纳米碳/铝复合材料的界面调控与混合强化研究进展*

基金项目

国家自然科学基金(51972002,52372019);安徽省高校自然科学研究项目(KJ2021ZD0040)。

编辑

责编 :逸飞

引文格式

邓海亮, 史雨程, 董正学, 等. 纳米碳/铝复合材料的界面调控与混合强化研究进展[J]. 航空制造技术, 2025, 68(6): 14–27.

Research Progress on Interface Regulation and Hybrid Strengthening of Nanocarbon/Aluminum Composites

Citations

DENG Hailiang, SHI Yucheng, DONG Zhengxue, et al. Research progress on interface regulation and hybrid strengthening of nanocarbon/aluminum composites[J]. Aeronautical Manufacturing Technology, 2025, 68(6): 14–27.

航空制造技术    第68卷    第6期    14-27
Aeronautical Manufacturing Techinology    Vol.68    No.6 : 14-27
DOI: 10.16080/j.issn1671-833x.2025.06.014
专稿(FEATURE)

纳米碳/铝复合材料的界面调控与混合强化研究进展*

  • 邓海亮 1,2
  • 史雨程 1
  • 董正学 1
  • 范晨露 1
  • 刘嘉彬 1
  • 杨康 1
  • 邓先功 1
1.安徽工业大学材料科学与工程学院先进陶瓷研究中心马鞍山 243032
2.安徽工业大学先进金属材料绿色制备与表面技术教育部重点实验室马鞍山 243002

基金项目

国家自然科学基金(51972002,52372019);安徽省高校自然科学研究项目(KJ2021ZD0040)。

引文格式

邓海亮, 史雨程, 董正学, 等. 纳米碳/铝复合材料的界面调控与混合强化研究进展[J]. 航空制造技术, 2025, 68(6): 14–27.

摘要

碳纳米管(Carbon nanotube,CNT)和石墨烯纳米片(Graphene nanoplatelets,GNP)等纳米碳材料具有超高的强度和模量、优异的导热与导电性能,是高性能铝基复合材料的理想增强体。然而,纳米碳与铝的润湿性差,高温下界面反应易生成脆性的Al4C3,损伤纳米碳,不仅限制增强效果,还会恶化复合材料强韧性,因此调控界面反应与界面结合、协同提升强韧性成为纳米碳/铝复合材料研究的关键。本文在界面结合机制分析的基础上,从纳米碳表面改性和复合工艺优化等方面综述了界面的调控研究及效果,随后总结了CNT和GNP的多维网络强化及与陶瓷颗粒混合强化的研究,期望通过CNT和GNP及与陶瓷颗粒的增强网络设计,进一步提升纳米碳/铝复合材料的强韧性。

关键词

铝基复合材料;碳纳米管;石墨烯;界面;强化;

Research Progress on Interface Regulation and Hybrid Strengthening of Nanocarbon/Aluminum Composites

  • DENG Hailiang 1,2
  • SHI Yucheng 1
  • DONG Zhengxue 1
  • FAN Chenlu 1
  • LIU Jiabin 1
  • YANG Kang 1
  • DENG Xiangong 1
1.Advanced Ceramics Research Center, School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan 243032, China
2.Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, Anhui University of Technology, Ma’anshan 243002, China

Citations

DENG Hailiang, SHI Yucheng, DONG Zhengxue, et al. Research progress on interface regulation and hybrid strengthening of nanocarbon/aluminum composites[J]. Aeronautical Manufacturing Technology, 2025, 68(6): 14–27.

Abstract

Nanocarbon materials including carbon nanotube (CNT) and graphene nanoplatelets (GNP) are ideal reinforcements of high-performance aluminum matrix composites, due to their ultra-high strength and modulus, excellent thermal and electrical conductivities. However, nanocarbons have poor wettability with aluminum matrix. Meanwhile, the reaction of nanocarbon/aluminum interface at high temperatures causes formation of brittle Al4C3 and thereby, damaging the nanocarbon reinforcements. Both of the abovementioned scenarios not only limit the strengthening effect of the reinforcements, but also deteriorate the composite toughness. Therefore, the regulations on interface reaction and bonding, and the synergistic improvements in the strength and toughness are key problems for the research of nanocarbon/aluminum composites. Based on the bonding mechanisms of nanocarbon/aluminum interface, the regulating study and effects of nanocarbon/aluminum interface were reviewed from the perspectives of surface modification of nanocarbon and optimization of composite process. Subsequently, the studies on multi-dimensional network strengthening of CNT and GNP, and their hybrid strengthening with ceramic particles were summarized. It was proposed that the strength and toughness of the composites would be further improved by designing the reinforcing network consisted of CNT, GNP, and ceramic particles, according to their different structures and strengthening effects.

Keywords

Aluminum matrix composites; Carbon nanotube; Graphene; Interface; Strengthening;



铝基复合材料具有密度低、比强度和比模量高、抗疲劳、耐磨损、热膨胀系数小、高导热等特点,作为轻质结构与功能材料广泛应用于航空航天、国防军工、轨道交通、汽车、电子信息等领域[   SUNIL KUMAR REDDY K, KANNAN M, KARTHIKEYAN R, et al. A review on mechanical and thermal properties of aluminum metal matrix composites[J]. E3S Web of Conferences, 2020, 184: 01033.
  KUMAR SHARMA A, BHANDARI R, AHERWAR A, et al. A study of advancement in application opportunities of aluminum metal matrix composites[J]. Materials Today: Proceedings, 2020, 26: 2419–2424.
1-2
]
。铝基复合材料常以碳化物、硼化物或氧化物等陶瓷颗粒、纤维进行增强,在提升强度和耐磨性的同时往往牺牲了塑韧性[   UJAH C O, VON KALLON D V. Trends in aluminium matrix composite development[J]. Crystals, 2022, 12(10): 1357.
3
]
,该类增强体及大量界面还损害铝基体的导热与导电性。碳纳米管(Carbon nanotube,CNT)和石墨烯纳米片(Graphene nanoplatelets,GNP)等纳米碳材料具有超高的强度与模量、优异的导热和导电性能,且其纳米尺寸结构在协调铝基复合材料强韧性、提升抗应力开裂方面的效果明显,因此是发展结构功能一体化铝基复合材料的理想增强体[   ZHANG H J, ZHANG B X, GAO Q Z, et al. A review on microstructures and properties of graphene-reinforced aluminum matrix composites fabricated by friction stir processing[J]. Journal of Manufacturing Processes, 2021, 68: 126–135.
  ZARE H, JAHEDI M, TOROGHINEJAD M R, et al. Microstructure and mechanical properties of carbon nanotubes reinforced aluminum matrix composites synthesized via equal-channel angular pressing[J]. Materials Science and Engineering: A, 2016, 670: 205–216.
  ALAM F, CHOOSRI M, GUPTA T K, et al. Electrical, mechanical and thermal properties of graphene nanoplatelets reinforced UHMWPE nanocomposites[J]. Materials Science and Engineering: B, 2019, 241: 82–91.
4-6
]

良好的界面结合是基体与增强体之间载荷及功能高效传递、复合材料性能提升的基础[   YANG L Z, ZHOU B Z, MA L S, et al. Architectured interfacial interlocking structure for enhancing mechanical properties of Al matrix composites reinforced with graphene nanosheets[J]. Carbon, 2021, 183: 685–701.
7
]
。CNT和GNP的比表面积大、密度低,在铝基体中的分散较难[   赵乃勤, 刘兴海, 蒲博闻. 多维度碳纳米相增强铝基复合材料研究进展[J]. 金属学报, 2019, 55(1): 1–15.ZHAO Naiqin, LIU Xinghai, PU Bowen. Progress on multi-dimensional carbon nanomaterials reinforced aluminum matrix composites: A review[J]. Acta Metallurgica Sinica, 2019, 55(1): 1–15.
  施展, 马凤仓, 谭占秋, 等. 碳纳米管增强铝基复合材料界面与晶粒调控研究进展[J]. 粉末冶金技术, 2024, 42(1): 14–28.SHI Zhan, MA Fengcang, TAN Zhanqiu, et al. Research progress on the interface and grain control in carbon nanotube reinforced aluminum matrix composites[J]. Powder Metallurgy Technology, 2024, 42(1): 14–28.
8-9
]
,特别是其比表面能高、与铝的润湿性差[   薛婷婷, 王庆平, 卢春阳, 等. 改善石墨烯增强铝基复合材料分散性的研究进展[J]. 热加工工艺, 2021, 50(18): 6–9, 14.XUE Tingting, WANG Qingping, LU Chunyang, et al. Research progress on improving dispersion of graphene reinforced aluminum matrix composites[J]. Hot Working Technology, 2021, 50(18): 6–9, 14.
10
]
,导致界面形成的机械结合强度低,限制载荷及功能的传递效率,致使增强效果远低于预期[   鄢来朋, 谭占秋, 熊定邦, 等. 碳纳米管/铝复合材料界面调控研究进展[J]. 中国材料进展, 2016, 35(12): 943–949.YAN Laipeng, TAN Zhanqiu, XIONG Dingbang, et al. Research progress on the interface control in CNT/Al composites[J]. Materials China, 2016, 35(12): 943–949.
11
]
。界面反应生成纳米Al4C3可大幅提升界面结合,但材料制备与处理在高温下进行,界面反应易失控、损伤纳米碳,且生成大量的脆性Al4C3引起界面应力开裂,恶化铝基复合材料强韧性[   李肖亮, 李昱桦, 董正学, 等. 碳/铝复合材料界面Al4C3相的形成与调控研究进展[J]. 中国有色金属学报, 2024, 34(5): 1453–1474.LI Xiaoliang, LI Yuhua, DONG Zhengxue, et al. Reviews on formation and tailoring of interfacial Al4C3 phase in carbon/aluminum composites[J]. The Chinese Journal of Nonferrous Metals, 2024, 34(5): 1453–1474.
12
]
。形态与结构不同的CNT和GNP对铝基体的强化维度和效果不同,在界面控制的基础上构造二者及其与陶瓷颗粒混合的多维增强网络[   赵乃勤, 刘兴海, 蒲博闻. 多维度碳纳米相增强铝基复合材料研究进展[J]. 金属学报, 2019, 55(1): 1–15.ZHAO Naiqin, LIU Xinghai, PU Bowen. Progress on multi-dimensional carbon nanomaterials reinforced aluminum matrix composites: A review[J]. Acta Metallurgica Sinica, 2019, 55(1): 1–15.
8
]
,有望发挥它们各自优势,提升铝基复合材料综合性能。本文在纳米碳/铝界面结合机制分析基础上,从纳米碳表面处理和复合材料制备工艺入手综述界面结构的调控研究现状,随后总结了CNT和GNP及与陶瓷颗粒混合强化的研究进展,为纳米碳/铝的界面调控与性能设计提供思路。

