的焊接变形大,接头力学性能不稳定。而复合焊接之所以能够增大熔深,一方面是因为电弧能够预热铝合金表面,提高了激光的能量利用率,使得焊缝熔深增大[   赵婷, 张新戈. 铝合金激光–电弧复合焊接研究现状与进展[J]. 焊接, 2012(11): 22-26, 69-70.ZHAO Ting, ZHANG Xinge. Current status and progress of research on laser–arc composite welding of aluminium alloys[J]. Welding, 2012(11): 22-26, 69-70.
87
]
;另一方面,当激光–电弧复合作用时,电弧被吸引到激光与材料的冲击点上,激光释放出的大量高温离子使得电弧等离子体的弧柱温度迅速提高[   王旭友, 王威, 林尚扬. 焊接参数对铝合金激光–MIG电弧复合焊缝熔深的影响[J]. 焊接学报, 2008, 29(6): 13-16.WANG Xuyou, WANG Wei, LIN Shangyang. Influence of welding parameters on the depth of fusion of aluminium alloy laser–MIG arc composite welds[J]. Journal of Welding, 2008, 29(6): 13-16.
88
]
,根据最小电压原理,电弧自动发生收缩以平衡产热和散热,发生收缩后的电弧电压增大且能量集中,使得焊缝熔深增大[   LIU L M, CHEN M H, LI C B. Effect of electric arc on laser keyhole behavior based on direct observation during low power pulsed laser–arc hybrid welding process[J]. Optics and Lasers in Engineering, 2013, 51(10): 1153-1160.
89
]
。此外,由激光产生的高温等离子体密度较低,可以稀释电弧焊接过程中产生的光致等离子体,从而减小光致等离子体对激光入射能量的阻碍,增加激光入射到材料表面的能量[   GU J X, YANG S L, XIONG Q, et al. Microstructure and mechanical study on laser–arc-welded Al–Zn–Mg alloy[J]. Materials Transactions, 2020, 61(1): 119-126.
66
]
。激光照射在材料表面可产生大量等离子体,加强电弧的方向性和稳定性,从而提高电弧的挺度[   BIBIK O, BRODYAQIN V, ROKLADOV Y. Special features of interaction of laser radiation with the electric welding arc in the combined laser–arc welding[J]. Physics and Chemistry of Materials Treatment, 1990, 24(2): 176-178.
29
]
。陈彦宾[   陈彦宾. 激光–TIG复合热源焊接物理特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2003.CHEN Yanbin. Study on physical characteristics of laser–TIG hybrid heat source welding[D]. Harbin: Harbin Institute of Technology, 2003.
90
]
发现复合热源焊接中存在“能量有限增强”现象,复合后的能量效应大于激光与电弧二者的加和能量效应,使得焊接熔深明显增大。Ji等[   JI X R, HUA X M, SHEN C, et al. Optimization of welding parameters on pores migration in laser–GMAW of 5083 aluminum alloy based on response surface methodology[J]. SN Applied Sciences, 2019, 1(10): 1161.
91
]
成功对30 mm厚的5083铝合金进行了激光–MIG复合焊接,并通过优化工艺参数降低了接头的气孔率。

2.3.3     焊接过程中变形控制的优化技术

在传统铝合金厚板焊接中,一般需要进行多层多道次焊接,难免造成较大的热输入,导致焊缝产生变形。而在复合焊接中,热输入显著降低,焊接接头的残余应力与变形量也随之下降。王良等[   王良, 陈香锦, 晏文涛, 等. 中厚板铝合金激光–MIG复合焊过程应力与变形研究[J]. 应用激光, 2023, 43(2): 70-79.WANG Liang, CHEN Xiangjin, YAN Wentao, et al. The study of stress and deformation during laser–MIG hybrid welding of medium and heavy plate aluminum alloy[J]. Applied Laser, 2023, 43(2): 70-79.
92
]
针对铝合金中厚板的激光–MIG复合焊接温度场、应力场及焊接变形进行了研究,证明温度场和工件总变形均是沿着以焊缝中轴线为长轴的椭圆形区域分布的,焊缝区域的单位变形量约为焊缝两侧单位变形量的47.4%。邓望红等[   邓望红, 陈顺, 廖宁宁, 等. 6082–T6铝合金中厚板MIG焊与激光–MIG复合焊工艺和数值模拟对比研究[J]. 金属加工(热加工), 2021(6): 51-56.DENG Wanghong, CHEN Shun, LIAO Ningning, et al. Comparative study on numerical simulation of 6082–T6 aluminum alloy medium thickness plate by MIG welding process and laser–MIG hybrid welding[J]. MW Metal Forming, 2021(6): 51-56.
93
]
对6082–T6铝合金中厚板进行MIG焊接与激光–MIG复合焊接,并对焊接工艺参数和数值模拟试验结果进行对比,结果表明,复合焊接接头的变形量显著低于MIG焊接接头。

3     铝合金激光–电弧复合焊接的应用领域

3.1     航空航天领域的应用

铝合金密度较低,经过热处理强化后,强度接近于低碳钢,因此被广泛应用于航空航天的结构轻量化设计中。减轻飞机重量不仅可以消耗更少的燃油,还能提高飞行速度、降低噪音和振动。同时,铝合金在制造过程中的可塑性和可加工性使得该材料能被制成复杂的形状和结构,进一步满足轻量化设计的需求[   赵耀邦, 成群林, 徐爱杰, 等. 激光–电弧复合焊接技术的研究进展及应用现状[J]. 航天制造技术, 2014(4): 11-14.ZHAO Yaobang, CHENG Qunlin, XU Aijie, et al. Recent advances in research and application of laser–arc hybrid welding technology[J]. Aerospace Manufacturing Technology, 2014(4): 11-14.
94
]
。铝合金在飞机上的应用十分广泛,蒙皮、骨架、舱壁、桁条等各种部件中均含有不同牌号的铝合金,如表2所示[   张丽娇. 航空航天高强铝合金材料应用及发展趋势研究[J]. 新材料产业, 2021(3): 7-11.ZHANG Lijiao. Research on application and development trend of high-strength aluminum alloy for aerospace[J]. Advanced Materials Industry, 2021(3): 7-11.
95
]
。此外,哈尔滨工业大学、上海航天精密机械研究所将激光–MIG/MAG电弧复合焊接技术成功应用于制造某航天重要结构件[   吴艺超, 雷正龙, 胡佩佩, 等. 30CrMnSi激光–GMA复合焊接工艺参数对焊缝成形的影响[C]//第十届全国激光加工学术会议论文. 温州: 中国光学学会激光加工专业委员会, 2012.WU Yichao, LEI Zhenglong, HU Peipei, et al. Effect of 30CrMnSi laser–GMA composite welding process parameters on weld shaping[C]//Proceedings of the 10th National Conference on Laser Processing. Wenzhou: Laser Processing Committee of COS, 2012.
96
]
;某公司将激光–电弧复合焊接应用于航空5A90铝–锂合金,大幅提高了生产效率,并改善了工件的装配能力,如图7所示[   蔡伟乐. 激光电弧复合热源焊接技术及其应用[J]. 金属加工(热加工), 2013(12): 21-23.CAI Weile. Laser–arc hybrid heat source welding technology and its application[J]. MW Metal Forming, 2013(12): 21-23.
97
]

表2     铝合金在飞机上的应用[   张丽娇. 航空航天高强铝合金材料应用及发展趋势研究[J]. 新材料产业, 2021(3): 7-11.ZHANG Lijiao. Research on application and development trend of high-strength aluminum alloy for aerospace[J]. Advanced Materials Industry, 2021(3): 7-11.
95
]
Table 2     Application of aluminum alloys on aircraft[   张丽娇. 航空航天高强铝合金材料应用及发展趋势研究[J]. 新材料产业, 2021(3): 7-11.ZHANG Lijiao. Research on application and development trend of high-strength aluminum alloy for aerospace[J]. Advanced Materials Industry, 2021(3): 7-11.
95
]
铝合金牌号 主要特点 应用部位 主要状态
1420 密度小,耐腐蚀性好 机身蒙皮和纵梁、座舱、油箱、地板、翼肋
2024 强度高,综合性能较好 飞机蒙皮、骨架、肋梁、螺旋桨等 T351、T4、T851
2324 高强度,高韧性 飞机结构件 T39
3003 良好的耐腐蚀性和延展性 发动机过滤网 H22
5052 中等强度,良好的耐腐蚀性和焊接性 风扇叶片、储油箱 H32、H34、H112
7085 高强度,综合性能好 桁条 T7651
7175 高强度,良好的耐腐蚀性和断裂韧性 飞机外翼梁、主起落架、垂尾接头 T74、T7452、T76511

