1.Aerospace Research Institute of Materials & Technology, Beijing100079, China
2.Ministry of Education Key Laboratory for Advanced Textile Composite Materials, Tiangong University, Tianjin300387, China
3.School of Textile Science and Engineering, Tiangong University, Tianjin300387, China
Citations
GUO Ruiqing, ZHANG Yifan, YIN Liang, et al. Mechanical property test and stiffness prediction of multilayer–multiaxial interlock woven composites[J]. Aeronautical Manufacturing Technology, 2025, 68(6): 96–103.
Abstract
Three-dimensional woven composites are a new-generation strategic materials that have been widely used in aerospace, national defense and other important fields due to their advantages of good overall structure performance, excellent interlayer performance and low preparation cost. The composites can be used as structural materials to bear load as well as functional materials to be applied in the abovementioned areas. Therefore, fabrication and corresponding mechanical property prediction of the composite are crucial for their future application. In this study, a new three-dimensional woven structure (multilayer–multiaxial interlock structure) was studied, tensile and in-plane shear tests of its composite material in two directions of 0° and 90° were carried out. By establishing a geometric single-cell model and selecting reasonable boundary conditions, stiffness prediction was carried out and compared with the experimental results. The results show that difference between the simulated value and experimental value of modulus of elasticity in the 0° direction is 1.73 GPa, difference in the 90° direction is 1.76 GPa, and the maximum error in both directions does not exceed 5%. The difference between the simulated value and experimental value of in-plane shear modulus is 1.47 GPa and difference in Poisson’s ratio is 0.01, which is basically the same. The results indicate that modulus of elasticity predicted by the finite element simulation agrees well with the actual experimental values. This study provides references in terms of preparation of three-dimensional woven composites, data and experiment support for related studies.
作为提升装备性能不可替代的战略性新兴材料[ 王雅娜, 曾安民, 陈新文, 等. 2.5D机织石英纤维增强树脂复合材料不同方向力学性能测试与模量预测[J]. 复合材料学报, 2019, 36(6): 1364–1373.WANG Yana, ZENG Anmin, CHEN Xinwen, et al. Mechanical properties testing for 2.5D quartz fiber reinforced resin composites in different directions and module prediction[J]. Acta Materiae Compositae Sinica, 2019, 36(6): 1364–1373. CALLUS P J, MOURITZ A P, BANNISTER M K, et al. Tensile properties and failure mechanisms of 3D woven GRP composites[J]. Composites Part A: Applied Science and Manufacturing, 1999, 30(11): 1277–1287. YAHYA M F, GHANI S A, SALLEH J. Modeling plain woven composite model with isotropic behavior[C]//Proceedings of the International Colloquium in Textile Engineering, Fashion, Apparel and Design 2014 (ICTEFAD 2014). Singapore: Springer Singapore, 2014: 19–24. 1-3],三维机织复合材料既可以作为结构材料承受载荷,又可以作为功能材料发挥重要作用。但是常规的三维机织复合材料面内仅有沿0°方向和90°方向的纱线[ 孙勇毅, 许英杰, 唐闻远, 等. 共固化成型复合材料加筋壁板的固化变形仿真技术研究[J]. 