1     纳米碳/铝界面结合形式

纳米碳/铝界面包含机械结合、扩散结合、反应结合,以及上述三者的混合[   鄢来朋, 谭占秋, 熊定邦, 等. 碳纳米管/铝复合材料界面调控研究进展[J]. 中国材料进展, 2016, 35(12): 943–949.YAN Laipeng, TAN Zhanqiu, XIONG Dingbang, et al. Research progress on the interface control in CNT/Al composites[J]. Materials China, 2016, 35(12): 943–949.
11
]
。不同形式界面的黏结强度存在差异,明确界面结合机制及其对纳米碳强化效果的影响,是纳米碳/铝界面调控的前提。

1.1     机械结合界面

机械结合的纳米碳与铝基体既不溶解也不反应,界面强度取决于纳米碳表面粗糙度和基体收缩产生的摩擦力,即界面机械互锁[   DHANDAPANI S, RAJMOHAN T, PALANIKUMAR K, et al. Synthesis and characterization of dual particle (MWCT+B4C) reinforced sintered hybrid aluminum matrix composites[J]. Particulate Science and Technology, 2016, 34(3): 255–262.
13
]
图1所示为机械结合界面的微观形貌[   YU Z Y, TAN Z Q, XU R, et al. Enhanced load transfer by designing mechanical interfacial bonding in carbon nanotube reinforced aluminum composites[J]. Carbon, 2019, 146: 155–161.
14
]
与结合示意图。烧结或热加工温度低于527 ℃时,纳米碳/铝复合材料的界面主要为机械结合。一般认为该界面的强度低,纳米碳易脱粘,强化效率低。基体合金化或压力加工可提高机械结合界面的紧密程度,改善载荷传递效率。Yu等[   YU Z Y, TAN Z Q, XU R, et al. Enhanced load transfer by designing mechanical interfacial bonding in carbon nanotube reinforced aluminum composites[J]. Carbon, 2019, 146: 155–161.
14
]
利用Mg合金元素破坏界面处生成的无定型Al2O3层,从而改善CNT与Al的润湿性;因界面机械结合紧密且CNT无损伤,载荷传递效率达99.1%,强化效果高于生成Al4C3层的反应界面。Li等[   LI J C, ZHANG X X, GENG L. Effect of heat treatment on interfacial bonding and strengthening efficiency of graphene in GNP/Al composites[J]. Composites Part A: Applied Science and Manufacturing, 2019, 121: 487–498.
15
]
通过研究得出,粉末冶金GNP/Al复合材料在600 ℃热处理后界面黏结紧密,其载荷传递能力强于界面生成大量Al4C3的材料。

图1     纳米碳/铝机械结合界面
Fig.1     Mechanical bonding of nanocarbon/aluminum interface

1.2     扩散结合界面

扩散结合界面指纳米碳与铝润湿、溶解并扩散形成无Al4C3生成的界面,主要利用扩散层提升界面强度,TEM形貌[   CHEN B, KONDOH K, IMAI H, et al. Simultaneously enhancing strength and ductility of carbon nanotube/aluminum composites by improving bonding conditions[J]. Scripta Materialia, 2016, 113: 158–162.
16
]
和结合机制如图2所示。在温度低于627 ℃情况下进行短时烧结或基体合金化、纳米碳表面涂层时,纳米碳/铝复合材料会形成扩散界面,延长烧结时间则发生反应。Chen等[   CHEN B, LI S F, IMAI H, et al. Load transfer strengthening in carbon nanotubes reinforced metal matrix composites via in situ tensile tests[J]. Composites Science and Technology, 2015, 113: 1–8.
  KURITA H, ESTILI M, KWON H, et al. Load-bearing contribution of multi-walled carbon nanotubes on tensile response of aluminum[J]. Composites Part A: Applied Science and Manufacturing, 2015, 68: 133–139.
17-18
]
在627 ℃下采用放电等离子烧结(Spark plasma sintering,SPS)法制备了界面呈扩散结合的CNT/Al复合材料,C与Al原子扩散不仅提高了界面强度,而且限制相邻Al晶粒的旋转,减小晶界取向角,进而提升材料强韧性。Kurita等[   CHEN B, KONDOH K, IMAI H, et al. Simultaneously enhancing strength and ductility of carbon nanotube/aluminum composites by improving bonding conditions[J]. Scripta Materialia, 2016, 113: 158–162.
16
]
对SPS法制备CNT/Al复合材料的研究表明,低缺陷的CNT与Al反应的激活能高,主要形成扩散界面,体积分数0.6% CNT的材料抗拉强度较基体提高206%。Huang等[   HUANG Z W, YAN H. Improved mechanical properties of GNPs/Al composites by eliminating alumina and obtaining a strong bonded GNPs–Al direct contact interface and Mg-rich phases[J]. Journal of Alloys and Compounds, 2024, 984: 173982.
19
]
采用Mg元素提高Al4C3的生成能,使超声搅拌铸造GNP/Al复合材料的界面呈现为Al原子向GNP晶格迁移的扩散结合,材料抗拉强度较未添加Mg时提高20.6%。

图2     纳米碳/铝扩散结合界面
Fig.2     Diffusion bonding of nanocarbon/aluminum interface

1.3     反应结合界面

反应结合界面通过反应生成Al4C3相使纳米碳/铝界面呈强化学结合[   KHANNA V, KUMAR V, BANSAL S A. Mechanical properties of aluminium–graphene/carbon nanotubes (CNTs) metal matrix composites: Advancement, opportunities and perspective[J]. Materials Research Bulletin, 2021, 138: 111224.
20
]
,其形貌和结合机制见图3[   ZHOU W W, YAMAGUCHI T, KIKUCHI K, et al. Effectively enhanced load transfer by interfacial reactions in multi-walled carbon nanotube reinforced Al matrix composites[J]. Acta Materialia, 2017, 125: 369–376.
  CI L J, RYU Z, JIN-PHILLIPP N Y, et al. Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum[J]. Acta Materialia, 2006, 54(20): 5367–5375.
  CHEN B, SHEN J, YE X, et al. Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)-reinforced aluminum matrix composites[J]. Carbon, 2017, 114: 198–208.
21-23
]
。C与Al反应的吉布斯能低(–196 kJ/mol)[   JIANG Y Y, TAN Z Q, FAN G L, et al. Nucleation and growth mechanisms of interfacial carbide in graphene nanosheet/Al composites[J]. Carbon, 2020, 161: 17–24.
24
]
,二者易发生反应。Kim等[   KIM D, HIRAYAMA Y, LIU Z, et al. Fabrication of Al–CNT composite with high hardness and electrical conductivity by controlling Al4C3 formation[J]. Journal of Alloys and Compounds, 2023, 942: 169102.
25
]
报道了温度低于650 ℃时,Al与CNT表面和顶端的缺陷反应生成Al4C3,从而提高CNT/Al界面的黏结强度和材料力学性能。Xiong等[   XIONG B W, LIU K, XIONG W, et al. Strengthening effect induced by interfacial reaction in graphene nanoplatelets reinforced aluminum matrix composites[J]. Journal of Alloys and Compounds, 2020, 845: 156282.
26
]
对SPS法制备GNP/Al复合材料的研究表明,纳米Al4C3的生成及其锚固效应使GNP/Al界面呈强结合界面,通过试验获得的载荷传递效率比理论最大值提高1~2倍。

图3     纳米碳/铝反应结合界面的形貌及Al4C3与强度的关系
Fig.3     Morphology of reaction bonding in nanocarbon/aluminum interface and relationship between Al4C3 and strength