图7     激光–电弧复合焊接航空5A90铝–锂合金[   蔡伟乐. 激光电弧复合热源焊接技术及其应用[J]. 金属加工(热加工), 2013(12): 21-23.CAI Weile. Laser–arc hybrid heat source welding technology and its application[J]. MW Metal Forming, 2013(12): 21-23.
97
]
Fig.7     Laser–arc hybrid welding of aviation 5A90 aluminum–lithium alloy [   蔡伟乐. 激光电弧复合热源焊接技术及其应用[J]. 金属加工(热加工), 2013(12): 21-23.CAI Weile. Laser–arc hybrid heat source welding technology and its application[J]. MW Metal Forming, 2013(12): 21-23.
97
]

由于飞机在飞行过程中需要承受自身的重量和飞行过程中的各种载荷,因此对机身材料的抗拉强度和疲劳性能要求非常严格。Vaidya等[   VAIDYA W V, ANGAMUTHU K, KOÇAK M, et al. Strength and fatigue resistance of laser–MIG hybrid butt welds of an airframe aluminium alloy AA6013[J]. Welding in the World, 2006, 50(11): 88-97.
98
]
采用Nd:YAG激光–MIG复合焊接方法对航天铝合金AA6013进行焊接,结果表明,与激光焊缝相比,复合焊缝无飞溅、缺口等表面缺陷,焊缝的疲劳性能提高。刘晓红[   刘晓红. 铝合金激光–TIG复合焊接工艺及接头性能研究[D]. 大连: 大连理工大学, 2017.LIU Xiaohong. Study on laser–TIG hybrid welding technology and joint properties of aluminum alloy[D]. Dalian: Dalian University of Technology, 2017.
99
]
对航天6061铝合金的激光–TIG复合焊接进行工艺优化,得到了无气孔且力学性能高的接头。在飞机薄壁结构件的制造过程中,飞机蒙皮与桁条的连接工艺仍以铆接等机械结合技术为主,或者通过减材加工方法直接加工成带筋壁板的整体结构,提升了人工成本与制造成本。若能将蒙皮与桁条焊接到一起,则能有效减轻结构件重量。对此,欧洲空中客车公司对其A318型号和A380型号飞机的部分机身采用激光焊接T型接头(图8),取代了原有的铆接工艺,使机身重量减轻18%左右,制造成本降低近25%[   MENDEZ P F, EAGER T W. New trends in welding the aeronautic industry[C]// Proceedings of the 2nd Conference on New Manufacturing Trends for Aeronautical Industries. Bilbao: INASMET, 2002: 1–10.
100
]
。对此,焦传江[   焦传江. 铝合金T型接头激光–电弧两侧同步焊接技术研究[D]. 北京: 北京工业大学, 2009.JIAO Chuanjiang. Study on laser–arc synchronous welding technology for T-joint of aluminum alloy[D]. Beijing: Beijing University of Technology, 2009.
101
]
针对飞机蒙皮与桁条焊接常用的T型接头进行了激光–电弧两侧同步焊接技术研究,并得到了成形良好、性能满足要求的复合焊接接头。

图8     飞机蒙皮与桁条焊接T型接头示意图[   MENDEZ P F, EAGER T W. New trends in welding the aeronautic industry[C]// Proceedings of the 2nd Conference on New Manufacturing Trends for Aeronautical Industries. Bilbao: INASMET, 2002: 1–10.
100
]
Fig.8     Schematic diagram of welded T-joint between aircraft skin and stringer[   MENDEZ P F, EAGER T W. New trends in welding the aeronautic industry[C]// Proceedings of the 2nd Conference on New Manufacturing Trends for Aeronautical Industries. Bilbao: INASMET, 2002: 1–10.
100
]

3.2     其他工业领域的应用

近年来,伴随着激光器行业的高速发展与制造工业的技术迭代,铝合金激光–电弧复合焊接技术已经受到越来越多研究人员的关注。除航空航天外,激光–电弧复合焊接技术因其高效率、高质量的优势在其他工业领域(如汽车制造、船舶与电力等)中也得到了广泛应用,如表3所示[   赵耀邦, 成群林, 徐爱杰, 等. 激光–电弧复合焊接技术的研究进展及应用现状[J]. 航天制造技术, 2014(4): 11-14.ZHAO Yaobang, CHENG Qunlin, XU Aijie, et al. Recent advances in research and application of laser–arc hybrid welding technology[J]. Aerospace Manufacturing Technology, 2014(4): 11-14.
94
  STAUFER H. Laser hybrid welding and laser brazing at audi and VW[J]. Welding in the World, 2006, 50(7): 44-50.
  STAUFER H. Laser hybrid welding in the automotive industry[J]. Welding Journal, 2007, 86(10): 36-40.
  ROLAND F, REINERT T, PETHAN G. Laser welding in shipbuilding—An overview of the activities at Meyer Werft[J]. Welding Research Abroad, 2003(4): 49.
  CHURIAQUE C, SÁNCHEZ-AMAYA J M, ÜSTÜNDAĞ Ö, et al. Improvements of hybrid laser arc welding for shipbuilding T-joints with 2F position of 8 mm thick steel[J]. Optics & Laser Technology, 2021, 143: 107284.
  ADAMIEC J, WIĘCEK M, GAWRYSIUK W. Fibre laser usage in boiler elements’ production for the power industry[J]. Welding International, 2010, 24(11): 853-860.
102-106
]

表3     激光–电弧复合焊接在其他工业领域的应用
Table 3     Applications of laser–arc hybrid welding in other industrial areas
应用企业 应用产品 优势 文献
德国大众 Phaeton全铝车门 提升生产效率 [   STAUFER H. Laser hybrid welding and laser brazing at audi and VW[J]. Welding in the World, 2006, 50(7): 44-50.
102
]
德国大众 奥迪A8铝合金侧顶梁 提升角焊缝与对接焊缝质量 [   STAUFER H. Laser hybrid welding and laser brazing at audi and VW[J]. Welding in the World, 2006, 50(7): 44-50.
102
]
Daimler 车轴生产 提升效率、熔透性及冶金性能 [   STAUFER H. Laser hybrid welding in the automotive industry[J]. Welding Journal, 2007, 86(10): 36-40.
103
]
Fronius 激光–CMT复合焊头 降低热输入,提升熔深 [   赵耀邦, 成群林, 徐爱杰, 等. 激光–电弧复合焊接技术的研究进展及应用现状[J]. 航天制造技术, 2014(4): 11-14.ZHAO Yaobang, CHENG Qunlin, XU Aijie, et al. Recent advances in research and application of laser–arc hybrid welding technology[J]. Aerospace Manufacturing Technology, 2014(4): 11-14.
94
]
Meyer–Werft GmbH 船舶加强板 降低变形,提升生产率 [   ROLAND F, REINERT T, PETHAN G. Laser welding in shipbuilding—An overview of the activities at Meyer Werft[J]. Welding Research Abroad, 2003(4): 49.
104
]
Fincantieri 船舶甲板 降低变形,提升接头桥接能力 [   CHURIAQUE C, SÁNCHEZ-AMAYA J M, ÜSTÜNDAĞ Ö, et al. Improvements of hybrid laser arc welding for shipbuilding T-joints with 2F position of 8 mm thick steel[J]. Optics & Laser Technology, 2021, 143: 107284.
105
]
Energoinstall 锅炉墙板和加肋 接头间隙公差大、熔深大,生产率高 [   ADAMIEC J, WIĘCEK M, GAWRYSIUK W. Fibre laser usage in boiler elements’ production for the power industry[J]. Welding International, 2010, 24(11): 853-860.
106
]

