Thickness Measurement of Resin-Rich Layer Solidified on CFRP Based on Ultrasonic Echo Phase Derivative Spectrum
Citations
MA Zhiyuan, SONG Xinmin, ZHANG Tianxu, et al. Thickness measurement of resin-rich layer solidified on CFRP based on ultrasonic echo phase derivative spectrum[J]. Aeronautical Manufacturing Technology, 2025, 68(9): 20–26.
1.NDT & E Laboratory, Dalian University of Technology, Dalian116024, China
2.Shanghai Composite Material & Technology Co. Ltd., Shanghai201112, China
Citations
MA Zhiyuan, SONG Xinmin, ZHANG Tianxu, et al. Thickness measurement of resin-rich layer solidified on CFRP based on ultrasonic echo phase derivative spectrum[J]. Aeronautical Manufacturing Technology, 2025, 68(9): 20–26.
Abstract
Aiming at the problems of low accuracy of traditional ultrasonic thickness measurement methods caused by thin resin-rich layer on the surface of carbon fiber reinforced polymer (CFRP), similar acoustic parameters between the coating and the matrix, and multiple interfaces, a new method based on ultrasonic echo phase derivative spectrum (UEPDS) is proposed to measure the thickness of resin-rich layer on CFRP surface. Based on the multiple reflection rules of ultrasonic waves in multi-layer structures, the UEPDS of coupled medium/coating/substrate three-medium two-interface structure is constructed, and the theoretical relationship between the resonant frequency of UEPDS and coating thickness is identified, so as to overcome the problem that the accuracy of thickness measurement by the traditional sound pressure reflection coefficient amplitude spectrum or phase spectrum is greatly affected by the reference wave and the initial phase of the signal. Combined with calibrated sound velocity, the coating thickness can be accurately determined. The thickness of the resin-rich layer varying from tens to hundreds of microns was measured by an ultrasonic C–scanning system combined with a nominal frequency 25 MHz probe, and the thickness was compared with that observed by laser confocal microscopy. The results show that the 25 MHz probe can effectively measure the thickness of the rich resin layer with a thickness ≥40.7 μm, and the absolute error between the ultrasonic thickness cloud image and the metallographic observation thickness ≤5.1 μm, and the relative error <8.0%. The research shows that the main factor affecting the accuracy of thickness measurement is the presence of fluctuating braided gap residual resin at the resin-rich layer/matrix interface.