Al4C3虽能提升纳米碳/铝界面结合,但其本身的脆性易引起界面应力开裂及材料断裂,C与Al反应还损伤纳米碳[   YAN L P, TAN Z Q, JI G, et al. A quantitative method to characterize the Al4C3-formed interfacial reaction: The case study of MWCNT/Al composites[J]. Materials Characterization, 2016, 112: 213–218.
  ZHOU W W, YAMAMOTO G, FAN Y C, et al. In-situ characterization of interfacial shear strength in multi-walled carbon nanotube reinforced aluminum matrix composites[J]. Carbon, 2016, 106: 37–47.
27-28
]
,因此须控制Al4C3的含量与形貌等。有研究表明[   ZHOU W W, YAMAGUCHI T, KIKUCHI K, et al. Effectively enhanced load transfer by interfacial reactions in multi-walled carbon nanotube reinforced Al matrix composites[J]. Acta Materialia, 2017, 125: 369–376.
21
  CHEN B, SHEN J, YE X, et al. Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)-reinforced aluminum matrix composites[J]. Carbon, 2017, 114: 198–208.
23
]
,在600 ℃下热处理0.1 h时CNT/Al界面生成的Al4C3占CNT体积的11%,复合材料的屈服强度(116 MPa)较基体提高18.6%;当Al4C3平均长度和含量(Al4C3与CNT平均长度的比)在175.4~253.2 nm和3.7%~11.0%范围内时,CNT/Al界面的黏结强度高达24.8 MPa,复合材料强度升高并保持高的延伸率;当Al4C3平均长度和含量分别超过288.3 nm和17.9%后,界面反应引起的CNT损伤使复合材料的力学性能降低,结果如图3(c)和(d)所示。

2     纳米碳/铝界面的调控方法

良好的界面结合是提升纳米碳/铝复合材料载荷及功能传递效率的前提,但纳米碳与铝的润湿性差、易反应等问题不利于界面结合的控制。目前,业内主要通过表面涂层改性、复合工艺优化等方法调控纳米碳/铝界面成分和结构,控制Al4C3生成,进而提升强化效果。

2.1     纳米碳表面涂层改性

涂层改性通过化学或物理方法改变纳米碳的表面状态和成分,提升其分散性及与铝的润湿和结合性[   JOSHI D J, KODURU J R, MALEK N I, et al. Surface modifications and analytical applications of graphene oxide: A review[J]. TrAC Trends in Analytical Chemistry, 2021, 144: 116448.
29
]
,并稳定界面成分及结构。纳米碳常用的涂层材料有金属(Cu、Ni)、碳化物(SiC、TiC等)和氧化物(Al2O3、SiO2等)。

金属涂层的制备方法主要为化学镀法,借助金属离子在纳米碳表面缺陷处形核并生长为涂层。金属涂层既能提升纳米碳在铝中的分散性,又可抑制不良界面反应,作为界面过渡层还能增强载荷传递效果。此外,Cu、Ni等涂层与Al反应生成Al2Cu、Al3Ni,可产生强化效应[   GUO B S, CHEN Y Q, WANG Z W, et al. Enhancement of strength and ductility by interfacial nano-decoration in carbon nanotube/aluminum matrix composites[J]. Carbon, 2020, 159: 201–212.
  ODIWO H, BELLO K A, ABDULWAHAB M, et al. Properties of aluminium/electroless Ni-coated SiC composites— A review[J]. Fudma Journal of Sciences, 2021, 5(1): 381–391.
30-31
]
。Guan等[   GUAN C, ZHAO Y T, CHEN G, et al. Synergistic strengthening and toughening of copper coated graphene nanoplates and in situ nanoparticles reinforced AA6111 composites[J]. Materials Science and Engineering: A, 2021, 822: 141661.
32
]
以化学镀制备Cu涂层,防止搅拌铸造高温下Al4C3的生成及热轧对GNP的损伤,研究表明,紧密的GNP/Al界面使载荷传递强化效果为其他机制强化的1.3倍。Zeng等[   ZENG M, DONG X J, ZHANG P X, et al. Remarkable improvement of wettability of Cu-coated carbon nanotubes by molten aluminum[J]. Diamond and Related Materials, 2023, 137: 110155.
33
]
对CNT化学镀Cu层,因为Cu与Al的原子扩散反应增强了CNT和Al的润湿性,使形成的CNT/Cu/Al界面强度较CNT/Al的提升208%。Guan等[   GUAN R, WANG Y, ZHENG S, et al. Fabrication of aluminum matrix composites reinforced with Ni-coated graphene nanosheets[J]. Materials Science and Engineering: A, 2019, 754: 437–446.
34
]
以Ni层抑制界面反应,界面构成了GNP—O—Ni—Al键,且部分Ni与Al生成细小的Al3Ni,使质量分数1.5% GNP材料的屈服强度和杨氏模量较基体分别提高132%和37.5%。Wang等[   WANG X, XIAO W, WANG J W, et al. Enhanced interfacial strength of graphene reinforced aluminum composites via X (Cu, Ni, Ti)-coating: Molecular-dynamics insights[J]. Advanced Powder Technology, 2021, 32(7): 2585–2590.
35
]
通过分子动力学模拟计算得出,GNP表面Ni原子浓度比为25%、50%、75%和100%时,GNP/Ni/Al界面强度较GNP/Al的分别提高87.7%、92.7%、111.3%和145.3%,且Ni涂层的强化提升效果优于Cu和Ti涂层。

化学镀前需对纳米碳表面进行化学粗化、敏化、活化等处理,使得涂层制备效率低、成本高。而电镀法是在处于阴极的纳米碳表面镀金属层,该涂层晶粒小、制备效率高。So等[   SO K P, LEE I H, DUONG D L, et al. Improving the wettability of aluminum on carbon nanotubes[J]. Acta Materialia, 2011, 59(9): 3313–3320.
36
]
用电镀法对定向的CNT镀Al涂层然后经浸渗制备了CNT/Al复合材料,流程如图4所示;研究表明,Al涂层提高了CNT与Al的润湿性,采用密度泛函理论(Density functional theory,DFT)计算的CNT–空位–O–Al和CNT–空位–Al–O结合能较高(表1),说明了电镀法制备Al涂层在提升纳米碳/铝界面结合方面具有可行性。

图4     Al涂层CNT/Al复合材料的制备流程[   SO K P, LEE I H, DUONG D L, et al. Improving the wettability of aluminum on carbon nanotubes[J]. Acta Materialia, 2011, 59(9): 3313–3320.
36
]
Fig.4     Preparation process of Al coated CNT/Al composites[   SO K P, LEE I H, DUONG D L, et al. Improving the wettability of aluminum on carbon nanotubes[J]. Acta Materialia, 2011, 59(9): 3313–3320.
36
]
表1     掺入Al原子时CNT空位的DFT计算结果[   SO K P, LEE I H, DUONG D L, et al. Improving the wettability of aluminum on carbon nanotubes[J]. Acta Materialia, 2011, 59(9): 3313–3320.
36
]
Table 1     DFT calculation results of CNT vacancies doped with Al atoms[   SO K P, LEE I H, DUONG D L, et al. Improving the wettability of aluminum on carbon nanotubes[J]. Acta Materialia, 2011, 59(9): 3313–3320.
36
]
Configuration Binding energy/eV e transfer to CNT/e C—C—C bond angle at vacancy/(º)
CNT–vacancy 108,116,126
CNT–Al –1.40 0.51
CNT–vacancy–Al –6.07 0.72 108,121,121
CNT–Al–O –6.29 0.27
CNT–vacancy–Al–O –10.39 0.48 116,121,119
CNT–O–Al –6.20 –0.10
CNT–vacancy–O–Al –10.50 –0.11 120,124,119

碳化物涂层常采用原位反应法制备,涂层与纳米碳结合紧密,提升增强效果。如SiC涂层不仅与纳米碳构成C—Si共价键,提高界面结合强度,而且与Al润湿性好,在改善纳米碳分散性的同时可抑制Al4C3生成[   ZHANG X, LI S F, PAN D, et al. Microstructure and synergistic-strengthening efficiency of CNTs–SiCp dual-nano reinforcements in aluminum matrix composites[J]. Composites Part A: Applied Science and Manufacturing, 2018, 105: 87–96.
37
]
。Zhang等[   ZHANG X, LI S F, PAN B, et al. Regulation of interface between carbon nanotubes–aluminum and its strengthening effect in CNTs reinforced aluminum matrix nanocomposites[J]. Carbon, 2019, 155: 686–696.
38
]
以纳米Si与CNT反应生成25 nm厚的SiC涂层控制界面反应,C—Si键提高CNT的强化效率,质量分数1.0% CNT的Al基复合材料的屈服和抗拉强度较无SiC的分别提升48.8%、34.1%,延伸率和电导率达19.0%、52.4% IACS,制备流程及界面结构如图5所示。Liu等[   LIU L, LI S F, ZHANG X, et al. Syntheses, microstructure evolution and performance of strength-ductility matched aluminum matrix composites reinforced by nano SiC–cladded CNTs[J]. Materials Science and Engineering: A, 2021, 824: 141784.
39
]
用相同方法对CNT制备SiC涂层,CNT@SiC/Al复合材料界面的SiC涂层促使CNT与Al润湿并限制Al4C3生成,使CNT/SiC/Al界面呈扩散和机械结合,通过调控温度使Al4C3生成较少时可进一步提高界面结合,体积分数0.5% CNT@SiC材料的抗拉强度较无涂层提升14%,且保持高的延伸率。还有研究以沉积的WC层改善CNT/Al界面结合,提升抗压性能[   ABORKIN A, BABIN D, ZALESNOV A, et al. Effect of ceramic coating on carbon nanotubes interaction with matrix material and mechanical properties of aluminum matrix nanocomposite[J]. Ceramics International, 2020, 46(11): 19256–19263.
40
]