4     未来发展方向

4.1     自动化与智能化焊接技术的发展

4.1.1     激光–电弧复合焊接的自动化系统

铝合金激光–电弧复合焊接自动化系统通常包括激光源、电弧源、焊接机器人、送丝系统、控制系统等关键组件,这些组件的协同工作可以实现焊接过程的自动化控制。激光–电弧复合焊自动化与智能化焊接技术的发展,是推动制造业迈向更高效、更精准、更可靠生产模式的关键。早在2000年,Fraunhofer ILT在一家油箱制造公司搭建了激光–电弧复合焊接的自动化系统[   PETRING D, FUHRMANN C. Recent progress and innovative solutions for laser–arc hybrid welding[C]//Pacific International Conference on Applications of Lasers and Optics. Melbourne: Laser Institute of America, 2004.
107
]
,随后在汽车工业、船舶制造、管材生产等方面也得到了广泛应用。

4.1.2     焊接过程的实时监控与反馈控制

图9所示[   罗震, 苏杰, 王小华, 等. 激光–电弧复合焊接铝合金的研究进展分析[J]. 华南理工大学学报(自然科学版), 2024, 52(3): 57-74.LUO Zhen, SU Jie, WANG Xiaohua, et al. Research progress analysis of laser–arc hybrid welding of aluminum alloys[J]. Journal of South China University of Technology (Natural Science Edition), 2024, 52(3): 57-74.
50
]
,在线监测系统搭建过程中常使用红外热成像仪及工业高速相机等仪器。该监测系统利用红外热成像技术获取熔池图像,经数学软件处理后,依据温度梯度分布来识别、判定焊接缺陷,通过算法进行质量评估,最后生成记录[   罗震, 苏杰, 王小华, 等. 激光–电弧复合焊接铝合金的研究进展分析[J]. 华南理工大学学报(自然科学版), 2024, 52(3): 57-74.LUO Zhen, SU Jie, WANG Xiaohua, et al. Research progress analysis of laser–arc hybrid welding of aluminum alloys[J]. Journal of South China University of Technology (Natural Science Edition), 2024, 52(3): 57-74.
50
]
。杨翰文[   杨翰文. 激光–电弧复合热源焊接过程质量监测系统的研制[D]. 哈尔滨: 哈尔滨工业大学, 2016.YANG Hanwen. Development of quality monitoring system for laser–arc hybrid heat source welding process[D]. Harbin: Harbin Institute of Technology, 2016.
108
]
在LabVIEW环境中研发了一套激光–电弧复合热源焊接过程质量监测系统,基于对熔池图像和焊接过程电信号的采集分析,实现了对复合焊接过程中熔池图像及电流电压的在线监测,并建立了焊接过程中几类缺陷与各特征信息的对应关系。马尧睿等[   马尧睿, 蔡创, 刘致杰, 等. 基于LabVIEW的激光–MIG复合焊接过程等离子体监测[J]. 中国激光, 2022, 49(2): 0202014.MA Yaorui, CAI Chuang, LIU Zhijie, et al. Plasma monitoring during laser–MIG hybrid welding process based on LabVIEW[J]. Chinese Journal of Lasers, 2022, 49(2): 0202014.
109
]
以LabVIEW为软件编程平台,设计了一套激光–MIG复合焊接监测系统,将该系统提取的等离子体高速摄像照片中的DLTP值与相机分析软件测得的激光在等离子体中的传输距离进行对比,发现测量值精度高达96.5%。刘秀航等[   刘秀航, 黄宇辉, 张艳喜, 等. 基于BP神经网络补偿卡尔曼滤波的激光–MIG复合焊缝熔宽在线检测[J]. 中国激光, 2022, 49(16): 1602011.LIU Xiuhang, HUANG Yuhui, ZHANG Yanxi, et al. Online weld width detection of laser–MIG hybrid welding based on Kalman filter algorithm compensated by BP neural network[J]. Chinese Journal of Lasers, 2022, 49(16): 1602011.
110
]
研究了基于反向传播(BP)神经网络补偿卡尔曼滤波算法的熔宽检测方法,结果表明,该算法能有效降低焊缝熔宽检测的误差。

图9     激光–电弧复合焊接在线监测平台示意图[   罗震, 苏杰, 王小华, 等. 激光–电弧复合焊接铝合金的研究进展分析[J]. 华南理工大学学报(自然科学版), 2024, 52(3): 57-74.LUO Zhen, SU Jie, WANG Xiaohua, et al. Research progress analysis of laser–arc hybrid welding of aluminum alloys[J]. Journal of South China University of Technology (Natural Science Edition), 2024, 52(3): 57-74.
50
]
Fig.9     Schematic diagram of online monitoring platform for laser–arc hybrid welding[   罗震, 苏杰, 王小华, 等. 激光–电弧复合焊接铝合金的研究进展分析[J]. 华南理工大学学报(自然科学版), 2024, 52(3): 57-74.LUO Zhen, SU Jie, WANG Xiaohua, et al. Research progress analysis of laser–arc hybrid welding of aluminum alloys[J]. Journal of South China University of Technology (Natural Science Edition), 2024, 52(3): 57-74.
50
]

4.2     新型保护气体与焊接填充材料的应用

4.2.1     特种气体对铝合金焊接质量的影响

保护气体能够有效隔绝空气中对焊缝有害的气体,防止这些气体与熔池中的液态金属发生反应,以免导致焊缝中产生气孔、热裂纹等缺陷,从而影响焊接质量。然而,保护气体的成分会影响电弧特性、焊缝轮廓的形成和熔滴过渡行为[   GAO M, ZENG X Y, HU Q W. Effects of gas shielding parameters on weld penetration of CO2 laser–TIG hybrid welding[J]. Journal of Materials Processing Technology, 2007, 184(1–3): 177-183.
111
]
。氩气和氦气是铝合金激光–电弧焊接工艺中的主要保护气体,氩气能够使电弧稳定燃烧,而氦气主要用于增加熔深,提升电弧穿透力[   YAN S H, NIE Y, ZHU Z T, et al. Characteristics of microstructure and fatigue resistance of hybrid fiber laser–MIG welded Al–Mg alloy joints[J]. Applied Surface Science, 2014, 298: 12-18.
112
]
。此外,氩–氦混合气体还能够保持激光小孔的稳定性,从而减少接头气孔、热裂纹等缺陷[   CAI C, HE S, CHEN H, et al. The influences of Ar–He shielding gas mixture on welding characteristics of fiber laser–MIG hybrid welding of aluminum alloy[J]. Optics Laser Technology, 2019, 113: 37-45.
82
]
。Fellman等[   FELLMAN A, JERNSTRØM P, KUJANPÄÄ V. The effect of shielding gas composition in hybrid welding of carbon steel[C]//Proceedings of the 9th Nordic Laser Materials Processing Conference. Trondheim: ICALEO, 2003, 103–112.
113
]
的研究表明,在CO2激光–MIG电弧复合焊接过程中通入体积分数10%的CO有助于稳定电弧。此外,在保护气体中加入少量氧气(体积分数<5%)可以减少飞溅的形成,并改善焊接过程中的熔滴过渡行为[   SATHIYA P, KUMAR MISHRA M, SOUNDARARAJAN R, et al. Shielding gas effect on weld characteristics in arc–augmented laser welding process of super austenitic stainless steel[J]. Optics & Laser Technology, 2013, 45: 46-55.
114
]

