7075–T6铝合金随焊碾压搅拌摩擦焊接头变形控制和性能评价*

基金项目

国家自然科学基金(52205350);中国博士后科学基金(2021T140151)。

中图分类号:

V26TG44

文献标识码:

A

通信作者

黄永宪,教授,博士生导师,主要从事搅拌摩擦焊接及其衍生技术的研究

编辑

责编 :逸飞

引用格式

孟祥晨, 王伟, 谢聿铭, 等. 7075–T6铝合金随焊碾压搅拌摩擦焊接头变形控制和性能评价[J]. 航空制造技术, 2025, 68(9): 14–18.

Distortion Control and Property Evaluation of In-Situ Rolling Friction Stir Welding Joints of 7075–T6 Aluminum Alloy

Citations

MENG Xiangchen, WANG Wei, XIE Yuming, et al. Distortion control and property evaluation of in-situ rolling friction stir welding joints of 7075–T6 aluminum alloy[J]. Aeronautical Manufacturing Technology, 2025, 68(9): 14–18.

航空制造技术    第68卷    第9期    14-18
Aeronautical Manufacturing Techinology    Vol.68    No.9 : 14-18
DOI: 10.16080/j.issn1671-833x.2025.09.014
专稿(FEATURE)

7075–T6铝合金随焊碾压搅拌摩擦焊接头变形控制和性能评价

  • 孟祥晨 1,2
  • 王伟 1
  • 谢聿铭 1,2
  • 董继红 3
  • 夏佩云 4
  • 黄永宪 1,2
1.哈尔滨工业大学材料结构精密焊接与连接全国重点实验室哈尔滨 150001
2.哈尔滨工业大学郑州研究院郑州 450046
3.中国航空制造技术研究院北京 100024
4.上海航天设备制造总厂有限公司上海 200245

通信作者

黄永宪,教授,博士生导师,主要从事搅拌摩擦焊接及其衍生技术的研究

基金项目

国家自然科学基金(52205350);中国博士后科学基金(2021T140151)。

中图分类号:

V26TG44

文献标识码:

A

引用格式

孟祥晨, 王伟, 谢聿铭, 等. 7075–T6铝合金随焊碾压搅拌摩擦焊接头变形控制和性能评价[J]. 航空制造技术, 2025, 68(9): 14–18.

摘要

为了解决铝合金薄壁结构搅拌摩擦焊变形的问题,提出一种在搅拌摩擦焊接过程中随焊碾压的新方法,研究了随焊碾压对接头的焊接变形、微观组织和力学性能的影响。结果表明,随焊碾压处理消除了焊缝飞边并保证接头优质成形,显著细化了接头表层晶粒尺寸,在接头表面形成了厚约282 μm的梯度结构,提高了接头的表层显微硬度;接头的抗拉强度相比传统搅拌摩擦焊接头提高了3.3%;同时,接头变形挠度相比传统接头降低了84.8%。

关键词

随焊碾压搅拌摩擦焊(IRFSW);铝合金;梯度结构;焊接变形;力学性能;

Distortion Control and Property Evaluation of In-Situ Rolling Friction Stir Welding Joints of 7075–T6 Aluminum Alloy

  • MENG Xiangchen 1,2
  • WANG Wei 1
  • XIE Yuming 1,2
  • DONG Jihong 3
  • XIA Peiyun 4
  • HUANG Yongxian 1,2
1.State Key Laboratory of Precision Welding & Joining of Materials and Structures,Harbin Institute of Technology, Harbin 150001, China
2.Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, China
3.AVIC Manufacturing Technology Institute, Beijing 100024, China
4.Shanghai Aerospace Equipment Manufacturing Factory Co., Ltd., Shanghai 200245, China

Citations

MENG Xiangchen, WANG Wei, XIE Yuming, et al. Distortion control and property evaluation of in-situ rolling friction stir welding joints of 7075–T6 aluminum alloy[J]. Aeronautical Manufacturing Technology, 2025, 68(9): 14–18.