图5     CNT@SiC/Al复合材料的制备流程及界面形貌[   ZHANG X, LI S F, PAN B, et al. Regulation of interface between carbon nanotubes–aluminum and its strengthening effect in CNTs reinforced aluminum matrix nanocomposites[J]. Carbon, 2019, 155: 686–696.
38
]
Fig.5     Preparation process and interface morphologies of CNT@SiC/Al composites[   ZHANG X, LI S F, PAN B, et al. Regulation of interface between carbon nanotubes–aluminum and its strengthening effect in CNTs reinforced aluminum matrix nanocomposites[J]. Carbon, 2019, 155: 686–696.
38
]

Al2O3与Al呈半共格关系、结合强度高,因此Al2O3涂层是目前研究较多的氧化物涂层。制备Al2O3涂层的方法有原位法和浆料吸附法等,其中前者以Al粉或纳米碳表面的含氧物与Al反应生成Al2O3涂层,氧原子迁移促进基体内生成Al2O3晶须,并诱导晶内位错,进而提升复合材料强度[   RONG X D, ZHANG X, ZHAO D D, et al. In-situ Al2O3–Al interface contribution towards the strength-ductility synergy of Al–CuO composite fabricated by solid-state reactive sintering[J]. Scripta Materialia, 2021, 198: 113825.
41
]
。Ju等[   JU B Y, YANG W S, SHAO P Z, et al. Effect of interfacial microstructure on the mechanical properties of GNPs/Al composites[J]. Carbon, 2020, 162: 346–355.
42
]
将涂覆聚二甲基硅氧烷(PDMS)的Al片粉与GNP混匀,压力浸渗高温下PDMS分解的SiO2与Al反应形成Al2O3层,研究表明,GNP/Al2O3界面强度(378 MPa)高于GNP/Al界面(37 MPa)和GNP/Al4C3界面(83 MPa),提升了GNP的强化能力,使GNP@Al2O3/Al复合材料的抗拉强度比界面生成Al4C3的复合材料高28%。Shan等[   SHAN Y C, PU B W, LIU E Z, et al. In-situ synthesis of CNTs@Al2O3 wrapped structure in aluminum matrix composites with balanced strength and toughness[J]. Materials Science and Engineering: A, 2020, 797: 140058.
43
]
通过CNT表面的H3BO3与Al反应制备了CNT@Al2O3/Al复合材料,纳米Al2O3对CNT/Al界面及位错的钉扎作用,使材料屈服和抗拉强度较无Al2O3的分别提升112.5%和95.2%。浆料吸附法是借助静电力及球磨力对纳米碳涂覆Al2O3层的。Zhou等[   ZHOU W W, YANG P, FAN Y C, et al. Simultaneous enhancement of dispersion and interfacial adhesion in Al matrix composites reinforced with nanoceramic-decorated carbon nanotubes[J]. Materials Science and Engineering: A, 2021, 804: 140784.
44
]
利用吸附的纳米Al2O3层改善CNT的分散性,SPS及挤压制备了CNT@Al2O3/Al复合材料,紧密的CNT/Al2O3/Al界面提升了材料强度,并使之保持高导电性。图6[   ZHOU W W, YANG P, FAN Y C, et al. Simultaneous enhancement of dispersion and interfacial adhesion in Al matrix composites reinforced with nanoceramic-decorated carbon nanotubes[J]. Materials Science and Engineering: A, 2021, 804: 140784.
44
]
展示了CNT@Al2O3/Al粉末及复合材料的形貌。此外,Ziaei等[   ZIAEI H, FAN G L, TAN Z Q, et al. SiO2 coating on CNTs to fabricate the Al4O4C–Al composite with superior Young’s modulus[J]. Materials Characterization, 2024, 207: 113597.
45
]
采用溶胶–凝胶法对CNT涂覆SiO2层,烧结与热挤压制备了CNT@SiO2/Al复合材料,其强度比无SiO2的高48%;高烧结温度下CNT、SiO2及Al反应形成Al4O4C/Al复合材料,其弹性模量高达86.8 GPa。

图6     CNT@Al2O3/Al粉末的形成及其复合材料界面的形貌[   ZHOU W W, YANG P, FAN Y C, et al. Simultaneous enhancement of dispersion and interfacial adhesion in Al matrix composites reinforced with nanoceramic-decorated carbon nanotubes[J]. Materials Science and Engineering: A, 2021, 804: 140784.
44
]
Fig.6     Formation of CNT@Al2O3/Al powder and morphologies of its composite interface[   ZHOU W W, YANG P, FAN Y C, et al. Simultaneous enhancement of dispersion and interfacial adhesion in Al matrix composites reinforced with nanoceramic-decorated carbon nanotubes[J]. Materials Science and Engineering: A, 2021, 804: 140784.
44
]

涂层隔离了纳米碳与铝的直接接触,涂层厚、接触弱的部位对载荷及功能传递不利,较厚的碳化物或氧化物层还影响烧结致密性[   邓海亮, 万梓涵, 任可聪, 等. 纳米碳/铝复合材料的制备、界面改性与增强机制研究进展[J]. 固体火箭技术, 2023, 46(2): 231–252.DENG Hailiang, WAN Zihan, REN Kecong, et al. Reviews on fabrication, interface modification and reinforcing mechanism of nanocarbon/aluminum composites[J]. Journal of Solid Rocket Technology, 2023, 46(2): 231–252.
46
]
。在纳米碳缺陷处修饰纳米粒子,既能减少Al4C3的生成,又可保证与铝的紧密结合。如Sun等[   SUN W, ZHAN K, YANG Z, et al. Facile fabrication of GO/Al composites with improved dispersion of graphene and enhanced mechanical properties by Cu doping and powder metallurgy[J]. Journal of Alloys and Compounds, 2020, 815: 152465.
47
]
采用料浆法将Cu2+静电吸附于氧化石墨烯(GO)和Al粉表面,热压烧结制备GO@Cu/Al复合材料,发现Cu粒子改善了GO分散及与Al的结合,材料抗压和抗弯强度较基体分别提高120%和28%。Han等[   HAN T L, LIU E Z, LI J J, et al. A bottom-up strategy toward metal nano-particles modified graphene nanoplates for fabricating aluminum matrix composites and interface study[J]. Journal of Materials Science & Technology, 2020, 46: 21–32.
48
]
采用溶胶喷雾干燥法对GNP修饰Ni粒子,Ni与Al优先生成的Al3Ni限制了Al4C3的产生,Al3Ni锚结了GNP/Al界面,因此对复合材料强韧性提升的效果优于Cu粒子修饰。

2.2     复合工艺优化

纳米碳/铝复合材料制备方法有液相法和固相法,前者包含搅拌铸造和熔融浸渗等工艺,后者涉及粉末冶金与摩擦搅拌(FSP)等工艺[   GARG P, JAMWAL A, KUMAR D, et al. Advance research progresses in aluminium matrix composites: Manufacturing & applications[J]. Journal of Materials Research and Technology, 2019, 8(5): 4924–4939.
  MUSSATTO A, AHAD I U, MOUSAVIAN R T, et al. Advanced production routes for metal matrix composites[J]. Engineering Reports, 2021, 3(5): e12330.
  SHIRVANIMOGHADDAM K, HAMIM S U, KARBALAEI AKBARI M, et al. Carbon fiber reinforced metal matrix composites: Fabrication processes and properties[J]. Composites Part A: Applied Science and Manufacturing, 2017, 92: 70–96.
49-51
]
。除了控制温度和纳米碳缺陷外,上述方法因各自特点的不同,对界面的优化调控方式存在差异。