4.2.2     焊接填充材料的改进及对接头性能的提升

填充材料用于调控焊缝金属的化学成分,以减少热裂纹等缺陷并提高接头整体的力学性能。通常,填充焊丝5356、5556、5183适用于大多数铝合金[   BUNAZIV I, AKSELSEN O M, REN X B, et al. Laser beam and laser–arc hybrid welding of aluminium alloys[J]. Metals, 2021, 11(8): 1150.
13
]
。但对于含有易蒸发元素的合金(如5系铝合金等),在进行复合焊接时易出现合金元素烧损等问题,导致焊缝性能下降,对此应选择合适的填充材料[   CASALINO G, MORTELLO M, LEO P, et al. Study on arc and laser powers in the hybrid welding of AA5754 Al-alloy[J]. Materials & Design, 2014, 61: 191-198.
23
]
。Kou[   KOU S. A criterion for cracking during solidification[J]. Acta Materialia, 2015, 88: 366-374.
115
]
采用铝–硅焊丝作为填充材料,该材料在熔池中形成的Al–Si共晶组织可以改善由焊接热应力引起的晶粒间空隙,从而降低接头的热裂倾向。Liu等[   LIU J W, KOU S. Crack susceptibility of binary aluminum alloys during solidification[J]. Acta Materialia, 2016, 110: 84-94.
116
]
的研究表明,在Al–Sn合金复合焊接中加入细化晶粒元素(如Mo、V、Re等)可以增大晶界面积、减少偏析,从而防止热裂纹的产生。

4.3     激光–电弧复合焊接工艺的创新应用

4.3.1     结合增材制造技术的复合焊接应用

近年来,随着铝合金激光–电弧复合焊接技术的日渐成熟,已有研究人员将该技术应用于铝合金的增材制造中。王鹏[   王鹏. 铝合金结构件激光电弧复合增材制造工艺分析[D]. 大连: 大连理工大学, 2016.WANG Peng. Analysis of laser–arc hybrid additive manufacturing process for aluminum alloy structural parts[D]. Dalian: Dalian University of Technology, 2016.
117
]
以5653铝合金为基板,对其激光–MIG电弧复合增材制造进行研究,与常规MIG焊接增材构件相比,复合焊接增材构件成形更均匀,且熔池外溢问题得到改善,当层间停留时间为60 s时,增材构件的力学性能最佳。刘妙然[   刘妙然. 铝合金薄壁激光–电弧复合增材制造工艺研究[D]. 大连: 大连理工大学, 2019.LIU Miaoran. Research on laser–arc hybrid additive manufacturing of aluminum alloy thin-wall[D]. Dalian: Dalian University of Technology, 2019.
118
]
对以6061铝合金为基板的激光–电弧复合增材制造工艺进行探究,结果表明,采用逐层降低电弧电流直至可稳定成形的方法,可以使增材构件更有金属光泽,表面更平整。此外,复合增材制造方法中,沉积件的晶粒得到细化且分布均匀,气孔率下降。王儒政[   王儒政. 高强铝合金栅格结构激光–电弧复合增材制造工艺研究[D]. 大连: 大连理工大学, 2022.WANG Ruzheng. Study on manufacturing technology of laser–arc composite additive for high-strength aluminum alloy grid structure[D]. Dalian: Dalian University of Technology, 2022.
119
]
采用激光–电弧复合增材制造工艺成形Al–Cu合金栅格结构试样,并建立了交叉节点成形过程的数值模型,得到了增材构件组织的演化规律。李炳尘[   李炳尘. TiC颗粒增强2219铝合金摆动激光–电弧复合增材制造工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2023.LI Bingchen. Study on manufacturing technology of TiC particle reinforced 2219 aluminum alloy by oscillating laser–arc composite additive[D]. Harbin: Harbin Institute of Technology, 2023.
120
]
采用TiC颗粒增强的2219铝合金焊丝,使用6082铝合金基板进行摆动激光–电弧复合增材制造,结果表明,TiC作为异质形点使得晶粒细化效果更明显,抑制了柱状晶的定向生长。此外,摆动激光–电弧复合增材制造工艺可以促进熔池流动,起到破碎柱状枝晶的作用,激光圆形摆动和“8”形摆动对气孔的抑制效果优于线性摆动和“∞”形摆动。

4.3.2     与热处理工艺的结合

对于铝合金来说,焊后热处理对接头质量有较大提升,可热处理的铝合金有2系、6系及7系。刘晓红等[   刘晓红, 王红阳, 刘黎明. 焊后热处理对6061–T6铝合金激光–电弧复合焊接性能的影响[J]. 焊接技术, 2016, 45(5): 26-29.LIU Xiaohong, WANG Hongyang, LIU Liming. Effect of post-weld heat treatment on laser–arc hybrid welding performance of 6061–T6 aluminum alloy[J]. Welding Technology, 2016, 45(5): 26-29.
121
]
对6061铝合金激光–电弧复合焊接接头进行T6热处理,经过530 ℃/1 h固溶处理+水淬185 ℃/6 h时效处理后,接头强度得到提升,接头软化区被消除,此外经热处理后,接头拉伸断裂区中的β(Mg2Si)析出相明显减少。王旭[   王旭. 7449铝合金激光电弧复合焊工艺及焊后热处理对接头组织性能的影响[D]. 长沙: 中南林业科技大学, 2017.WANG Xu. Study on the effects of laser–arc hybrid welding process and post weld heat treatment on microstructure and properties of joint of 7449 aluminum alloy [D]. Changsha: Central South University of Forestry & Technology, 2017.
122
]
对7449铝合金激光焊接接头进行焊后热处理,结果表明,475 ℃/1 h固溶处理后接头的拉伸性能提升,硬度没有明显变化;对接头进行120 ℃/24 h单级时效处理后,其拉伸性能进一步提升,固溶处理可以提高焊缝的耐腐蚀性能,时效处理效果则相反。

5     结论

(1)激光–电弧复合焊接将激光焊接和电弧焊接两种热源的优势融合到一起,所得焊缝既有较大的熔深,又能保持较小的变形,通过优化工艺参数可使铝合金复合焊接接头的性能得到进一步提升。

(2)针对热影响区软化、焊缝内部缺陷(热裂纹、气孔)与外部缺陷(驼峰、飞溅)等问题,可通过优化工艺参数、添加合金成分及焊后热处理等方法进行解决。针对铝合金厚板焊接,激光–电弧复合焊接较高的电弧熔透能力及协同作用能够降低接头的变形和残余应力。

(3)铝合金激光–电弧复合焊接技术在交通运输、船舶制造、电力工程等领域已有相对成熟的应用,在航空航天领域已经开展大量试验探索,具有很大的发展潜力。

(4)将激光–电弧复合焊接技术与增材制造技术相结合,能够显著改善增材构件的成形性及机械性能。对复合焊接接头进行热处理可改善接头软化、力学性能不足等问题。

(5)随着科技的进步,未来铝合金激光–电弧复合焊接技术将朝着智能化与自动化方向发展,通过对焊接过程进行实时监控与反馈控制,可以对焊接质量进行有效评估,是复合焊接技术走向智能化的重要一步,实现复合焊接技术的自动化将有助于该技术在工业领域的进一步应用。

作者介绍



陈超 研究员,研究方向为智能与精密焊接/增材制造。

参考文献

[1]

PALANCO S, KLASSEN M, SKUPIN J, et al. Spectroscopic diagnostics on CW-laser welding plasmas of aluminum alloys[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2001, 56(6): 651-659.

[2]

CHEN K, XIAO R S, ZUO T C, et al. Laser welding of Al–Mg alloy with the thin plate[C]//Lasers in Material Processing and Manufacturing II. Beijing: SPIE, 2005: 155.

[3]

洪蕾, 吴钢, 陈武柱. 保护气流对CO2激光焊接铝合金的影响[J]. 中国激光, 2005, 32(11): 1571-1576.
HONG Lei, WU Gang, CHEN Wuzhu. Influence of shielding gas flow on welding quality for CO2 laser welding of aluminum alloy[J]. Chinese Journal of Lasers, 2005, 32(11): 1571-1576.

[4]

BOGUE R. Lasers in manufacturing: A review of technologies and applications[J]. Assembly Automation, 2015, 35(2): 161-165.