航空制造技术, 2022, 65(4): 107–114, 120.SUN Yongyi, XU Yingjie, TANG Wenyuan, et al. Simulation of curing deformation for co-cured stiffened composite panel[J]. Aeronautical Manufacturing Technology, 2022, 65(4): 107–114, 120. 官威, 李文晓, 戴瑛, 等. 纺织复合材料预制体变形研究综述[J]. 航空制造技术, 2021, 64(1/2): 22–37.GUAN Wei, LI Wenxiao, DAI Ying, et al. A review of study on deformation of textile composite preforms[J]. Aeronautical Manufacturing Technology, 2021, 64(1/2): 22–37. 4-5],导致其面内剪切性能相对薄弱[ 卢子兴, 周原, 冯志海, 等. 2.5D机织复合材料压缩性能实验与数值模拟[J]. 复合材料学报, 2015, 32(1): 150–159.LU Zixing, ZHOU Yuan, FENG Zhihai, et al. Experiment and numerical simulation on compressive properties of 2.5D woven fabric composites[J]. Acta Materiae Compositae Sinica, 2015, 32(1): 150–159. 李典森, 卢子兴, 李嘉禄, 等. 三维编织T300/环氧复合材料的弯曲性能及破坏机理[J]. 航空材料学报, 2009, 29(5): 82–87.LI Diansen, LU Zixing, LI Jialu, et al. Bending properties and failure mechanism of three dimensional T300/epoxy braided composites[J]. Journal of Aeronautical Materials, 2009, 29(5): 82–87. MORSCHER G N. Stress-dependent matrix cracking in 2D woven SiC–fiber reinforced melt-infiltrated SiC matrix composites[J]. Composites Science and Technology, 2004, 64(9): 1311–1319. MORSCHER G N, YUN H M, DICARLO J A. In-plane cracking behavior and ultimate strength for 2D woven and braided melt-infiltrated SiC/SiC composites tensile loaded in off-axis fiber directions[J]. Journal of the American Ceramic Society, 2007, 90(10): 3185–3193. 6-9],因而不能应用于对剪切性能要求较高的复合材料结构件(如蒙皮腹板、扭转舵轴等)中。
近年来,三维机织复合材料被国内外学者广泛研究,主要围绕在织物结构的设计、织造工艺及性能评价等方面,通过大量的研究,促进了三维机织复合材料的发展[ DING Y Q, YAN Y, MCILHAGGER R, et al. Comparison of the fatigue behaviour of 2–D and 3–D woven fabric reinforced composites[J]. Journal of Materials Processing Technology, 1995, 55(3–4): 171–177. LOMOV S V, BOGDANOVICH A E, IVANOV D S, et al. A comparative study of tensile properties of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass composites. Part 1: Materials, methods and principal results[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(8): 1134–1143. IVANOV D S, LOMOV S V, BOGDANOVICH A E, et al. A comparative study of tensile properties of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass composites. Part 2: Comprehensive experimental results[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(8): 1144–1157. TAN P, TONG L Y, STEVEN G P, et al. Behavior of 3D orthogonal woven CFRP composites. Part I. Experimental investigation[J]. Composites Part A: Applied Science and Manufacturing, 2000, 31(3): 259–271. 10-13]。为进一步提高三维机织复合材料结构的面内剪切性能,使其综合性能更加稳定,可通过在三维机织复合材料结构中引入斜向纱,形成面内准各向同性结构,大幅改善其抗剪、抗扭等性能[ 杨彩云, 李嘉禄, 陈利, 等. 树脂基三维机织复合材料结构与力学性能的关系研究[J]. 航空材料学报, 2006, 26(5): 51–55.YANG Caiyun, LI Jialu, CHEN Li, et al. Study of relationship between structures and mechanical properties of three-dimensional angle-interlock woven carbon/resin composites[J]. Journal of Aeronautical Materials, 2006, 26(5): 51–55. JIN L M, NIU Z L, JIN B C, et al. Comparisons of static bending and fatigue damage between 3D angle-interlock and 3D orthogonal woven composites[J]. Journal of Reinforced Plastics and Composites, 2012, 31(14): 935–945. DAI S, CUNNINGHAM P R, MARSHALL S, et al. Influence of fibre architecture on the tensile, compressive and flexural behaviour of 3D woven composites[J]. Composites Part A: Applied Science and Manufacturing, 2015, 69: 195–207. BILISIK K. Multiaxis 3D woven preform and properties of multiaxis 3D woven and 3D orthogonal woven carbon/epoxy composites[J]. Journal of Reinforced Plastics and Composites, 2010, 29(8): 1173–1186. 