碳纤维增强复合材料(Carbon fiber reinforced polymer,CFRP)因具有高比强度、高比刚度、可设计性强和易成型等特性被广泛应用于航空航天领域[ NARESH K, SHANKAR K, VELMURUGAN R, et al. Probability-based studies on the tensile strength of GFRP, CFRP and hybrid composites[J]. Procedia Engineering, 2017, 173: 763-770. ARAI M, CHIBA T, GOTO K, et al. Inverse analysis of interlaminar strength in CFRP laminates using pulse laser spallation method[J]. Composites Science and Technology, 2021, 214: 108938. 1-2]。为满足极端环境下亚毫米波及太赫兹探测系统对高精度高稳定性的制造要求,全碳纤维复合材料反射面板需要在表面制备一层富树脂,并需要精细研磨以提高其型面精度,在富树脂层制备、研磨过程中准确监测其厚度变化可有效避免富树脂层过厚或者磨伤CFRP基底等质量问题[ 杨智勇, 张博明, 解永杰, 等. 碳纤维复合材料空间反射镜制造技术研究进展[J]. 复合材料学报, 2017, 34(1): 1-11.YANG Zhiyong, ZHANG Boming, XIE Yongjie, et al. Research progress on fabrication technology of space mirror using carbon fiber composite[J]. Acta Materiae Compositae Sinica, 2017, 34(1): 1-11. 3]。因此开展CFRP表面富树脂层厚度无损检测与评价方法的研究,对CFRP天线反射面板的高精度高稳定性制造及发挥其优良性能具有重要意义。
国内外学者针对功能涂层厚度的无损检测技术进行了大量研究,已开发了涡流测厚[ 毋天歌, 郭国强, 陈怡, 等. 基于涡流的涂层厚度测量技术研究现状与进展[J]. 上海航天(中英文), 2024, 41(S2): 83-88.WU Tiange, GUO Guoqiang, CHEN Yi, et al. Research status and progress of coating thickness measurement technology based on eddy current[J]. Aerospace Shanghai (Chinese & English), 2024, 41(S2): 83-88. 4]、红外热波测厚[ QU Z, JIANG P, ZHANG W X. Development and application of infrared thermography non-destructive testing techniques[J]. Sensors, 2020, 20(14): 3851. 5]与超声测厚[ 杨定强, 刘继兵, 王念, 等. 基于LMS自适应时延估计的高精度超声测厚系统[J]. 计测技术, 2024, 44(4): 79-87.YANG Dingqiang, LIU Jibing, WANG Nian, et al. High-precision ultrasonic thickness measurement system based on LMS adaptive time delay estimation algorithm[J]. Metrology & Measurement Technology, 2024, 44(4): 79-87. 6]等技术。涡流测厚技术依据电磁感应原理可以实现数μm~数百μm厚涂层的测厚,但存在稳定性低、易受干扰等特点,不适于基体CFRP表面富树脂层的反射面板的测厚。陶胜杰等[ 陶胜杰, 杨正伟, 张炜, 等. 基于热图序列时间特征的涂层厚度测量研究[J]. 仪器仪表学报, 2014, 35(8): 1810-1816.TAO Shengjie, YANG Zhengwei, ZHANG Wei, et al. Research on measurement of coating thickness based on thermal image time characteristic[J]. Chinese Journal of Scientific Instrument, 2014, 35(8): 1810-1816. 7]采用红外热像仪、脉冲热源等技术研制的脉冲红外热波无损检测系统对涂层的厚度进行测量,但红外热波检测系统只能检测mm级厚度,且检测精度较低,不适于数十~100 μm厚的富树脂层。超声检测具有检测灵敏度高、成本低、不受材料属性影响和适合工程现场检测等优点,广泛应用于亚毫米级涂层材料的测厚[ FAN Z K, BAI K R, CHEN C. Ultrasonic testing in the field of engineering joining[J]. The International Journal of Advanced Manufacturing Technology, 2024, 132(9): 4135-4160. 8]。
超声检测用于涂层测厚主要分为两类。一类是时域测厚方法,该方法简单直观,适用于涂层表面与界面反射波可以区分开的情况[ KINRA V K, IYER V R. Ultrasonic measurement of the thickness, phase velocity, density or attenuation of a thin-viscoelastic plate. Part Ⅱ: The inverse problem[J]. Ultrasonics, 1995, 33(2): 111-122. 9];另一类是频域测厚方法,即超声波在薄层中的传播时间小于其脉冲宽度,涂层表面与界面反射波发生混叠,时域特征很难识别,需要基于超声频域特征进行测厚。20世纪60年代,苏联物理学家Brekhovskikh[ BREKHOVSKIKH L. Waves in layered media[M]. New York: McGraw-Hill, 1957. 10]提出超声入射层状结构的声压反射系数幅度谱(Ultrasonic reflection coefficient amplitude spectrum,URCAS)和声压反射系数相位谱(Ultrasonic reflection coefficient phase spectrum,URCPS),为涂层材料超声频域测厚奠定了理论依据。