[5]

SOLÓRZANO I G, DARWISH F A, DE MACEDO M C, et al. Effect of weld metal microstructure on the monotonic and cyclic mechanical behavior of tig welded 2091 Al–Li alloy joints[J]. Materials Science and Engineering: A, 2003, 348(1–2): 251-261.

[6]

农琪, 谢业东. Al–Mg–Si铝合金6061焊接接头组织软化与强化机理[J]. 热加工工艺, 2012(9): 148-150.
NONG Qi, XIE Yedong. Mechanism of tissue softening and strengthening of Al–Mg–Si aluminium alloy 6061 welded joints[J]. Thermal Processing Technology, 2012(9): 148-150.

[7]

林文超. 汽车铝合金车身焊接工艺开发与应用分析[J]. 时代汽车, 2023(15): 132-134.
LIN Wenchao. Development and application analysis of automotive aluminum alloy body welding process[J]. Auto Time, 2023(15): 132-134.

[8]

金聪聪, 黄立兵, 黄文彬, . 新型铝合金MIG焊接头微观组织与力学性能[J]. 焊接学报, 2024, 45(7): 74-82.
JIN Congcong, HUANG Libing, HUANG Wenbin, et al. Microstructure and mechanical properties of new aluminum alloy MIG welded joint[J]. Transactions of the China Welding Institution, 2024, 45(7): 74-82.

[9]

LAURENT C, MARYA S. Flux development to improve CO2 laser welding of aluminium application to alloy 6061[J]. Welding Research Abroad, 2000, 46(10): 4-11.

[10]

ION J C. Laser beam welding of wrought aluminium alloys[J]. Science and Technology of Welding and Joining, 2000, 5(5): 265-276.

[11]

MAHRLE A, BEYER E. Hybrid laser beam welding—Classification, characteristics, and applications[J]. Journal of Laser Applications, 2006, 18(3): 169-180.

[12]

陈彦宾, 曹丽杰. 铝合金激光焊接研究现状[J]. 焊接, 2001(3): 9-12.
CHEN Yanbin, CAO Lijie. State of the study of laser welding of aluminium alloys[J]. Welding & Joining, 2001(3): 9-12.

[13]

BUNAZIV I, AKSELSEN O M, REN X B, et al. Laser beam and laser–arc hybrid welding of aluminium alloys[J]. Metals, 2021, 11(8): 1150.

[14]

KATAYAMA S, KAWAGUCHI S, MIZUTANI M, et al. Welding phenomena and in-process monitoring in high-power YAG laser welding of aluminium alloy[J]. Welding International, 2009, 23(10): 753-762.

[15]

STEEN W M. Arc augmented laser processing of materials[J]. Journal of Applied Physics, 1980, 51(11): 5636-5641.

[16]

SWANSON P T, PAGE C J, READ E, et al. Plasma augmented laser welding of 6 mm steel plate[J]. Science and Technology of Welding and Joining, 2007, 12(2): 153-160.

[17]

MAZAR ATABAKI M, NIKODINOVSKI M, CHENIER P, et al. Experimental and numerical investigations of hybrid laser arc welding of aluminum alloys in the thick T-joint configuration[J]. Optics & Laser Technology, 2014, 59: 68-92.

[18]

安晶. 激光焊接技术在航空工业机械制造中的应用[J]. 现代工业经济和信息化, 2024, 14(4): 121-123.
AN Jing. Application of laser welding technology in aerospace industry mechanical manufacturing[J]. Modern Industrial Economy and Informatization, 2024, 14(4): 121-123.

[19]

徐同乐. 现代激光技术在航空机械加工中的应用实践[J]. 中国机械, 2023(5): 68-71.
XU Tongle. Application practice of modern laser technology in aerospace machining[J]. Machine China, 2023(5): 68-71.

[20]

滕彬, 范成磊, 徐锴, . 厚板窄间隙焊接技术研究现状与应用进展[J]. 焊接学报, 2024, 45(1): 116-128.
TENG Bin, FAN Chenglei, XU Kai, et al. Research status and application progress of narrow gap welding technology for thick plates[J]. Transactions of the China Welding Institution, 2024, 45(1): 116-128.

[21]

ARORA H, SINGH R, BRAR G S. Thermal and structural modelling of arc welding processes: A literature review[J]. Measurement and Control, 2019, 52(7–8): 955-969.

[22]

LAWAL S L, AFOLALU S A. Innovations in TIG and MIG welding technologies: Recent developments and future trends[C]//2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG). Omu-Aran: IEEE, 2024: 16.

[23]

CASALINO G, MORTELLO M, LEO P, et al. Study on arc and laser powers in the hybrid welding of AA5754 Al-alloy[J]. Materials & Design, 2014, 61: 191-198.

[24]

ACHERJEE B. Hybrid laser arc welding: State-of-art review[J]. Optics & Laser Technology, 2018, 99: 60-71.

[25]

GAO M, ZENG X Y, HU Q W. Effects of welding parameters on melting energy of CO2 laser–GMA hybrid welding[J]. Science and Technology of Welding and Joining, 2006, 11(5): 517-522.

[26]

HU B, DEN OUDEN G. Laser induced stabilisation of the welding arc[J]. Science and Technology of Welding and Joining, 2005, 10(1): 76-81.

[27]

FUJINAGA S, OHASHI R, KATAYAMA S, et al. Improvements of welding characteristics of aluminum alloys with YAG laser and TIG arc hybrid system[C]//First International Symposium on High-Power Laser Macroprocessing. Osaka: SPIE, 2003: 301.

[28]

TIX C, GRATZKE U, SIMON G. Absorption of the laser beam by the plasma in deep laser beam welding of metals[J]. Journal of Applied Physics, 1995, 78(11): 6448-6453.

[29]

BIBIK O, BRODYAQIN V, ROKLADOV Y. Special features of interaction of laser radiation with the electric welding arc in the combined laser–arc welding[J]. Physics and Chemistry of Materials Treatment, 1990, 24(2): 176-178.

[30]

GU X Y, LI H, YANG L J, et al. Coupling mechanism of laser and arcs of laser–twin-arc hybrid welding and its effect on welding process[J]. Optics & Laser Technology, 2013, 48: 246-253.

[31]

ASCARI A, FORTUNATO A, ORAZI L, et al. The influence of process parameters on porosity formation in hybrid LASER–GMA welding of AA6082 aluminum alloy[J]. Optics & Laser Technology, 2012, 44(5): 1485-1490.

[32]

DILTHEY U, LUDER F, WIESCHEMANN A. Expanded capabilities in the welding of aluminum alloys with the laser–MIG hybrid process[J]. Aluminum, 1999, 75(1): 64-75.

[33]

张熊, 黎硕, 米高阳, . 厚板16MnDR窄间隙激光–MIG复合焊接工艺研究[J]. 中国激光, 2016, 43(1): 103002.
ZHANG Xiong, LI Shuo, MI Gaoyang, et al. A study of 16MnDR steel thick plate narrow gap laser–MIG hybrid welding[J]. Chinese Journal of Lasers, 2016, 43(1): 103002.

[34]

BEYER E, DILTHEY U, IMHOFF R, et al. New aspects in laser welding with an increased efficiency[C]//International Congress on Applications of Lasers & Electro-Optics. Orlando: Laser Institute of America, 1994: 183192.

[35]

VOLLERTSEN F, THOMY C. Welding with fiber lasers from 200 to 17000 W[C]//International Congress on Applications of Lasers & Electro-Optics. Miami: Laser Institute of America, 2005.

[36]

王伟, 王浩, 陈辉, . 6N01S–T5铝合金高速激光–MIG复合焊接工艺[J]. 焊接学报, 2019, 40(7): 55-60, 66, 163.
WANG Wei, WANG Hao, CHEN Hui, et al. Investigation on high speed laser–MIG hybrid welding process of 6N01S–T5 aluminum alloy[J]. Transactions of the China Welding Institution, 2019, 40(7): 55-60, 66, 163.

[37]

VORONTSOV A, ZYKOVA A, CHUMAEVSKII A, et al. Outstanding features of high-speed hybrid laser–arc welding compared to high-speed laser welding of AA5059 aluminum alloys[J]. Vacuum, 2022, 196: 110736.