Abstract

To address the deformation issue in friction stir welding (FSW) of aluminum alloy thin-walled structures, a novel method of in-situ rolling friction stir welding (IRFSW) is proposed. The effects of IRFSW on the welding distortion, microstructure and mechanical properties are studied. The results show that the IRFSW can eliminate the flash and ensure the high-quality forming of the joint. The surface grain size of IRFSW joint was obviously refined and a gradient structure with a thickness of about 282 μm was formed on the surface of the IRFSW joint. The surface microhardness of the joint was improved by grain refinement. The tensile strength of the IRFSW joint was 3.3% higher than that of conventional FSW joint. In addition, the distortion degree of IRFSW joint was reduced by 84.8% compared with conventional FSW joint.

Keywords

In-situ rolling friction stir welding (IRFSW); Aluminum alloy; Gradient structure; Welding distortion; Mechanical properties;



7075铝合金属于Al–Zn–Mg–Cu系列铝合金,具有低密度、高比强度,高耐蚀和易加工等特点,广泛应用于航空航天、轨道交通等领域[   LI S S, YUE X, LI Q Y, et al. Development and applications of aluminum alloys for aerospace industry[J]. Journal of Materials Research and Technology, 2023, 27: 944-983.
1
]
。搅拌摩擦焊(Friction stir welding,FSW)作为一种固相焊接技术[   MENG X C, HUANG Y X, CAO J, et al. Recent progress on control strategies for inherent issues in friction stir welding[J]. Progress in Materials Science, 2021, 115: 100706.
  MISHRA R S, MA Z Y. Friction stir welding and processing[J]. Materials Science and Engineering: R: Reports, 2005, 50(1–2): 1-78.
  栾国红, 郭德伦. 搅拌摩擦焊技术在中国的发展和推广应用[J]. 航空制造技术, 2014, 57(17): 70-75.LUAN Guohong, GUO Delun. Development and application of friction stir welding technology in China[J]. Aeronautical Manufacturing Technology, 2014, 57(17): 70-75.
2-4
]
,具有焊接温度低、接头性能高、绿色无污染等优势,是7075铝合金的理想焊接方法[   卓彬, 姬书得, 王磊, 等. 焊接技术在大飞机机体研制中的应用及展望[J]. 航空制造技术, 2014, 57(17): 50-53.ZHUO Bin, JI Shude, WANG Lei, et al. Application and prospect of welding technology in lage aircraft fuselage[J]. Aeronautical Manufacturing Technology, 2014, 57(17): 50-53.
  MENG X C, XIE Y M, MA X T, et al. Towards friction stir remanufacturing of high-strength aluminum components[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 91-102.
  HEIDARZADEH A, MIRONOV S, KAIBYSHEV R, et al. Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution[J]. Progress in Materials Science, 2021, 117: 100752.
  PADHY G K, WU C S, GAO S. Friction stir based welding and processing technologies-processes, parameters, microstructures and applications: A review[J]. Journal of Materials Science & Technology, 2018, 34(1): 1-38.
5-8
]
。铝合金薄板刚性弱,易使薄壁焊接结构件变形大,大尺寸薄壁件的变形更为明显,影响结构件的尺寸精度和装配质量。为减少接头残余应力和变形,国内外学者做了大量的工作,主要集中在随焊和焊后处理的研究。Han等[   HAN W T, WAN F R, LI G, et al. Effect of trailing heat sink on residual stresses and welding distortion in friction stir welding Al sheets[J]. Science and Technology of Welding and Joining, 2011, 16(5): 453-458.
9
]
采用随焊激冷的方法使2024–T3和5083–H321铝合金接头峰值残余应力分别降低66%和58%,5083–H321铝合金焊件表面平整,几乎没有焊接变形。李军等[   李军, 杨建国, 刘雪松, 等. 随焊旋转挤压控制薄板焊件应力变形新方法[J]. 机械工程学报, 2010, 46(12): 81-85.LI Jun, YANG Jianguo, LIU Xuesong, et al. New method to control residual stresses and distortion by welding with trailing rotating extrusion[J]. Journal of Mechanical Engineering, 2010, 46(12): 81-85.
10
]
在2 mm厚2A12–T4铝合金上用圆柱状挤压头跟随电弧对焊缝区进行旋转挤压,使焊件变形量大幅降低。Chen等[   CHEN J F, CHU J Y, JIANG W C, et al. Experimental and numerical simulation to study the reduction of welding residual stress by ultrasonic impact treatment[J]. Materials, 2020, 13(4): 837.
11
]
对304不锈钢进行焊后超声振动的研究,得出超声振动可以有效降低接头的残余应力。Huang等[   HUANG C C, CHUANG T H. Effects of post-weld heat treatments on the residual stress and mechanical properties of laser beam welded sae 4130 steel plates[J]. Materials and Manufanturing Processer, 1997, 12(5): 779-797.
12
]
研究表明焊后热处理可以释放接头的残余应力,降低焊接变形,但会对接头强度造成一定损伤。He等[   HE Y Z, WANG D P, WANG Y, et al. Correction of buckling distortion by ultrasonic shot peening treatment for 5A06 aluminum alloy welded structure[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(6): 1531-1537.
13
]
对5A06铝合金进行焊后超声喷丸矫正焊接失稳变形的研究,经过超声喷丸处理后的接头焊接变形量得到显著改善。以上调控接头残余应力和焊接变形的措施,在一定程度上有效,但通常须增加额外的生产成本和工序。英国学者Wen等[   WEN S W, COLEGROVE P A, WILLIAMS S W, et al. Rolling to control residual stress and distortion in friction stir welds[J]. Science and Technology of Welding and Joining, 2010, 15(6): 440-447.
14
]
在搅拌头的尾部跟随一个碾压轮,对焊缝及近焊缝区进行碾压,也达到了降低接头残余应力和焊接变形的目的。但是受限于碾压盘的设计,对于结构复杂工件焊接变形和残余应力的调控难以适用。