14-17]。随着多层多向三维机织物的出现,研究人员在织造工艺方面进行了一定研究,不断改进、完善斜向纱的引入,但是在力学性能评价等方面的研究成果较少,仍处于起步阶段[ 王心淼, 陈利, 张典堂, 等. 多层多向机织复合材料细观结构建模及其性能[J]. 纺织学报, 2019, 40(2): 45–52.WANG Xinmiao, CHEN Li, ZHANG Diantang, et al. Micro-structure and properties of multilayer multiaxial woven composites[J]. Journal of Textile Research, 2019, 40(2): 45–52. 葛敬冉, 刘增飞, 乔健伟, 等. 航空复杂结构纤维预制体成型工艺与复合材料性能仿真研究进展[J]. 航空制造技术, 2022, 65(16): 14–30.GE Jingran, LIU Zengfei, QIAO Jianwei, et al. Research progress on molding processes of fiber preforms and performances simulation of composites for aeronautical complex structures[J]. Aeronautical Manufacturing Technology, 2022, 65(16): 14–30. 张婷, 黄爱华, 李向前. 褶皱缺陷的检测及对力学性能的影响研究[J]. 航空制造技术, 2021, 64(8): 78–83.ZHANG Ting, HUANG Aihua, LI Xiangqian. Research on wrinkle defects inspection and influence of wrinkle defects on mechanical properties[J]. Aeronautical Manufacturing Technology, 2021, 64(8): 78–83. 18-20]。
Fig.1 Schematic diagram of multilayer–multiaxial interlock woven structure
1.2 原材料及试样制备
设计制备了[90/45/0/0/–45/90/–45/0/0/45/90]结构的多层多向层联机织复合材料。预制体采用天津工业大学复合材料研究院自主研发的三维多向织机织造而成,材料为TG800X–12K和TG800HXC–6K碳纤维(山西钢科碳材料有限公司),各纱线系统用纱情况见表1。采用树脂传递模塑复合成型工艺(Resin transfer molding,RTM)制备其复合材料,结构参数见表2,其基体材料为TDE–86环氧树脂(天津晶东化学复合材料有限公司),碳纤维及环氧树脂的力学性能参数见表3。
表1 各纱线系统用纱情况
Table 1 Materials and properties of each yarn system
纱线系统
纱线规格
体密度/(g/cm3)
线密度/tex
接结经纱
TG800HXC–6K
1.8
250
90°纱线
TG800X–12K×2
1.8
1000
0°纱线
TG800X–12K×2
1.8
1000
±45°斜向纱线
TG800X–12K×2
1.8
1000
表2 多层多向层联机织复合材料结构参数
Table 2 Structural parameters of multilayer–multiaxial interlock woven composites
结构
纱线密度/(根/cm)
厚度/mm
纤维体积分数/%
0°纱线
90°纱线
±45°斜向纱线
[90/45/0/0/–45/90/–45/0/0/45/90]
4
4
4
5.65
54.71
表3 各组分材料力学性能参数
Table 3 Mechanical property parameters of each component material
材料组分
力学性能指标
数值
碳纤维
纵向拉伸弹性模量E11/GPa
290
横向拉伸弹性模量E22/GPa
13
纵向剪切模量E13/GPa
23
横向剪切模量E12/GPa
23
纵向泊松比13
0.3
纵向拉伸强度X11/MPa
5678
环氧树脂
纵向拉伸弹性模量Em/GPa
3.5
纵向泊松比m
0.35
纵向拉伸强度/MPa
80
分别按照ASTM D–3039标准[ AMERICAN SOCIETY FOR TESTING MATERIALS. Standard test method for tensile properties of polymer matrix composite materials: ASTM D3039/3039M–07[S]. New York: American Society for Testing Materials International, 2007. 21]和ASTM D–5379标准[ AMERICAN SOCIETY FOR TESTING MATERIALS. Standard test method for shear properties of composite materials by the V-notched beam method: ASTM D–5379[S]. New York: American Society for Testing Materials International, 2005. 22],沿0°、 90°方向将复合材料机加工成250 mm×25 mm的拉伸试样和76 mm×20 mm的面内剪切试样。对试样进行编号,拉伸试验0°方向试样记为J1~J5,90°方向试样记为W1~W5;面内剪切试验0°方向试样记为J′1~J′5,90°方向试样记为W′1~W′5;测量并记录试样尺寸。在拉伸试样后表面的中心位置粘贴1枚纵向应变片,在面内剪切试样后表面沿载荷轴线的中心处、与加载轴线成45°的方向上各粘贴1枚应变片,用于采集应变信息,试样尺寸和应变片粘贴位置(黄色方框)如图2所示。
图2 试样尺寸和应变片粘贴位置示意图
Fig.2 Schematic diagram of specimen size and pasting position of strain gauge