搅拌铸造依靠机械或超声波搅拌将纳米碳分散于熔融或近熔融Al中,高温引发界面反应,且铸造孔隙多,须通过优化温度和搅拌参数、纳米碳引入方式等调控界面[   HANIZAM H, SALLEH M S, OMAR M Z, et al. Effects of hybrid processing on microstructural and mechanical properties of thixoformed aluminum matrix composite[J]. Journal of Alloys and Compounds, 2020, 836: 155378.
  SEYED POURMAND N, ASGHARZADEH H. Aluminum matrix composites reinforced with graphene: A review on production, microstructure, and properties[J]. Critical Reviews in Solid State and Materials Sciences, 2020, 45(4): 289–337.
52-53
]
,借助压力加工提高界面结合性。Venkatesan等[   VENKATESAN S, ANTHONY XAVIOR M. Tensile behavior of aluminum alloy (AA7050) metal matrix composite reinforced with graphene fabricated by stir and squeeze cast processes[J]. Science and Technology of Materials, 2018, 30(2): 74–85.
54
]
通过正交试验优化了GNP/Al复合材料搅拌工艺,在温度775 ℃、搅拌速率400 r/min下质量分数0.3%的GNP分散均匀、GNP/Al界面连续,材料抗拉强度高;高温、低速搅拌及高添加量下GNP分布不均,材料强度降低。为改善纳米碳分散和界面结合,Park等[   PARK J G, KEUM D H, LEE Y H. Strengthening mechanisms in carbon nanotube-reinforced aluminum composites[J]. Carbon, 2015, 95: 690–698.
55
]
对CNT和Al粉进行混合热压、搅拌铸造后挤压制备CNT/Al复合材料,因CNT分散均匀且纳米Al4C3改善了界面结合(图7(a)),使得载荷传递强化占强度提升的50%。Yan等[   YAN H, HUANG Z X, QIU H X. Microstructure and mechanical properties of CNTs/A356 nanocomposites fabricated by high-intensity ultrasonic processing[J]. Metallurgical and Materials Transactions A, 2017, 48(2): 910–918.
56
]
通过提高超声功率改善CNT的分散及与Al的润湿性,CNT/Al界面机械结合得到提升,进而使材料屈服和抗拉强度较基体分别提高26.9%和55.2%。

图7     不同制备方法的纳米碳/铝复合材料界面的TEM形貌
Fig.7     Interfacial TEM morphologies of nanocarbon/aluminum compositesprepared by different methods

然而,搅拌铸造铝基复合材料的纳米碳均匀添加量少,强度提升幅度小。构造纳米碳预制体后压力浸渗Al,对提高纳米碳添加量及界面结合有利。Yang等[   YANG W S, ZHAO Q Q, XIN L, et al. Microstructure and mechanical properties of graphene nanoplates reinforced pure Al matrix composites prepared by pressure infiltration method[J]. Journal of Alloys and Compounds, 2018, 732: 748–758.
57
]
对压力浸渗GNP/Al复合材料的研究表明,低损伤的GNP限制Al4C3的生成,界面呈紧密的机械结合(图7(b)),GNP质量分数0.54%时屈服和抗拉强度较基体的分别提升116%和45%;热挤压后界面结合更紧密,强度提升幅度为之前的2倍。还有研究综合搅拌工艺优化与纳米碳涂层或Mg、Si合金化等,提升纳米碳的分散性、控制界面反应与界面结合[   ZHANG P X, XU W M, ZENG M, et al. Regulating microstructure, mechanical properties and electrochemical characteristic of 2024–CNTs aluminum composites via decorating nano Ni on the surface of CNTs[J]. Diamond and Related Materials, 2022, 126: 109132.
  ZHANG Z L, XIAO Y, XU J, et al. Understanding the influencing mechanism of CNTs on the microstructure and mechanical properties of semi-solid stir casting Al–Cu–Mg alloys[J]. Journal of Materials Research and Technology, 2022, 18: 3949–3960.
58-59
]

粉末冶金在高温高压下将纳米碳与铝混合粉成形为复合材料,纳米碳添加量和基体成分可调,界面反应调控依赖温度、压力及球磨方式等[   李肖亮, 李昱桦, 董正学, 等. 碳/铝复合材料界面Al4C3相的形成与调控研究进展[J]. 中国有色金属学报, 2024, 34(5): 1453–1474.LI Xiaoliang, LI Yuhua, DONG Zhengxue, et al. Reviews on formation and tailoring of interfacial Al4C3 phase in carbon/aluminum composites[J]. The Chinese Journal of Nonferrous Metals, 2024, 34(5): 1453–1474.
12
  邓海亮, 万梓涵, 任可聪, 等. 纳米碳/铝复合材料的制备、界面改性与增强机制研究进展[J]. 固体火箭技术, 2023, 46(2): 231–252.DENG Hailiang, WAN Zihan, REN Kecong, et al. Reviews on fabrication, interface modification and reinforcing mechanism of nanocarbon/aluminum composites[J]. Journal of Solid Rocket Technology, 2023, 46(2): 231–252.
46
]
。Kwon等[   KWON H, MONDAL J, ALOGAB K A, et al. Graphene oxide-reinforced aluminum alloy matrix composite materials fabricated by powder metallurgy[J]. Journal of Alloys and Compounds, 2017, 698: 807–813.
60
]
对热压法制备的GO/Al复合材料进行研究,发现高能球磨促使GO分散,低的烧结温度(550 ℃)限制Al4C3生成,高的压力(570 MPa)提高材料致密度和界面机械结合强度,其中体积分数1% GO的材料抗拉与抗弯强度分别为基体的2.1倍和3.9倍。Zan等[   ZAN Y N, ZHANG Q, ZHOU Y T, et al. Introducing graphene (reduced graphene oxide) into Al matrix composites for enhanced high-temperature strength[J]. Composites Part B: Engineering, 2020, 195: 108095.
61
]
通过研究发现,低温下还原GO(rGO)与Al生成的Al2O3层可抑制Al4C3生成,rGO分散于Al晶界形成了扩散结合并限制晶粒长大,使体积分数0.305% rGO的材料在室温与350 ℃的抗拉强度较基体分别提升65%和121%。Han等[   HAN T L, WANG F C, LI J J, et al. Simultaneously enhanced strength and ductility of Al matrix composites through the introduction of intragranular nano-sized graphene nanoplates[J]. Composites Part B: Engineering, 2021, 212: 108700.
62
]
通过分段球磨提高GNP的均匀添加量,以生成的少量Al4C3改善界面结合,分散均匀且界面紧密的纳米GNP又诱导晶内位错塞积、钉扎晶界,使GNP/Al复合材料的屈服和抗拉强度比基体强度分别提升150%和140%,延伸率达9.4%(图8)。

图8     GNP/Al复合材料的TEM形貌和拉伸性能[   HAN T L, WANG F C, LI J J, et al. Simultaneously enhanced strength and ductility of Al matrix composites through the introduction of intragranular nano-sized graphene nanoplates[J]. Composites Part B: Engineering, 2021, 212: 108700.
62
]
Fig.8     TEM morphologies and tensile properties of GNP/Al composites[   HAN T L, WANG F C, LI J J, et al. Simultaneously enhanced strength and ductility of Al matrix composites through the introduction of intragranular nano-sized graphene nanoplates[J]. Composites Part B: Engineering, 2021, 212: 108700.
62
]

SPS法比传统方法的成形温度低、烧结快,等离子体冲击又可提高致密度,对控制界面反应与结合有利。Guo等[   GUO B S, SONG M, ZHANG X M, et al. Exploiting the synergic strengthening effects of stacking faults in carbon nanotubes reinforced aluminum matrix composites for enhanced mechanical properties[J]. Composites Part B: Engineering, 2021, 211: 108646.
63
]
通过SPS法及热轧制备CNT/Al复合材料,因烧结时间短(30 min)、升温快(100 ℃/min),600 ℃烧结限制了Al4C3的生成;高分散的CNT、形成的扩散界面及高密度位错提升了载荷传递和位错强化能力,体积分数1% CNT材料的屈服和抗拉强度约为基体的3倍。基于纳米Al4C3可有效提升界面结合的机制,Heydari等[   HEYDARI S, SAJJADI S A, BABAKHANI A, et al. An investigation on the effect of Al4C3 on microstructure and mechanical properties of carbon nanotube reinforced aluminum composite[J]. Ceramics International, 2023, 49(9): 14024–14034.
64
]
将球磨破碎的CNT与未破坏的CNT混合后采用SPS法制备了CNT/Al复合材料,利用吸附在完整CNT上破碎的CNT与Al构成的反应界面提升载荷传递能力,使质量分数1% CNT材料的屈服和抗拉强度较未破坏时分别升高39%和12%;在550 ℃下,当烧结时间由10 min增至30 min时,Al4C3生成量增多、尺寸增大,CNT的强化效果降低。