本文提出了一种新的随焊碾压搅拌摩擦方法(In-situ rolling friction stir welding,IRFSW),通过设计新的随焊碾压焊具,在焊接时对未完全冷却的接头进行同步碾压,以此对接头残余应力和微观组织进行调控,改善接头焊接变形和力学性能;同时开展了接头成形、微观组织、焊接变形和力学性能的研究,为铝合金薄壁结构搅拌摩擦焊变形控制提供技术支持。

1     试验及方法

试验采用航空高强7075–T6铝合金轧制板材,试板厚度为3 mm,焊接尺寸为250 mm×60 mm,焊接方向与板材轧制方向平行。7075–T6铝合金的化学成分如表1所示,力学性能如表2所示。

表1     7075–T6铝合金化学成分(质量分数)
Table 1     Chemical composition of 7075–T6 aluminum alloy (mass fraction)

%

Mg Cu Zn Fe Cr Mn Si Ni Al
2.43 1.58 5.94 0.16 0.21 0.05 0.07 0.01 余量

表2     7075–T6铝合金的力学性能
Table 2     Mechanical properties of 7075–T6 aluminum alloy
屈服强度/MPa 抗拉强度/MPa 延伸率/% 显微硬度HV
330 561 14.6 167

IRFSW的焊具结构如图1所示,采用分体式设计以增加装配自由度和适应性,主要由搅拌头和碾压体组成。搅拌头包括内凹轴肩和锥形螺纹搅拌针,碾压体包括螺栓和碾压球,碾压球在随焊碾压过程中可自由转动,通过调节螺栓可控制碾压深度。该焊具在焊接时对焊缝同步进行表面碾压处理,碾压体与焊具保持相同的转速,均为800 r/min,焊接速度为300 mm/min,下压量为0.1 mm,焊接倾角为1°,碾压体碾压深度0.05 mm,轴肩直径为16 mm,搅拌针长度为2.85 mm,碾压直径为28 mm,保证能充分覆盖整个搅拌头作用区及残余应力峰值区,以起到降低焊接变形的目的。

图1     IRFSW焊具示意图
Fig.1     Schematic of IRFSW tool

采用Keller试剂(2.5 mL HNO3+1.5 mL HCl+1 mL HF+95 mL H2O)对抛光后的金相试样进行腐蚀,腐蚀时间为15 s;使用超景深显微镜(型号VHX–1000E,基恩士公司)观察接头横截面宏观形貌及各微区组织;采用电子万能材料试验机(型号UTM5000,深圳三思纵横股份有限公司)进行常温拉伸性能测试,拉伸速度为1 mm/min,为保证数据的可靠性,取3个样品测试其平均值;接头横截面的典型位置显微硬度分布特征采用数字式显微硬度仪(型号HXD–1000TM,上海准权仪器设备有限公司)表征,测试位置为距离接头上表层200 μm处,加载载荷为200 g,保载时间为15 s。