[38]

LEO P, RENNA G, CASALINO G, et al. Effect of power distribution on the weld quality during hybrid laser welding of an Al–Mg alloy[J]. Optics & Laser Technology, 2015, 73: 118-126.

[39]

王长才, 胡连海, 许昌玲, . 光纤激光焊熔池及匙孔动态行为数值模拟[J]. 热加工工艺, 2019, 48(11): 134-137, 142.
WANG Changcai, HU Lianhai, XU Changling, et al. Numerical simulation of dynamic behavior of molten pool and keyhole in fiber laser welding[J]. Hot Working Technology, 2019, 48(11): 134-137, 142.

[40]

WIESNER S, RETHMEIER M, WOHFAHRT H. MIG and laser beam welding of aluminum castings with wrought aluminum profiles[J]. Welding in the World: Journal of the International Institute of Welding, 2001, 45(S): 143-149.

[41]

PETRING D, KAIERLE S, KASIMIR M. Extended range of applications for laser beam welding by laser–MIG hybrid technique[J]. Laser Opto: offizielles Organ der Wissenschaftlichen Gesellschaft Lasertechnik e.V, 2001, 33(1): 50-56.

[42]

ZHANG C, GAO M, WANG D Z, et al. Relationship between pool characteristic and weld porosity in laser arc hybrid welding of AA6082 aluminum alloy[J]. Journal of Materials Processing Technology, 2017, 240: 217-222.

[43]

MIAO H B, YU G, HE X L, et al. Comparative study of hybrid laser–MIG leading configuration on porosity in aluminum alloy bead-on-plate welding[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(5): 2681-2688.

[44]

KONG F R, KOVACEVIC R. 3D finite element modeling of the thermally induced residual stress in the hybrid laser/arc welding of lap joint[J]. Journal of Materials Processing Technology, 2010, 210(6–7): 941-950.

[45]

GRAF T, STAUFER H. Laser-hybrid welding drives VW improvements[J]. Welding Journal, 2003, 82(1): 42-48.

[46]

赵耀邦, 张小龙, 李中权, . 铝合金激光焊接技术研究进展[J]. 电焊机, 2017, 47(2): 8-12.
ZHAO Yaobang, ZHANG Xiaolong, LI Zhongquan, et al. Development of laser welding for aluminum alloy[J]. Electric Welding Machine, 2017, 47(2): 8-12.

[47]

DILTHEY U, BRANDENBURG A, REICH F. Investigation of the strength and quality of aluminium laser–MIG-hybrid welded joints[J]. Welding in the World, 2006, 50(7): 7-10.

[48]

高明. CO2激光–电弧复合焊接工艺、机理及质量控制规律研究[D]. 武汉: 华中科技大学, 2007.
GAO Ming. Study on technology, mechanism and quality controlling of CO2 laser–arc hybrid welding[D]. Wuhan: Huazhong University of Science and Technology, 2007.

[49]

KATAYAMA S, KAWAHITO Y, MIZUTANI M, et al. Laser welding and hybrid welding of aluminium alloys[M]//New Frontiers in Light Metals. Amsterdam: IOS Press, 2010: 79-90.

[50]

罗震, 苏杰, 王小华, . 激光–电弧复合焊接铝合金的研究进展分析[J]. 华南理工大学学报(自然科学版), 2024, 52(3): 57-74.
LUO Zhen, SU Jie, WANG Xiaohua, et al. Research progress analysis of laser–arc hybrid welding of aluminum alloys[J]. Journal of South China University of Technology (Natural Science Edition), 2024, 52(3): 57-74.

[51]

EL RAYES M, WALZ C, SEPOLD G. The influence of various hybrid welding parameters on bead geometry[J]. Welding Journal, 2004, 83(5): 147-153.

[52]

HYATT C V, MAGEE K H, PORTER J F, et al. Laser-assisted gas metal arc welding of 25-mm-thick HY–80 plate[J]. Welding Journal, 2001, 80(7): 163-172.

[53]

KUTSUNA M, CHEN L. Interaction of both plasmas in CO2 laser–MAG hybrid welding of carbon steel[C]//First International Symposium on High-Power Laser Macroprocessing. Osaka: SPIE, 2003.

[54]

LIU L M, HAO X F. Improvement of laser keyhole formation with the assistance of arc plasma in the hybrid welding process of magnesium alloy[J]. Optics and Lasers in Engineering, 2009, 47(11): 1177-1182.

[55]

张正浩, 刘天亮, 刘云婷, . 2219铝合金激光–电弧复合焊接工艺优化[J]. 航天制造技术, 2024(1): 16-21.
ZHANG Zhenghao, LIU Tianliang, LIU Yunting, et al. Optimization of laser–TIG hybrid welding technology of 2219 aluminum alloy[J]. Aerospace Manufacturing Technology, 2024(1): 16-21.

[56]

LI Z Y, SRIVATSAN T S, LI Y, et al. Coupling of laser with plasma arc to facilitate hybrid welding of metallic materials: A review[J]. Journal of Materials Engineering and Performance, 2013, 22(2): 384-395.

[57]

KATAYAMA S, UCHIUMI S, MIZUTANI M, et al. Penetration and porosity prevention mechanism in YAG laser–MIG hybrid welding[J]. Welding International, 2007, 21(1): 25-31.

[58]

CHEN C, SHEN Y P, GAO M, et al. Influence of welding angle on the weld morphology and porosity in laser–arc hybrid welding of AA2219 aluminum alloy[J]. Welding in the World, 2020, 64(1): 37-45.

[59]

LE GUEN E, FABBRO R, CARIN M, et al. Analysis of hybrid Nd∶YAG laser–MAG arc welding processes[J]. Optics & Laser Technology, 2011, 43(7): 1155-1166.

[60]

杨海锋, 梁晓梅, 王吉孝, . 5A06铝合金激光–TIG电弧复合填丝焊的特性[J]. 焊接, 2016(6): 30-34, 70.
YANG Haifeng, LIANG Xiaomei, WANG Jixiao, et al. Properties of 5A06 aluminum alloy by laser–TIG arc hybrid filler wire welding[J]. Welding & Joining, 2016(6): 30-34, 70.

[61]

ZHAN X H, ZHAO Y Q, LIU Z M, et al. Microstructure and porosity characteristics of 5A06 aluminum alloy joints using laser–MIG hybrid welding[J]. Journal of Manufacturing Processes, 2018, 35: 437-445.

[62]

YAN J, GAO M, LI G, et al. Microstructure and mechanical properties of laser–MIG hybrid welding of 1420 Al–Li alloy[J]. The International Journal of Advanced Manufacturing Technology, 2013, 66(9): 1467-1473.

[63]

ZHANG D Q, JIN X, GAO L X, et al. Effect of laser–arc hybrid welding on fracture and corrosion behaviour of AA6061–T6 alloy[J]. Materials Science and Engineering: A, 2011, 528(6): 2748-2754.

[64]

YANG M, LU J X, WANG H Y, et al. Effect of the laser power on the microstructure and mechanical properties of the laser–MIG hybrid welding joints of the 2195 Al–Li alloy[J]. Science and Technology of Welding and Joining, 2020, 26: 75-83.

[65]

HUANG L J, WU D S, HUA X M, et al. Effect of the welding direction on the microstructural characterization in fiber laser–GMAW hybrid welding of 5083 aluminum alloy[J]. Journal of Manufacturing Processes, 2018, 31: 514-522.

[66]

GU J X, YANG S L, XIONG Q, et al. Microstructure and mechanical study on laser–arc-welded Al–Zn–Mg alloy[J]. Materials Transactions, 2020, 61(1): 119-126.

[67]

ZHOU G A, XU J F, SHEN Z W, et al. Microstructure and mechanical properties of simultaneously explosively-welded steel/Cu pipes and Al/Cu pipe/rod[J]. Journal of Manufacturing Processes, 2019, 47: 244-253.