FSP法借助挤压剪切力和摩擦热使铝基体发生塑性流动,促使纳米碳分散,提升界面结合[   邓海亮, 万梓涵, 任可聪, 等. 纳米碳/铝复合材料的制备、界面改性与增强机制研究进展[J]. 固体火箭技术, 2023, 46(2): 231–252.DENG Hailiang, WAN Zihan, REN Kecong, et al. Reviews on fabrication, interface modification and reinforcing mechanism of nanocarbon/aluminum composites[J]. Journal of Solid Rocket Technology, 2023, 46(2): 231–252.
46
]
。Zhang等[   ZHANG S, WANG T, JIANG Z P. Carbon nanotubes/aluminum interface structure and its effects on the strength and electrical conductivity of aluminum[J]. Journal of Materials Research and Technology, 2023, 27: 7037–7046.
65
]
对孔洞中添加CNT的铝板进行三道次FSP后制成CNT/Al复合材料,发现CNT轴向平行于Al(111)面排列,并构成半共格界面;该界面电阻率低、对位错的钉扎效率高,使材料电导率接近基体,屈服和抗拉强度分别提升84%和50%。Sharma等[   SHARMA A, MORISADA Y, FUJII H. Interfacial microstructure and strengthening mechanisms of SPSed Al/GNP nanocomposite subjected to multi-pass friction stir processing[J]. Materials Characterization, 2023, 197: 112652.
66
]
对SPS后FSP处理的含质量分数0.1% GNP的Al基复合材料进行研究,发现FSP改善了GNP的分散并细化晶粒,GNP与Al为紧密机械结合,材料抗拉强度较基体提高31%。然而,FSP含损伤纳米碳结构,过高摩擦热加剧界面反应,须优化加工道次、搅拌转速和切入深度等[   邓海亮, 万梓涵, 任可聪, 等. 纳米碳/铝复合材料的制备、界面改性与增强机制研究进展[J]. 固体火箭技术, 2023, 46(2): 231–252.DENG Hailiang, WAN Zihan, REN Kecong, et al. Reviews on fabrication, interface modification and reinforcing mechanism of nanocarbon/aluminum composites[J]. Journal of Solid Rocket Technology, 2023, 46(2): 231–252.
46
  GHADAR S, MOMENI A, KHADEMI E, et al. Effect of rotation and traverse speeds on the microstructure and mechanical properties of friction stir processed 2205 duplex stainless steel[J]. Materials Science and Engineering: B, 2021, 263: 114813.
  DINESH KUMAR D, BALAMURUGAN A, SURESH K C, et al. Study of microstructure and wear resistance of AA5052/B4C nanocomposites as a function of volume fraction reinforcement to particle size ratio by ANN[J]. Journal of Chemistry, 2023, 2023: 2554098.
67-68
]

3     纳米碳混合强化铝基复合材料

纳米碳/铝复合材料强度提升源于载荷传递强化、Orowan强化、细晶强化、热膨胀失配强化及异质变形诱导强化等的协同[   邓海亮, 万梓涵, 任可聪, 等. 纳米碳/铝复合材料的制备、界面改性与增强机制研究进展[J]. 固体火箭技术, 2023, 46(2): 231–252.DENG Hailiang, WAN Zihan, REN Kecong, et al. Reviews on fabrication, interface modification and reinforcing mechanism of nanocarbon/aluminum composites[J]. Journal of Solid Rocket Technology, 2023, 46(2): 231–252.
46
  GHADAR S, MOMENI A, KHADEMI E, et al. Effect of rotation and traverse speeds on the microstructure and mechanical properties of friction stir processed 2205 duplex stainless steel[J]. Materials Science and Engineering: B, 2021, 263: 114813.
67
  TENG H Y, TAN Z Q, ZHENG Q, et al. Preparation of heterogeneous nanolaminated graphene nanosheet/Al–Cu–Mg composites by powder assembly & alloying[J]. Journal of Alloys and Compounds, 2023, 967: 171648.
  SADEGHI B, CAVALIERE P, PRUNCU C I. Architecture dependent strengthening mechanisms in graphene/Al heterogeneous lamellar composites[J]. Materials Characterization, 2022, 188: 111913.
69-70
]
。然而,受纳米碳自身形貌尺寸的影响,加之团聚、脆性Al4C3生成等,复合材料强度提升的同时韧性降低。基于CNT和GNP形貌尺寸的差异,设计二者及其与陶瓷颗粒混合的多维强化构型并优化比例,发挥各自优势及多强化机制的协同效应,是发展高强韧铝基复合材料的新途径。

3.1     CNT与GNP的混合强化

CNT为单层或多层石墨烯平面卷曲形成的一维纳米材料,GNP是由多层石墨烯组成的二维结构,面内C原子通过sp2杂化与周围3个C原子构成蜂窝状晶格,从而赋予CNT轴向和GNP面内超高的强度与良好的导热导电性[   ZAKARIA M R, OMAR M F, ZAINOL ABIDIN M S, et al. Recent progress in the three-dimensional structure of graphene-carbon nanotubes hybrid and their supercapacitor and high-performance battery applications[J]. Composites Part A: Applied Science and Manufacturing, 2022, 154: 106756.
  ALI Z, YAQOOB S, YU J H, et al. Critical review on the characterization, preparation, and enhanced mechanical, thermal, and electrical properties of carbon nanotubes and their hybrid filler polymer composites for various applications[J]. Composites Part C: Open Access, 2024, 13: 100434.
71-72
]
。直径细小的CNT与Al基体接触面积和摩擦力小,易脱粘拔出,对载荷传递不利[   KIM J W, SAUTI G, JENSEN B D, et al. Modifying carbon nanotube fibers: A study relating apparent interfacial shear strength and failure mode[J]. Carbon, 2021, 173: 857–869.
73
]
。GNP层间结合依赖范德华力,表面损伤后面内产生褶皱,层间滑移、剥离及褶皱的舒展再断裂,降低了载荷传递效率,但能够改善塑性[   WANG Y T, MENG Z X. Mechanical and viscoelastic properties of wrinkled graphene reinforced polymer nanocomposites—Effect of interlayer sliding within graphene sheets[J]. Carbon, 2021, 177: 128–137.
74
]

依据上述特征,构建单一CNT或GNP及二者混合的网络,利用互锁及桥联效应可实现载荷的高效、多维与大面积传递[   LI Z, FAN G L, GUO Q, et al. Synergistic strengthening effect of graphene–carbon nanotube hybrid structure in aluminum matrix composites[J]. Carbon, 2015, 95: 419–427.
75
]
,改善铝基复合材料的强韧性。Zhang等[   ZHANG X, SHI C S, LIU E Z, et al. Achieving high strength and high ductility in metal matrix composites reinforced with a discontinuous three-dimensional graphene-like network[J]. Nanoscale, 2017, 9(33): 11929–11938.
76
]
冷冻干燥含葡萄糖、Cu(NO32与NaCl的溶胶,热解后形成Cu修饰的3D不连续GNP网络(GN@Cu),热压成形了3D GN/Cu复合材料;研究表明,GN可避免外加GNP时的团聚及结构损伤,增强与基体的接触,并对裂纹产生桥联效应,体积分数4.0% GN材料的屈服强度与延伸率较基体分别升高126%和41%。图9[   ZHANG X, SHI C S, LIU E Z, et al. Achieving high strength and high ductility in metal matrix composites reinforced with a discontinuous three-dimensional graphene-like network[J]. Nanoscale, 2017, 9(33): 11929–11938.
76
]
展示了GN@Cu粉末的形貌及增韧机制和原位拉伸照片。Chen等[   CHEN Z P, REN W C, GAO L B, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials, 2011, 10(6): 424–428.
77
]
对Ni泡沫模板采用化学气相沉积(CVD)法制备GNP泡沫(GF),GF连续的碳层加快了电子转移,使浸渍PDMS的复合材料电导率达10 S/cm,且强度和柔韧性较高。Wu等[   WU S Q, LIU Y C, YU J, et al. A study of the structure, mechanical and corrosion properties of the copper matrix composites with CNTs/Cu foams as 3-dimensional skeleton reinforcements[J]. Journal of Materials Research and Technology, 2023, 23: 5066–5081.
78
]
基于三聚氰胺泡沫电镀法制备CNT与Cu的泡沫(CNT/Cuf),填充Cu粉后用SPS法制备CNT/Cuf /Cu复合材料,CNT均匀镶嵌在Cu骨架中构成扩散界面,并产生桥联效应,提升材料抗拉强度,孔隙内的Cu基体贡献了高的延伸率(31.8%)和电导率(93.4% IACS);CNT含量高时团聚及孔隙增多,降低了材料的强韧性和电导率。虽然关于3D网络GNP/Al或CNT/Al复合材料的报道较少,但上述研究说明了该网络对提升铝基复合材料强韧性具有优势。

图9     GN@Cu粉末的形貌与GN增韧机制[   ZHANG X, SHI C S, LIU E Z, et al. Achieving high strength and high ductility in metal matrix composites reinforced with a discontinuous three-dimensional graphene-like network[J]. Nanoscale, 2017, 9(33): 11929–11938.
76
]
Fig.9     Morphologies of GN@Cu powders and toughening mechanism of GN[   ZHANG X, SHI C S, LIU E Z, et al. Achieving high strength and high ductility in metal matrix composites reinforced with a discontinuous three-dimensional graphene-like network[J]. Nanoscale, 2017, 9(33): 11929–11938.
76
]