2     结果与讨论

2.1     表面形貌

图2为7075–T6铝合金焊接接头的表面形貌。图2(a)为传统FSW的焊缝表面形貌,焊缝宽度为16 mm,与轴肩直径相一致,轴肩下压量的存在对接头起到顶锻效果,但在焊缝边缘局部塑性材料会溢出焊缝,从而导致小尺寸飞边缺陷的产生。相较于传统FSW,IRFSW焊缝表面形貌(图2(b))更加光滑平整,其作用区包含搅拌头焊缝区和碾压球碾压区,碾压区的宽度为28 mm,完全覆盖了搅拌头作用焊缝区,且有效地消除了FSW接头的小飞边缺陷。飞边缺陷消除可以归因于碾压球的旋转作用,将飞边缺陷进行二次碾压和回填,抑制了飞边和焊缝减薄的发生。

图2     两种焊接工艺下接头表面形貌
Fig.2     Surface morphologies of the joints under two welding processes

2.2     微观组织

图3为传统FSW和IRFSW接头的横截面宏观与微观组织,两种不同搅拌摩擦焊工艺下的接头均成形良好。图3(a)为传统FSW接头横截面形貌,主要由焊核区(Weld nugget zone,WNZ)、热机影响区(Thermo-mechanically affected zone,TMAZ)、热影响区(Heat-affected zone,HAZ)和母材(Base material,BM)4个部分组成。由图3(a)和(b)可见,焊核区呈典型的碗状形貌,相比于后退侧(Retreating side,RS),前进侧(Advancing side,AS)的热机影响区与焊核区的界限较明显,值得注意的是IRFSW接头存在额外的表层碾压区。图3(c)和(d)为两种工艺接头的热影响区微观组织形貌。由图3(c)可见,传统FSW接头热影响区的晶粒形貌与母材保持一致,该区域只经历了焊接的热循环作用,在热输入的影响下,晶粒尺寸相比母材略微增大;而IRFSW接头的热影响区晶粒形貌相比FSW接头发生了显著变化。在碾压球的顶锻碾压力和剪切力作用下,接头表层发生了大的塑性变形,该大应变从接头的表层向中部逐渐递减,接头从表层到中部晶粒尺寸逐渐递增,从而在接头表层形成具有一定厚度、流变特性的梯度结构,该梯度结构的深度约为282 μm。根据晶粒尺寸形貌可以将梯度结构细分为超细晶层和变形晶层。超细晶层的晶粒距离接头表层最近,被碾压球碾压发生塑性变形的程度最剧烈,该层的晶粒发生动态再结晶,由原始的长条状晶粒转变为细小的等轴晶。变形晶层位于超细晶层和原始晶层之间,变形晶层的晶粒沿着碾压球碾压运动方向发生明显偏转,该区域在焊接过程中并不像超细晶层经历直接碾压作用,塑性变形程度相对较低,绝大部分长条状晶粒形成向上拉长的晶粒形貌。

图3     两种焊接工艺下接头的横截面宏观与微观组织
Fig.3     Macrostructures and microstructures of joints under the two welding processes

2.3     焊接变形

图4为两种工艺对接头纵向挠度的影响。由图4(a)和(b)可见,传统FSW接头发生明显的焊接变形,而IRFSW接头几乎无焊接变形。由图4(c)可见,IRFSW方法可以将接头的最大纵向挠度由常规FSW焊接的2.63 mm降至0.4 mm,最大纵向挠度降低了约84.8%。IRFSW方法通过设计新的随焊碾压焊具,将碾压球安装在焊具上,尽可能缩短焊具搅拌针与碾压球的距离,保证在焊接时碾压球同步碾压,而此时接头仍处于未完全冷却状态。据文献[   ZHANG L, ZHONG H L, LI S C, et al. Microstructure, mechanical properties and fatigue crack growth behavior of friction stir welded joint of 6061–T6 aluminum alloy[J]. International Journal of Fatigue, 2020, 135: 105556.
15
]可知搅拌摩擦焊的接头应力状态为拉应力。在焊接过程中碾压球直接作用于焊缝和近焊缝区,对未完全冷却的接头进行碾压处理,接头表层发生强塑性变形,产生充分的纵向拉伸塑性应变,补偿在热膨胀过程中产生的压缩塑性应变,从而降低焊缝及其邻近区域的纵向残余拉应力水平,达到减少接头焊接变形的目的[   李军, 杨建国, 刘雪松, 等. 随焊旋转挤压控制薄板焊件应力变形新方法[J]. 机械工程学报, 2010, 46(12): 81-85.LI Jun, YANG Jianguo, LIU Xuesong, et al. New method to control residual stresses and distortion by welding with trailing rotating extrusion[J]. Journal of Mechanical Engineering, 2010, 46(12): 81-85.
10
]