[68]

HU B, RICHARDSON I M. Microstructure and mechanical properties of AA7075 (T6) hybrid laser/GMA welds[J]. Materials Science and Engineering: A, 2007, 459(1–2): 94-100.

[69]

FROSTEVARG J, KAPLAN A F H. Undercut suppression in laser–arc hybrid welding by melt pool tailoring[J]. Journal of Laser Applications, 2014, 26(3): 031501.

[70]

程永明, 梁晓梅, 邹吉鹏, . 铝合金激光–MIG电弧复合焊接工艺[J]. 焊接, 2017(11): 6-9.
CHENG Yongming, LIANG Xiaomei, ZOU Jipeng, et al. Laser–MIG arc hybrid welding technology for aluminum alloy [J]. Welding & Joining, 2017(11): 6-9.

[71]

WU S C, HU Y N, SONG X P, et al. On the microstructural and mechanical characterization of hybrid laser-welded Al–Zn–Mg–Cu alloys[J]. Journal of Materials Engineering and Performance, 2015, 24(4): 1540-1550.

[72]

ZHANG C, GAO M, ZENG X Y. Effect of microstructural characteristics on high cycle fatigue properties of laser–arc hybrid welded AA6082 aluminum alloy[J]. Journal of Materials Processing Technology, 2016, 231: 479-487.

[73]

杨明. 焊接材料对7075铝合金焊接性能及组织的影响探讨[J]. 云南冶金, 2020, 49(2): 65-68.
YANG Ming. Discussion on influence of welding material on welding property and microstructure of 7075 aluminum alloy[J]. Yunnan Metallurgy, 2020, 49(2): 65-68.

[74]

WU D S, HUA X M, YE Y X, et al. Experimental and numerical study of spatter formation and composition change in fiber laser welding of aluminum alloy[J]. Journal of Physics D: Applied Physics, 2018, 51(18): 185604.

[75]

ZHANG R L, TANG X H, XU L D, et al. Study of molten pool dynamics and porosity formation mechanism in full penetration fiber laser welding of Al-alloy[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119089.

[76]

马明明, 廖宁宁, 张弛. 激光–MIG电弧复合焊接6082–T6铝合金气孔抑制机理研究[J]. 机车车辆工艺, 2023(2): 1-6.
MA Mingming, LIAO Ningning, ZHANG Chi. Research on pore restraining mechanism for 6082–T6 aluminum alloy welded by laser–MIG arc hybrid welding[J]. Locomotive & Rolling Stock Technology, 2023(2): 1-6.

[77]

TAN B, WANG Y Q, CHENG D G, et al. Study of the laser–MIG hybrid welded Al–Mg alloy[J]. Rare Metal Materials and Engineering, 2011(S4): 115-119.

[78]

CROSS C E. On the origin of weld solidification cracking[M]//BOLLINGHAUS T, HEROLD H. Hot Cracking Phenomena in Welds. Berlin: Springer Nature, 2005: 3-18.

[79]

BACHMANN M, AVILOV V, GUMENYUK A, et al. Numerical assessment and experimental verification of the influence of the Hartmann effect in laser beam welding processes by steady magnetic fields[J]. International Journal of Thermal Sciences, 2016, 101: 24-34.

[80]

BACHMANN M, AVILOV V, GUMENYUK A, et al. Experimental and numerical investigation of an electromagnetic weld pool control for laser beam welding[J]. Physics Procedia, 2014, 56: 515-524.

[81]

XU L D, TANG X H, ZHANG R L, et al. Weld bead characteristics for full-penetration laser welding of aluminum alloy under electromagnetic field support[J]. Journal of Materials Processing Technology, 2021, 288: 116896.

[82]

CAI C, HE S, CHEN H, et al. The influences of Ar–He shielding gas mixture on welding characteristics of fiber laser–MIG hybrid welding of aluminum alloy[J]. Optics Laser Technology, 2019, 113: 37-45.

[83]

高翔, 许祥平, 刘兆龙, . 厚板5083铝合金MIG焊工艺与性能研究[J]. 江苏科技大学学报(自然科学版), 2024, 38(4): 36-42.
GAO Xiang, XU Xiangping, LIU Zhaolong, et al. Research on MIG welding process and performance of thick plate 5083 aluminium alloy[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2024, 38(4): 36-42.

[84]

农琪, 谢业东, 金长义, . 铝合金焊接技术的研究现状与展望[J]. 热加工工艺, 2013, 42(9): 160-162, 165.
NONG Qi, XIE Yedong, JIN Changyi, et al. Research status and perspectives of welding process for aluminum alloy[J]. Hot Working Technology, 2013, 42(9): 160-162, 165.

[85]

盛立康. 20 mm厚铝合金激光–MIG复合焊工艺及接头组织性能研究[D]. 大连: 大连交通大学, 2024.
SHENG Likang. 20 mm thick aluminum alloy laser–MIG composite welding process and joint organization performance research[D]. Dalian: Dalian Jiaotong University, 2024.

[86]

彭云, 许良红, 田志凌, . 焊接热输入对高强铝合金接头组织和性能的影响[J]. 焊接学报, 2008, 29(2): 17-21.
PENG Yun, XU Lianghong, TIAN Zhiling, et al. Effect of heat input on microstructure and mechanical properties of the high strength aluminum alloy welds[J]. Transactions of the China Welding Institution, 2008, 29(2): 17-21.

[87]

赵婷, 张新戈. 铝合金激光–电弧复合焊接研究现状与进展[J]. 焊接, 2012(11): 22-26, 69-70.
ZHAO Ting, ZHANG Xinge. Current status and progress of research on laser–arc composite welding of aluminium alloys[J]. Welding, 2012(11): 22-26, 69-70.

[88]

王旭友, 王威, 林尚扬. 焊接参数对铝合金激光–MIG电弧复合焊缝熔深的影响[J]. 焊接学报, 2008, 29(6): 13-16.
WANG Xuyou, WANG Wei, LIN Shangyang. Influence of welding parameters on the depth of fusion of aluminium alloy laser–MIG arc composite welds[J]. Journal of Welding, 2008, 29(6): 13-16.

[89]

LIU L M, CHEN M H, LI C B. Effect of electric arc on laser keyhole behavior based on direct observation during low power pulsed laser–arc hybrid welding process[J]. Optics and Lasers in Engineering, 2013, 51(10): 1153-1160.

[90]

陈彦宾. 激光–TIG复合热源焊接物理特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2003.
CHEN Yanbin. Study on physical characteristics of laser–TIG hybrid heat source welding[D]. Harbin: Harbin Institute of Technology, 2003.

[91]

JI X R, HUA X M, SHEN C, et al. Optimization of welding parameters on pores migration in laser–GMAW of 5083 aluminum alloy based on response surface methodology[J]. SN Applied Sciences, 2019, 1(10): 1161.

[92]

王良, 陈香锦, 晏文涛, . 中厚板铝合金激光–MIG复合焊过程应力与变形研究[J]. 应用激光, 2023, 43(2): 70-79.
WANG Liang, CHEN Xiangjin, YAN Wentao, et al. The study of stress and deformation during laser–MIG hybrid welding of medium and heavy plate aluminum alloy[J]. Applied Laser, 2023, 43(2): 70-79.

[93]

邓望红, 陈顺, 廖宁宁, . 6082–T6铝合金中厚板MIG焊与激光–MIG复合焊工艺和数值模拟对比研究[J]. 金属加工(热加工), 2021(6): 51-56.
DENG Wanghong, CHEN Shun, LIAO Ningning, et al. Comparative study on numerical simulation of 6082–T6 aluminum alloy medium thickness plate by MIG welding process and laser–MIG hybrid welding[J]. MW Metal Forming, 2021(6): 51-56.

[94]

赵耀邦, 成群林, 徐爱杰, . 激光–电弧复合焊接技术的研究进展及应用现状[J]. 航天制造技术, 2014(4): 11-14.
ZHAO Yaobang, CHENG Qunlin, XU Aijie, et al. Recent advances in research and application of laser–arc hybrid welding technology[J]. Aerospace Manufacturing Technology, 2014(4): 11-14.