Zhao等[ ZHAO Y, LIN L, LI X M, et al. Simultaneous determination of the coating thickness and its longitudinal velocity by ultrasonic nondestructive method[J]. NDT & E International, 2010, 43(7): 579-585. 11]使用12.5 MHz探头对聚氯乙烯基体上厚度约400 μm铝质覆层测厚,通过识别URCAS谐振频率计算的覆层厚度相对误差在2%以内,该方法需要事先通过独立反射体采集高质量的参考信号以消除检测系统响应对测厚的影响。张伟等[ 张伟, 马志远, 赫丽华, 等. 基于声压反射系数幅度谱匹配分析的薄层厚度和超声纵波声速双参数反演[J]. 材料工程, 2016, 44(10): 74-79.ZHANG Wei, MA Zhiyuan, HE Lihua, et al. Simultaneous inversion of thickness and ultrasonic longitudinal velocity for thin layered structure based on ultrasonic reflection coefficient amplitude spectrum matching analysis[J]. Journal of Materials Engineering, 2016, 44(10): 74-79. 12]使用5 MHz探头采集厚度约200 μm雷达吸波涂层超声回波,结合反演算法对比理论和实测的URCAS进行测厚,相对误差小于4%,该方法同样受参考信号及涂层微观结构不均匀等因素影响,且需要事先获得准确的基底声阻抗。高剑英等[ 高剑英, 张伟, 马志远, 等. 基于声压反射系数相位谱的涂层密度和纵波声速双参数反演[J]. 无损检测, 2018, 40(10): 39-44.GAO Jianying, ZHANG Wei, MA Zhiyuan, et al. Simultaneous inversion of density and longitudinal wave velocity of coatings based on ultrasonic reflection coefficient phase spectrum matching analysis[J]. Nondestructive Testing Technologying, 2018, 40(10): 39-44. 13]使用7.5 MHz延迟块探头对厚度为200~500 μm掺杂铁粉的环氧树脂涂层进行测厚,采用相关系数法对涂层的URCPS三元非线性方程进行厚度、密度、声速3参数反演,厚度反演相对误差<7%,此方法不仅受声波传播时间、系统相位、信号初始相位等多因素影响,还需要获得准确的铝基体声速和密度值。传统的URCAS/URCPS通过有效频带内谐振频率进行测厚时,易受到参考信号波形、检测信号初始相位、时间延迟等影响,使用反演算法计算涂层厚度时,还会受到基底材料声速、密度、声阻抗等均匀性影响。受限于CFRP表面富树脂层厚度仅数十~100 μm,且CFRP基底声学参数随机波动[ 付冬欣, 林莉, 张书宁, 等. 超声检测识别CFRP复合材料PTFE夹杂与富树脂缺陷[J]. 航空制造技术, 2024, 67(3): 83-88.FU Dongxin, LIN Li, ZHANG Shuning, et al. Identification of PTFE inclusion and rich resin defects in CFRP composites by ultrasonic testing[J]. Aeronautical Manufacturing Technology, 2024, 67(3): 83-88. 14]等特点,上述基于URCAS/URCPS的测厚方法较难准确对富树脂层进行测厚。
Fig.1 Schematic diagram of ultrasonic wave propagation in coupled medium/coating/substrate three-medium two-interface structure
当涂层厚度较小时,超声波在界面1与界面2的反射回波发生混叠,难以单独提取界面回波。为了解决涂层界面回波混叠问题,基于本课题组提出的涂层结构频谱分析方法识别频域特征[ MA Z Y, QI T Z, LIN L, et al. Inverse identification of geometric and acoustic parameters of inhomogeneous coatings through URCAS-based least-squares coupled cross-correlation algorithm[J]. Ultrasonics, 2022, 119: 106626. 15]。假设入射声波为I,幅值为A,系统相位和信号初始相位为φ0,频率为f,涂层厚度为h,超声波在涂层中的波数为k,超声波在耦合介质中传播时间为t0,那么涂层的整体声压反射系数R的表达式为
NARESHK, SHANKARK, VELMURUGANR, et al. Probability-based studies on the tensile strength of GFRP, CFRP and hybrid composites[J]. Procedia Engineering, 2017, 173: 763-770.
[2]
ARAIM, CHIBAT, GOTOK, et al. Inverse analysis of interlaminar strength in CFRP laminates using pulse laser spallation method[J]. Composites Science and Technology, 2021, 214: 108938.
[3]
杨智勇, 张博明, 解永杰, 等. 碳纤维复合材料空间反射镜制造技术研究进展[J]. 复合材料学报, 2017, 34(1): 1-11. YANGZhiyong, ZHANGBoming, XIEYongjie, et al. Research progress on fabrication technology of space mirror using carbon fiber composite[J]. Acta Materiae Compositae Sinica, 2017, 34(1): 1-11.