为探究CNT与GNP的协同效应,Xu等[   XU Z Y, LI C J, WANG Z, et al. Balancing the strength and ductility of graphene oxide–carbon nanotube hybrid reinforced aluminum matrix composites with bimodal grain distribution[J]. Materials Science and Engineering: A, 2020, 796: 140067.
79
]
将CNT、GO与Al粉球磨后烧结及热挤压,制得质量分数0.3% GO和1% CNT的铝基复合材料,GO与球磨破碎的CNT分别产生载荷传递强化和Orowan强化,使其抗拉强度较GO/Al、CNT/Al复合材料分别提升29%和21%;部分破碎的CNT与Al生成Al4C3棒,周围塞积的高密度位错作为再结晶形核点使晶粒呈双峰尺寸分布,提升应变硬化速率和均匀变形能力,从而展现出高的延伸率(23.1%)。利用π–π键的强相互作用可将CNT与GNP组装为连续的CNT–GNP网络,如Li等[   LI Z, FAN G L, GUO Q, et al. Synergistic strengthening effect of graphene–carbon nanotube hybrid structure in aluminum matrix composites[J]. Carbon, 2015, 95: 419–427.
75
]
将rGO与CNT组装为2D rGO–CNT网络,与片状Al粉混匀后冷压烧结及热挤压制备rGO–CNT/Al复合材料;rGO–CNT避免了单一rGO或CNT添加的团聚,又促使载荷大面积连续传递、变形区扩大,因此提高了载荷传递能力,使体积分数1.5%~3.0% rGO–CNT材料的抗拉强度较单一添加的显著提升;rGO与CNT体积比对稳定网络结构很重要,体积比高时(VrGO/VCNT为1∶2)嫁接在rGO上的CNT少、rGO易团聚,体积比低时(VrGO/VCNT为1∶10)难以形成rGO–CNT网络。图10[   LI Z, FAN G L, GUO Q, et al. Synergistic strengthening effect of graphene–carbon nanotube hybrid structure in aluminum matrix composites[J]. Carbon, 2015, 95: 419–427.
75
]
展示了rGO–CNT/Al粉制备流程及复合材料的形貌。

图10     rGO–CNT/Al粉末制备流程及复合材料的形貌[   LI Z, FAN G L, GUO Q, et al. Synergistic strengthening effect of graphene–carbon nanotube hybrid structure in aluminum matrix composites[J]. Carbon, 2015, 95: 419–427.
75
]
Fig.10     Preparation process of rGO–CNT/Al powders and morphologies of the composites[   LI Z, FAN G L, GUO Q, et al. Synergistic strengthening effect of graphene–carbon nanotube hybrid structure in aluminum matrix composites[J]. Carbon, 2015, 95: 419–427.
75
]

借鉴2D网络的协同强韧化作用,Zhang等[   ZHANG X, SHI C S, LIU E Z, et al. In-situ space-confined synthesis of well-dispersed three-dimensional graphene/carbon nanotube hybrid reinforced copper nanocomposites with balanced strength and ductility[J]. Composites Part A: Applied Science and Manufacturing, 2017, 103: 178–187.
80
]
采用与文献[   ZHANG X, SHI C S, LIU E Z, et al. Achieving high strength and high ductility in metal matrix composites reinforced with a discontinuous three-dimensional graphene-like network[J]. Nanoscale, 2017, 9(33): 11929–11938.
76
]相同的方法将CNT均匀嵌入3D GN中,构建了Cu修饰的3D CNT–GN,浸渍铜盐、煅烧及还原后使用SPS法制备了CNT–GN/Cu复合材料;研究表明,CNT与GN呈化学结合,CNT–GN分散均匀且与晶粒细小的Cu基体构成紧密结合,有效发挥细晶与载荷传递强化能力,体积分数1.15% CNT–GN(CNT与GN质量比4∶7)材料强度较添加单一GN、rGO、CNT或CNT–rGO的材料显著提升,并保持较高延伸率(13.0%)。该研究为发展分散均匀和强度高的3D CNT–GNP网络提供了思路,可用于协调提升铝基复合材料的强韧性。此外,Wang等[   WANG X, JIANG X S, SUN H L, et al. Microstructures and mechanical properties of Al nanocomposites hybrid-reinforced with B4C, carbon nanotubes and graphene nanoplatelets[J]. Materials Science and Engineering: B, 2023, 293: 116457.
81
]
将CNT、GNP、B4C颗粒和Al粉球磨后热压成形了CNT–GNP–BC4/Al复合材料,CNT–GNP较单一CNT或GNP分散均匀,B4C及CNT–GNP与Al构成反应界面,提升了CNT–GNP的强化能力,且强化效果随CNT占比的升高而增大,但韧性降低。

3.2     纳米碳与陶瓷颗粒的混合强化

TiCp、SiCp等陶瓷颗粒纳米化是提升复合材料强韧化效果的有效途径[   YANG H B, GAO T, WU Y Y, et al. Microstructure and mechanical properties at both room and high temperature of in situ TiC reinforced Al–4.5Cu matrix nanocomposite[J]. Journal of Alloys and Compounds, 2018, 767: 606–616.
82
]
,但大的比表面积和范德华力会增强团聚倾向[   LIN F, JIA F H, REN M Y, et al. Microstructure, mechanical and thermal properties of ultrafine-grained Al2024–TiC–GNPs nanocomposite[J]. Materials Science and Engineering: A, 2022, 841: 142855.
  AKBARPOUR M R, SADEGHI N, AGHAJANI H. Nano TiC–graphene–Cu composites fabrication by a modified ball-milling method followed by reactive sintering: Effects of reinforcements content on microstructure, consolidation, and mechanical properties[J]. Ceramics International, 2022, 48(1): 130–136.
83-84
]
。摩擦过程中,界面结合弱、团聚的陶瓷颗粒易从基体脱落,加剧磨损。将纳米碳与陶瓷颗粒混合,借助二者的相互包裹、拖动及渗透等作用,不仅可以促进分散、发挥多相强韧化协同效应[   LIN F, JIA F H, REN M Y, et al. Microstructure, mechanical and thermal properties of ultrafine-grained Al2024–TiC–GNPs nanocomposite[J]. Materials Science and Engineering: A, 2022, 841: 142855.
83
  LIN F, REN M Y, JIA F H, et al. Achieving balanced strength-ductility of heterostructured TiC/graphene nanoplatelets (GNPs) reinforced Al matrix composites by tuning TiC–to–GNPs ratio[J]. Composites Communications, 2023, 38: 101529.
85
]
,还能够利用纳米碳润滑和陶瓷颗粒的耐磨性改善摩擦磨损性能[   LIN F, REN M Y, WU H, et al. Fabrication of TiC–graphene dual-reinforced self-lubricating Al matrix hybrid nanocomposites with superior mechanical and tribological properties[J]. Tribology International, 2022, 171: 107535.
86
]
,成为铝基复合材料增强结构设计的另一方向。Zhang等[   ZHANG X, LI S F, PAN B, et al. Regulation of interface between carbon nanotubes–aluminum and its strengthening effect in CNTs reinforced aluminum matrix nanocomposites[J]. Carbon, 2019, 155: 686–696.
38
]
研究发现,纳米SiCp作为球磨介质可提高CNT与Al粉的润湿及分散性,减轻SPS及热挤压时Al4C3生成,限制CNT的拔出和剥离,使CNT和SiCp质量分数均为0.5%的Al基复合材料具有比单一CNT或SiCp强化时更高的抗拉强度、延伸率(20.7%)和导电率(50.5% IACS)。Lin等[   LIN F, JIA F H, REN M Y, et al. Microstructure, mechanical and thermal properties of ultrafine-grained Al2024–TiC–GNPs nanocomposite[J]. Materials Science and Engineering: A, 2022, 841: 142855.
83
]
研究得出,同时添加纳米TiCp和GNP可促使球磨过程中二者的分散和Al粉破裂,产生的协同强韧化作用及GNP拔出,使TiCp和GNP质量分数均为1%的铝基复合材料展现出更高的抗压强度和韧性。此外,Li等[   LI S S, SU Y S, OUYANG Q B, et al. In-situ carbon nanotube-covered silicon carbide particle reinforced aluminum matrix composites fabricated by powder metallurgy[J]. Materials Letters, 2016, 167: 118–121.
87
]
在SiCp上原位生长CNT,与Al粉混合后热压及热挤压制备了SiCp@CNT/Al复合材料,其中微米SiCp作为载体促使CNT在Al中分散,紧密的SiCp/CNT/Al界面提升了载荷传递能力,强韧化效果强于单一的SiCp或CNT。

优化纳米碳与陶瓷颗粒的比例是提升分散性、发挥协同强韧化的关键。Guo等[   GUO B S, ZHANG X M, CEN X, et al. Ameliorated mechanical and thermal properties of SiC reinforced Al matrix composites through hybridizing carbon nanotubes[J]. Materials Characterization, 2018, 136: 272–280.
88
]
认为球磨时CNT呈网状吸附并隔离SiCp,防止团聚发生,SiCp/CNT/Al界面紧密(图11),CNT拔出又抑制界面应力集中,使CNT和SiCp体积分数均为1%的铝基复合材料呈现高的强韧性,且热胀系数小,但SiCp含量高时团聚使延伸率降低。Şenel等[   ŞENEL M C, GÜRBÜZ M, KOÇ E. Fabrication and characterization of synergistic Al–SiC–GNPs hybrid composites[J]. Composites Part B: Engineering, 2018, 154: 1–9.
89
]
对冷压烧结GNP–SiCp/Al复合材料的研究表明,质量分数30% SiCp再添加0.1% GNP有利于二者分散,所得材料抗压强度增大;质量分数0.3%~0.5% GNP发生团聚,SiCp间自润滑的GNP增多,SiCp易滑移,降低了材料抗压性能。Lin等[   LIN F, REN M Y, JIA F H, et al. Achieving balanced strength-ductility of heterostructured TiC/graphene nanoplatelets (GNPs) reinforced Al matrix composites by tuning TiC–to–GNPs ratio[J]. Composites Communications, 2023, 38: 101529.
85
]
研究了VTiCp/VGNP对TiCp–GNP/Al复合材料性能的影响,在总体积分数10%时,VTiCp/VGNP由10.0∶0降至8.5∶1.5,GNP与TiCp的交互作用加快球磨时团聚颗粒的破碎并提升分散性,材料的抗压强度与塑性提高;比例为8.0∶2.0时,GNP的团聚使材料烧结致密性变差、强韧性降低;同时,分散不均的TiCp将材料分为高强度的强化区和高塑性的无强化区,适当增加GNP比例可使TiCp分散均匀,无强化区减少,塑性降低。