[95]

张丽娇. 航空航天高强铝合金材料应用及发展趋势研究[J]. 新材料产业, 2021(3): 7-11.
ZHANG Lijiao. Research on application and development trend of high-strength aluminum alloy for aerospace[J]. Advanced Materials Industry, 2021(3): 7-11.

[96]

吴艺超, 雷正龙, 胡佩佩, . 30CrMnSi激光–GMA复合焊接工艺参数对焊缝成形的影响[C]//第十届全国激光加工学术会议论文. 温州: 中国光学学会激光加工专业委员会, 2012.
WU Yichao, LEI Zhenglong, HU Peipei, et al. Effect of 30CrMnSi laser–GMA composite welding process parameters on weld shaping[C]//Proceedings of the 10th National Conference on Laser Processing. Wenzhou: Laser Processing Committee of COS, 2012.

[97]

蔡伟乐. 激光电弧复合热源焊接技术及其应用[J]. 金属加工(热加工), 2013(12): 21-23.
CAI Weile. Laser–arc hybrid heat source welding technology and its application[J]. MW Metal Forming, 2013(12): 21-23.

[98]

VAIDYA W V, ANGAMUTHU K, KOÇAK M, et al. Strength and fatigue resistance of laser–MIG hybrid butt welds of an airframe aluminium alloy AA6013[J]. Welding in the World, 2006, 50(11): 88-97.

[99]

刘晓红. 铝合金激光–TIG复合焊接工艺及接头性能研究[D]. 大连: 大连理工大学, 2017.
LIU Xiaohong. Study on laser–TIG hybrid welding technology and joint properties of aluminum alloy[D]. Dalian: Dalian University of Technology, 2017.

[100]

MENDEZ P F, EAGER T W. New trends in welding the aeronautic industry[C]// Proceedings of the 2nd Conference on New Manufacturing Trends for Aeronautical Industries. Bilbao: INASMET, 2002: 110.

[101]

焦传江. 铝合金T型接头激光–电弧两侧同步焊接技术研究[D]. 北京: 北京工业大学, 2009.
JIAO Chuanjiang. Study on laser–arc synchronous welding technology for T-joint of aluminum alloy[D]. Beijing: Beijing University of Technology, 2009.

[102]

STAUFER H. Laser hybrid welding and laser brazing at audi and VW[J]. Welding in the World, 2006, 50(7): 44-50.

[103]

STAUFER H. Laser hybrid welding in the automotive industry[J]. Welding Journal, 2007, 86(10): 36-40.

[104]

ROLAND F, REINERT T, PETHAN G. Laser welding in shipbuilding—An overview of the activities at Meyer Werft[J]. Welding Research Abroad, 2003(4): 49.

[105]

CHURIAQUE C, SÁNCHEZ-AMAYA J M, ÜSTÜNDAĞ Ö, et al. Improvements of hybrid laser arc welding for shipbuilding T-joints with 2F position of 8 mm thick steel[J]. Optics & Laser Technology, 2021, 143: 107284.

[106]

ADAMIEC J, WIĘCEK M, GAWRYSIUK W. Fibre laser usage in boiler elements’ production for the power industry[J]. Welding International, 2010, 24(11): 853-860.

[107]

PETRING D, FUHRMANN C. Recent progress and innovative solutions for laser–arc hybrid welding[C]//Pacific International Conference on Applications of Lasers and Optics. Melbourne: Laser Institute of America, 2004.

[108]

杨翰文. 激光–电弧复合热源焊接过程质量监测系统的研制[D]. 哈尔滨: 哈尔滨工业大学, 2016.
YANG Hanwen. Development of quality monitoring system for laser–arc hybrid heat source welding process[D]. Harbin: Harbin Institute of Technology, 2016.

[109]

马尧睿, 蔡创, 刘致杰, . 基于LabVIEW的激光–MIG复合焊接过程等离子体监测[J]. 中国激光, 2022, 49(2): 0202014.
MA Yaorui, CAI Chuang, LIU Zhijie, et al. Plasma monitoring during laser–MIG hybrid welding process based on LabVIEW[J]. Chinese Journal of Lasers, 2022, 49(2): 0202014.

[110]

刘秀航, 黄宇辉, 张艳喜, . 基于BP神经网络补偿卡尔曼滤波的激光–MIG复合焊缝熔宽在线检测[J]. 中国激光, 2022, 49(16): 1602011.
LIU Xiuhang, HUANG Yuhui, ZHANG Yanxi, et al. Online weld width detection of laser–MIG hybrid welding based on Kalman filter algorithm compensated by BP neural network[J]. Chinese Journal of Lasers, 2022, 49(16): 1602011.

[111]

GAO M, ZENG X Y, HU Q W. Effects of gas shielding parameters on weld penetration of CO2 laser–TIG hybrid welding[J]. Journal of Materials Processing Technology, 2007, 184(1–3): 177-183.

[112]

YAN S H, NIE Y, ZHU Z T, et al. Characteristics of microstructure and fatigue resistance of hybrid fiber laser–MIG welded Al–Mg alloy joints[J]. Applied Surface Science, 2014, 298: 12-18.

[113]

FELLMAN A, JERNSTRØM P, KUJANPÄÄ V. The effect of shielding gas composition in hybrid welding of carbon steel[C]//Proceedings of the 9th Nordic Laser Materials Processing Conference. Trondheim: ICALEO, 2003, 103112.

[114]

SATHIYA P, KUMAR MISHRA M, SOUNDARARAJAN R, et al. Shielding gas effect on weld characteristics in arc–augmented laser welding process of super austenitic stainless steel[J]. Optics & Laser Technology, 2013, 45: 46-55.

[115]

KOU S. A criterion for cracking during solidification[J]. Acta Materialia, 2015, 88: 366-374.

[116]

LIU J W, KOU S. Crack susceptibility of binary aluminum alloys during solidification[J]. Acta Materialia, 2016, 110: 84-94.

[117]

王鹏. 铝合金结构件激光电弧复合增材制造工艺分析[D]. 大连: 大连理工大学, 2016.
WANG Peng. Analysis of laser–arc hybrid additive manufacturing process for aluminum alloy structural parts[D]. Dalian: Dalian University of Technology, 2016.

[118]

刘妙然. 铝合金薄壁激光–电弧复合增材制造工艺研究[D]. 大连: 大连理工大学, 2019.
LIU Miaoran. Research on laser–arc hybrid additive manufacturing of aluminum alloy thin-wall[D]. Dalian: Dalian University of Technology, 2019.

[119]

王儒政. 高强铝合金栅格结构激光–电弧复合增材制造工艺研究[D]. 大连: 大连理工大学, 2022.
WANG Ruzheng. Study on manufacturing technology of laser–arc composite additive for high-strength aluminum alloy grid structure[D]. Dalian: Dalian University of Technology, 2022.

[120]

李炳尘. TiC颗粒增强2219铝合金摆动激光–电弧复合增材制造工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2023.
LI Bingchen. Study on manufacturing technology of TiC particle reinforced 2219 aluminum alloy by oscillating laser–arc composite additive[D]. Harbin: Harbin Institute of Technology, 2023.

[121]

刘晓红, 王红阳, 刘黎明. 焊后热处理对6061–T6铝合金激光–电弧复合焊接性能的影响[J]. 焊接技术, 2016, 45(5): 26-29.
LIU Xiaohong, WANG Hongyang, LIU Liming. Effect of post-weld heat treatment on laser–arc hybrid welding performance of 6061–T6 aluminum alloy[J]. Welding Technology, 2016, 45(5): 26-29.

[122]

王旭. 7449铝合金激光电弧复合焊工艺及焊后热处理对接头组织性能的影响[D]. 长沙: 中南林业科技大学, 2017.
WANG Xu. Study on the effects of laser–arc hybrid welding process and post weld heat treatment on microstructure and properties of joint of 7449 aluminum alloy [D]. Changsha: Central South University of Forestry & Technology, 2017.

目录