[4]
毋天歌, 郭国强, 陈怡, 等. 基于涡流的涂层厚度测量技术研究现状与进展[J]. 上海航天(中英文), 2024, 41(S2): 83-88. WUTiange, GUOGuoqiang, CHENYi, et al. Research status and progress of coating thickness measurement technology based on eddy current[J]. Aerospace Shanghai (Chinese & English), 2024, 41(S2): 83-88.
[5]
QUZ, JIANGP, ZHANGW X. Development and application of infrared thermography non-destructive testing techniques[J]. Sensors, 2020, 20(14): 3851.
[6]
杨定强, 刘继兵, 王念, 等. 基于LMS自适应时延估计的高精度超声测厚系统[J]. 计测技术, 2024, 44(4): 79-87. YANGDingqiang, LIUJibing, WANGNian, et al. High-precision ultrasonic thickness measurement system based on LMS adaptive time delay estimation algorithm[J]. Metrology & Measurement Technology, 2024, 44(4): 79-87.
[7]
陶胜杰, 杨正伟, 张炜, 等. 基于热图序列时间特征的涂层厚度测量研究[J]. 仪器仪表学报, 2014, 35(8): 1810-1816. TAOShengjie, YANGZhengwei, ZHANGWei, et al. Research on measurement of coating thickness based on thermal image time characteristic[J]. Chinese Journal of Scientific Instrument, 2014, 35(8): 1810-1816.
[8]
FANZ K, BAIK R, CHENC. Ultrasonic testing in the field of engineering joining[J]. The International Journal of Advanced Manufacturing Technology, 2024, 132(9): 4135-4160.
[9]
KINRAV K, IYERV R. Ultrasonic measurement of the thickness, phase velocity, density or attenuation of a thin-viscoelastic plate. Part Ⅱ: The inverse problem[J]. Ultrasonics, 1995, 33(2): 111-122.
[10]
BREKHOVSKIKHL. Waves in layered media[M]. New York: McGraw-Hill, 1957.
[11]
ZHAOY, LINL, LIX M, et al. Simultaneous determination of the coating thickness and its longitudinal velocity by ultrasonic nondestructive method[J]. NDT & E International, 2010, 43(7): 579-585.
[12]
张伟, 马志远, 赫丽华, 等. 基于声压反射系数幅度谱匹配分析的薄层厚度和超声纵波声速双参数反演[J]. 材料工程, 2016, 44(10): 74-79. ZHANGWei, MAZhiyuan, HELihua, et al. Simultaneous inversion of thickness and ultrasonic longitudinal velocity for thin layered structure based on ultrasonic reflection coefficient amplitude spectrum matching analysis[J]. Journal of Materials Engineering, 2016, 44(10): 74-79.
[13]
高剑英, 张伟, 马志远, 等. 基于声压反射系数相位谱的涂层密度和纵波声速双参数反演[J]. 无损检测, 2018, 40(10): 39-44. GAOJianying, ZHANGWei, MAZhiyuan, et al. Simultaneous inversion of density and longitudinal wave velocity of coatings based on ultrasonic reflection coefficient phase spectrum matching analysis[J]. Nondestructive Testing Technologying, 2018, 40(10): 39-44.
[14]
付冬欣, 林莉, 张书宁, 等. 超声检测识别CFRP复合材料PTFE夹杂与富树脂缺陷[J]. 航空制造技术, 2024, 67(3): 83-88. FUDongxin, LINLi, ZHANGShuning, et al. Identification of PTFE inclusion and rich resin defects in CFRP composites by ultrasonic testing[J]. Aeronautical Manufacturing Technology, 2024, 67(3): 83-88.
[15]
MAZ Y, QIT Z, LINL, et al. Inverse identification of geometric and acoustic parameters of inhomogeneous coatings through URCAS-based least-squares coupled cross-correlation algorithm[J]. Ultrasonics, 2022, 119: 106626.