按照ASTM D–3039标准[ AMERICAN SOCIETY FOR TESTING MATERIALS. Standard test method for tensile properties of polymer matrix composite materials: ASTM D3039/3039M–07[S]. New York: American Society for Testing Materials International, 2007. 21]和ASTMD–5379标准[ AMERICAN SOCIETY FOR TESTING MATERIALS. Standard test method for shear properties of composite materials by the V-notched beam method: ASTM D–5379[S]. New York: American Society for Testing Materials International, 2005. 22]分别进行拉伸试验和面内剪切试验,加载速度均为2 mm/min,试验过程中按照要求采集应变,0°、90°两个方向各测量5个试样。图3为拉伸性能和面内剪切性能的试验设备及过程。
图3 拉伸性能和面内剪切性能的试验设备及过程
Fig.3 Test equipment and procedure for tensile and in-plane shear properties
在模拟之前构建模型,多层多向层联机织复合材料的单胞模型可以视为均匀的各向异性弹性体,其等效本构方程为[ 张超, 许希武, 严雪. 纺织复合材料细观力学分析的一般性周期性边界条件及其有限元实现[J]. 航空学报, 2013, 34(7): 1636–1645.ZHANG Chao, XU Xiwu, YAN Xue. General periodic boundary conditions and their application to micromechanical finite element analysis of textile composites[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7): 1636–1645. 23]
(1)
式中,为单胞模型的平均应力;Eij为复合材料等效刚度矩阵;为单胞模型的平均应变。
其中,和可由式(2)求得。
(2)
式中,V为单胞体积。
在施加周期性位移边界条件时,对于立方体单胞来说,是已知的,为[ XIA Z H, ZHOU C W, YONG Q L, et al. On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites[J]. International Journal of Solids and Structures, 2006, 43(2): 266–278. 24]
王雅娜, 曾安民, 陈新文, 等. 2.5D机织石英纤维增强树脂复合材料不同方向力学性能测试与模量预测[J]. 复合材料学报, 2019, 36(6): 1364–1373. WANGYana, ZENGAnmin, CHENXinwen, et al. Mechanical properties testing for 2.5D quartz fiber reinforced resin composites in different directions and module prediction[J]. Acta Materiae Compositae Sinica, 2019, 36(6): 1364–1373.
[2]
CALLUSP J, MOURITZA P, BANNISTERM K, et al. Tensile properties and failure mechanisms of 3D woven GRP composites[J]. Composites Part A: Applied Science and Manufacturing, 1999, 30(11): 1277–1287.
[3]
YAHYAM F, GHANIS A, SALLEHJ. Modeling plain woven composite model with isotropic behavior[C]//Proceedings of the International Colloquium in Textile Engineering, Fashion, Apparel and Design 2014 (ICTEFAD 2014). Singapore: Springer Singapore, 2014: 19–24.
官威, 李文晓, 戴瑛, 等. 纺织复合材料预制体变形研究综述[J]. 航空制造技术, 2021, 64(1/2): 22–37. GUANWei, LIWenxiao, DAIYing, et al. A review of study on deformation of textile composite preforms[J]. Aeronautical Manufacturing Technology, 2021, 64(1/2): 22–37.
[6]
卢子兴, 周原, 冯志海, 等. 2.5D机织复合材料压缩性能实验与数值模拟[J]. 复合材料学报, 2015, 32(1): 150–159. LUZixing, ZHOUYuan, FENGZhihai, et al. Experiment and numerical simulation on compressive properties of 2.5D woven fabric composites[J]. Acta Materiae Compositae Sinica, 2015, 32(1): 150–159.
[7]
李典森, 卢子兴, 李嘉禄, 等. 三维编织T300/环氧复合材料的弯曲性能及破坏机理[J]. 航空材料学报, 2009, 29(5): 82–87. LIDiansen, LUZixing, LIJialu, et al. Bending properties and failure mechanism of three dimensional T300/epoxy braided composites[J]. Journal of Aeronautical Materials, 2009, 29(5): 82–87.
[8]
MORSCHERG N. Stress-dependent matrix cracking in 2D woven SiC–fiber reinforced melt-infiltrated SiC matrix composites[J]. Composites Science and Technology, 2004, 64(9): 1311–1319.
[9]
MORSCHERG N, YUNH M, DICARLOJ A. In-plane cracking behavior and ultimate strength for 2D woven and braided melt-infiltrated SiC/SiC composites tensile loaded in off-axis fiber directions[J]. Journal of the American Ceramic Society, 2007, 90(10): 3185–3193.