图4     不同工艺的接头纵向变形结果
Fig.4     Longitudinal distortion results of the joint under different welding processes

2.4     力学性能

传统FSW和IRFSW接头横截面的表层显微硬度分布如图5所示。接头表层显微硬度呈现W型分布,传统FSW接头显微硬度最低值发生在前进侧的HAZ,该区域平均显微硬度值为133 HV,WNZ的平均显微硬度值为142 HV。究其原因,接头HAZ未经历搅拌过程只经历焊接热循环的热作用,晶粒粗大,因此硬度值相对较低;WNZ材料经历搅拌作用,使材料发生剧烈塑性变形,同时在焊接热循环的作用下,晶粒发生动态再结晶生成细小的等轴晶,提高了该区域的显微硬度值。IRFSW接头HAZ和WNZ表层平均显微硬度分别为143 HV和151 HV,比传统FSW接头对应的区域分别提高了10 HV和9 HV。采用IRFSW,接头HAZ在经历碾压球碾压后,其表层发生了大塑性变形,晶粒从原先的长条状形貌转变为细小的等轴晶;接头WNZ材料在原先搅拌和热循环作用下形成细小的等轴晶,而被碾压球碾压后进一步发生大塑性变形,形成更加细小的等轴晶;同时,接头表层受大塑性变形作用又产生大量位错,细晶强化和位错强化的共同作用提高了IRFSW接头表层显微硬度。

图5     接头表层的显微硬度分布
Fig.5     Microhardness distribution of the joint surface layer

图6为两种工艺的接头拉伸性能。传统FSW接头最大抗拉强度和延伸率为(450±5)MPa和(10.8%±0.4%)。IRFSW接头的最大抗拉强度和延伸率分别为(465±6)MPa 和(11.2%±0.3%),其最大抗拉强度达到了母材的82.8%,相比传统FSW接头,最大抗拉强度提高了15 MPa(提升3.3%),延伸率提高了0.4%,随焊碾压方法实现了强度和塑性倒置关系的解耦。分析IRFSW工艺对接头强度–塑性的解耦的原因:梯度结构材料在拉伸过程中首先内部粗晶产生塑性变形,进一步加载,塑性变形向晶粒尺寸小的方向(原始晶层–变形晶层–超细晶层)渐进有序积累,使得相邻不同尺寸晶粒的内应力得到释放,抑制应变局域化。IRFSW工艺产生的梯度结构表层与塑性较好的内部粗晶的良好变形协调过程,使表面超细晶粒结构的应变局域化和裂纹萌生被抑制,从而使得IRFSW接头具有良好的强塑性匹配[   LEE H H, YOON J I, PARK H K, et al. Unique microstructure and simultaneous enhancements of strength and ductility in gradient-microstructured Cu sheet produced by single-roll angular-rolling[J]. Acta Materialia, 2019, 166: 638-649.
  WU S W, WANG G, WANG Q, et al. Enhancement of strength-ductility trade-off in a high-entropy alloy through a heterogeneous structure[J]. Acta Materialia, 2019, 165: 444-458.
16-17
]

图6     接头的拉伸性能
Fig.6     Tensile performance of the joint

3     结论

(1)提出了IRFSW新方法,设计了包含分体式的搅拌头和碾压体的焊具结构,实现了高强铝合金薄壁件的优质无缺陷焊接,提高了接头表面成形性,降低了接头的变形挠度。

(2)IRFSW降低了焊缝及周围区域的残余拉应力水平,从而起到降低接头焊接变形的作用,相比传统FSW接头,随焊碾压接头的纵向挠度降低了约84.8%。

(3)IRFSW工艺细化了接头表层的晶粒尺寸,形成了厚度282 μm的细晶组织梯度结构层,提高了接头表层的承载能力,其强度达到母材的82.8%。

作者介绍



孟祥晨 自然科学研究员,博士,主要从事搅拌摩擦焊的研究。

参考文献

[1]

LI S S, YUE X, LI Q Y, et al. Development and applications of aluminum alloys for aerospace industry[J]. Journal of Materials Research and Technology, 2023, 27: 944-983.

[2]

MENG X C, HUANG Y X, CAO J, et al. Recent progress on control strategies for inherent issues in friction stir welding[J]. Progress in Materials Science, 2021, 115: 100706.

[3]

MISHRA R S, MA Z Y. Friction stir welding and processing[J]. Materials Science and Engineering: R: Reports, 2005, 50(1–2): 1-78.

[4]

栾国红, 郭德伦. 搅拌摩擦焊技术在中国的发展和推广应用[J]. 航空制造技术, 2014, 57(17): 70-75.
LUAN Guohong, GUO Delun. Development and application of friction stir welding technology in China[J]. Aeronautical Manufacturing Technology, 2014, 57(17): 70-75.

[5]

卓彬, 姬书得, 王磊, . 焊接技术在大飞机机体研制中的应用及展望[J]. 航空制造技术, 2014, 57(17): 50-53.
ZHUO Bin, JI Shude, WANG Lei, et al. Application and prospect of welding technology in lage aircraft fuselage[J]. Aeronautical Manufacturing Technology, 2014, 57(17): 50-53.

[6]

MENG X C, XIE Y M, MA X T, et al. Towards friction stir remanufacturing of high-strength aluminum components[J]. Acta Metallurgica Sinica (English Letters), 2023, 36(1): 91-102.

[7]

HEIDARZADEH A, MIRONOV S, KAIBYSHEV R, et al. Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution[J]. Progress in Materials Science, 2021, 117: 100752.

[8]

PADHY G K, WU C S, GAO S. Friction stir based welding and processing technologies-processes, parameters, microstructures and applications: A review[J]. Journal of Materials Science & Technology, 2018, 34(1): 1-38.

[9]

HAN W T, WAN F R, LI G, et al. Effect of trailing heat sink on residual stresses and welding distortion in friction stir welding Al sheets[J]. Science and Technology of Welding and Joining, 2011, 16(5): 453-458.

[10]

李军, 杨建国, 刘雪松, . 随焊旋转挤压控制薄板焊件应力变形新方法[J]. 机械工程学报, 2010, 46(12): 81-85.
LI Jun, YANG Jianguo, LIU Xuesong, et al. New method to control residual stresses and distortion by welding with trailing rotating extrusion[J]. Journal of Mechanical Engineering, 2010, 46(12): 81-85.

[11]

CHEN J F, CHU J Y, JIANG W C, et al. Experimental and numerical simulation to study the reduction of welding residual stress by ultrasonic impact treatment[J]. Materials, 2020, 13(4): 837.

[12]

HUANG C C, CHUANG T H. Effects of post-weld heat treatments on the residual stress and mechanical properties of laser beam welded sae 4130 steel plates[J]. Materials and Manufanturing Processer, 1997, 12(5): 779-797.

[13]

HE Y Z, WANG D P, WANG Y, et al. Correction of buckling distortion by ultrasonic shot peening treatment for 5A06 aluminum alloy welded structure[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(6): 1531-1537.

[14]

WEN S W, COLEGROVE P A, WILLIAMS S W, et al. Rolling to control residual stress and distortion in friction stir welds[J]. Science and Technology of Welding and Joining, 2010, 15(6): 440-447.

[15]

ZHANG L, ZHONG H L, LI S C, et al. Microstructure, mechanical properties and fatigue crack growth behavior of friction stir welded joint of 6061–T6 aluminum alloy[J]. International Journal of Fatigue, 2020, 135: 105556.

[16]

LEE H H, YOON J I, PARK H K, et al. Unique microstructure and simultaneous enhancements of strength and ductility in gradient-microstructured Cu sheet produced by single-roll angular-rolling[J]. Acta Materialia, 2019, 166: 638-649.

[17]

WU S W, WANG G, WANG Q, et al. Enhancement of strength-ductility trade-off in a high-entropy alloy through a heterogeneous structure[J]. Acta Materialia, 2019, 165: 444-458.

目录