[10]
DINGY Q, YANY, MCILHAGGERR, et al. Comparison of the fatigue behaviour of 2–D and 3–D woven fabric reinforced composites[J]. Journal of Materials Processing Technology, 1995, 55(3–4): 171–177.
[11]
LOMOVS V, BOGDANOVICHA E, IVANOVD S, et al. A comparative study of tensile properties of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass composites. Part 1: Materials, methods and principal results[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(8): 1134–1143.
[12]
IVANOVD S, LOMOVS V, BOGDANOVICHA E, et al. A comparative study of tensile properties of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass composites. Part 2: Comprehensive experimental results[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(8): 1144–1157.
[13]
TANP, TONGL Y, STEVENG P, et al. Behavior of 3D orthogonal woven CFRP composites. Part I. Experimental investigation[J]. Composites Part A: Applied Science and Manufacturing, 2000, 31(3): 259–271.
[14]
杨彩云, 李嘉禄, 陈利, 等. 树脂基三维机织复合材料结构与力学性能的关系研究[J]. 航空材料学报, 2006, 26(5): 51–55. YANGCaiyun, LIJialu, CHENLi, et al. Study of relationship between structures and mechanical properties of three-dimensional angle-interlock woven carbon/resin composites[J]. Journal of Aeronautical Materials, 2006, 26(5): 51–55.
[15]
JINL M, NIUZ L, JINB C, et al. Comparisons of static bending and fatigue damage between 3D angle-interlock and 3D orthogonal woven composites[J]. Journal of Reinforced Plastics and Composites, 2012, 31(14): 935–945.
[16]
DAIS, CUNNINGHAMP R, MARSHALLS, et al. Influence of fibre architecture on the tensile, compressive and flexural behaviour of 3D woven composites[J]. Composites Part A: Applied Science and Manufacturing, 2015, 69: 195–207.
[17]
BILISIKK. Multiaxis 3D woven preform and properties of multiaxis 3D woven and 3D orthogonal woven carbon/epoxy composites[J]. Journal of Reinforced Plastics and Composites, 2010, 29(8): 1173–1186.
[18]
王心淼, 陈利, 张典堂, 等. 多层多向机织复合材料细观结构建模及其性能[J]. 纺织学报, 2019, 40(2): 45–52. WANGXinmiao, CHENLi, ZHANGDiantang, et al. Micro-structure and properties of multilayer multiaxial woven composites[J]. Journal of Textile Research, 2019, 40(2): 45–52.
[19]
葛敬冉, 刘增飞, 乔健伟, 等. 航空复杂结构纤维预制体成型工艺与复合材料性能仿真研究进展[J]. 航空制造技术, 2022, 65(16): 14–30. GEJingran, LIUZengfei, QIAOJianwei, et al. Research progress on molding processes of fiber preforms and performances simulation of composites for aeronautical complex structures[J]. Aeronautical Manufacturing Technology, 2022, 65(16): 14–30.
[20]
张婷, 黄爱华, 李向前. 褶皱缺陷的检测及对力学性能的影响研究[J]. 航空制造技术, 2021, 64(8): 78–83. ZHANGTing, HUANGAihua, LIXiangqian. Research on wrinkle defects inspection and influence of wrinkle defects on mechanical properties[J]. Aeronautical Manufacturing Technology, 2021, 64(8): 78–83.
[21]
AMERICAN SOCIETY FOR TESTING MATERIALS. Standard test method for tensile properties of polymer matrix composite materials: ASTM D3039/3039M–07[S]. New York: American Society for Testing Materials International, 2007.
[22]
AMERICAN SOCIETY FOR TESTING MATERIALS. Standard test method for shear properties of composite materials by the V-notched beam method: ASTM D–5379[S]. New York: American Society for Testing Materials International, 2005.
[23]
张超, 许希武, 严雪. 纺织复合材料细观力学分析的一般性周期性边界条件及其有限元实现[J]. 航空学报, 2013, 34(7): 1636–1645. ZHANGChao, XUXiwu, YANXue. General periodic boundary conditions and their application to micromechanical finite element analysis of textile composites[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7): 1636–1645.
[24]
XIAZ H, ZHOUC W, YONGQ L, et al. On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites[J]. International Journal of Solids and Structures, 2006, 43(2): 266–278.