图11     SiCp/CNT网络及与Al基体的界面形貌[   GUO B S, ZHANG X M, CEN X, et al. Ameliorated mechanical and thermal properties of SiC reinforced Al matrix composites through hybridizing carbon nanotubes[J]. Materials Characterization, 2018, 136: 272–280.
88
]
Fig.11     Network structure of SiCp/CNT and its interfacial morphology with Al matrix[   GUO B S, ZHANG X M, CEN X, et al. Ameliorated mechanical and thermal properties of SiC reinforced Al matrix composites through hybridizing carbon nanotubes[J]. Materials Characterization, 2018, 136: 272–280.
88
]

纳米碳具有自润滑能力,将它与陶瓷颗粒混合强化,可同时提升铝基复合材料力学与摩擦磨损性能。Lin等[   LIN F, REN M Y, WU H, et al. Fabrication of TiC–graphene dual-reinforced self-lubricating Al matrix hybrid nanocomposites with superior mechanical and tribological properties[J]. Tribology International, 2022, 171: 107535.
86
]
对GNP–TiCp/Al复合材料的研究表明,质量分数由0.5%增至1.0%的GNP与TiCp球磨时的相互作用提升了二者分散性,SPS致密性和界面结合同步改善,材料强韧性升高;均匀分散的TiCp避免团聚引起的磨粒磨损,GNP润滑及摩擦形成的光滑氧化物膜降低了摩擦和磨损,使添加5.0% TiCp–1.0% GNP(质量分数)时材料的摩擦系数(0.371)和磨损率(4.62×10–4 mm3/Nm)较添加5.0% TiCp时分别减小31%和94.4%。CNT与GNP对摩擦磨损的影响不同,Sharma等[   SHARMA A, NARSIMHACHARY D, SHARMA V M, et al. Surface modification of Al6061–SiC surface composite through impregnation of graphene, graphite & carbon nanotubes via FSP: A tribological study[J]. Surface and Coatings Technology, 2019, 368: 175–191.
90
]
采用FSP法将等体积分数的SiCp与GNP或CNT分散在Al基底中制成复合材料,GNP大的表面积及层间滑移促使形成光滑摩擦膜,其褶皱舒展释放应力,防止摩擦膜应力破坏,有效降低摩擦和磨损;摩擦过程中CNT发生断裂,不具备促使摩擦膜形成的自润滑性,黏着磨损引起的大磨屑脱落会加剧磨粒磨损。此外,添加石墨粉也可以产生自润滑效应,降低摩擦磨损。

表2[   GUO B S, CHEN Y Q, WANG Z W, et al. Enhancement of strength and ductility by interfacial nano-decoration in carbon nanotube/aluminum matrix composites[J]. Carbon, 2020, 159: 201–212.
30
  GUAN R, WANG Y, ZHENG S, et al. Fabrication of aluminum matrix composites reinforced with Ni-coated graphene nanosheets[J]. Materials Science and Engineering: A, 2019, 754: 437–446.
34
  ZHANG X, LI S F, PAN D, et al. Microstructure and synergistic-strengthening efficiency of CNTs–SiCp dual-nano reinforcements in aluminum matrix composites[J]. Composites Part A: Applied Science and Manufacturing, 2018, 105: 87–96.
  ZHANG X, LI S F, PAN B, et al. Regulation of interface between carbon nanotubes–aluminum and its strengthening effect in CNTs reinforced aluminum matrix nanocomposites[J]. Carbon, 2019, 155: 686–696.
37-38
  KWON H, MONDAL J, ALOGAB K A, et al. Graphene oxide-reinforced aluminum alloy matrix composite materials fabricated by powder metallurgy[J]. Journal of Alloys and Compounds, 2017, 698: 807–813.
60
  LI Z, FAN G L, GUO Q, et al. Synergistic strengthening effect of graphene–carbon nanotube hybrid structure in aluminum matrix composites[J]. Carbon, 2015, 95: 419–427.
75
  XU Z Y, LI C J, WANG Z, et al. Balancing the strength and ductility of graphene oxide–carbon nanotube hybrid reinforced aluminum matrix composites with bimodal grain distribution[J]. Materials Science and Engineering: A, 2020, 796: 140067.
79
  GUO B S, ZHANG X M, CEN X, et al. Ameliorated mechanical and thermal properties of SiC reinforced Al matrix composites through hybridizing carbon nanotubes[J]. Materials Characterization, 2018, 136: 272–280.
88
  RONG X D, CHEN X F, ZHAO D D, et al. High mechanical strengthened CNTs/Al composite concepts with robust interface and intragranular reinforcement achieved via interfacial tHermite reaction[J]. Composites Part A: Applied Science and Manufacturing, 2023, 173: 107630.
  JIANG Y Y, TAN Z Q, FAN G L, et al. Reaction-free interface promoting strength-ductility balance in graphene nanosheet/Al composites[J]. Carbon, 2020, 158: 449–455.
  CHEN B, IMAI H, UMEDA J, et al. Effect of spark-plasma-sintering conditions on tensile properties of aluminum matrix composites reinforced with multiwalled carbon nanotubes (MWCNTs)[J]. JOM, 2017, 69(4): 669–675.
91-93
]
列出不同涂层、制备工艺及混合强化下部分纳米碳/铝复合材料的Al4C3生成情况与拉伸性能。涂层抑制了Al4C3的生成并改善界面结合,显著提升材料强度,但会降低延伸率。因为涂层成分、厚度、结构及其与Al基体生成的第二相存在差异,导致涂层对强度提升的幅度不同,原位的Al2O3涂层与Al呈半共格关系,且氧原子扩散会在晶内生成Al2O3晶须,对强度提升更有利。减少纳米碳表面缺陷、降低制备温度和时间等可限制Al4C3的大量生成及对纳米碳的损伤,压力加工又可提升纳米碳/铝的界面强度,进而改善材料强韧性,但效果低于涂层改性。因此,在复合工艺优化基础上,设计并控制涂层的成分、厚度、结构等是纳米碳/铝复合材料强韧性提升的关键。利用CNT或GNP构成的3D网络及与陶瓷纳米颗粒的混合可促进纳米碳的分散,而借助3D网络的互锁与桥联作用增强载荷传递效率,能够使材料强韧性较单一CNT或GNP强化效果明显提升。然而,由于缺乏可供纳米碳网络及组元比例等设计与调控的有效数据,且纳米碳网络制备工艺复杂、与Al基体复合时结构易坍塌,限制了纳米碳网络及其与陶瓷颗粒混合强化的效果,这成为目前研究面临的挑战。

表2     不同涂层、复合工艺及混合强化下纳米碳/铝复合材料的Al4C3生成情况和力学性能
Table 2     Al4C3 formation and mechanical properties of nanocarbon/aluminum composites under different coatings, processes and hybrid strengthening
基体 增强体 制备工艺参数 Al4C3 屈服强度/MPa 拉伸强度/MPa 延伸率/% 文献
纯Al 1%* CNT SPS(600 ℃/30 MPa/0.33 h)+450 ℃轧制 295(33.4) 10.9(–39.8) [   GUO B S, CHEN Y Q, WANG Z W, et al. Enhancement of strength and ductility by interfacial nano-decoration in carbon nanotube/aluminum matrix composites[J]. Carbon, 2020, 159: 201–212.
30
]
1%* CNT+Cu层 391(76.9) 15.7(–13.2)
1.5% GNP+Ni层 真空烧结(630 ℃/2 h)+500 ℃挤压 204.5(132) 10.2(–50.2) [   GUAN R, WANG Y, ZHENG S, et al. Fabrication of aluminum matrix composites reinforced with Ni-coated graphene nanosheets[J]. Materials Science and Engineering: A, 2019, 754: 437–446.
34
]
1.5%* CNT SPS(630 ℃/30 MPa/1 h)+400 ℃挤压 少量 217(70.9) 7.2(–75.8) [   ZHANG X, LI S F, PAN D, et al. Microstructure and synergistic-strengthening efficiency of CNTs–SiCp dual-nano reinforcements in aluminum matrix composites[J]. Composites Part A: Applied Science and Manufacturing, 2018, 105: 87–96.
37
]
1.5%* SiC 157(23.6) 29.8(0)
0.75%* CNT–0.75%* SiC 少量 247(94.5) 20.7(–30.5)
1.0%* CNT SPS(630 ℃/30 MPa/0.5 h)+400 ℃挤压 108.3(1.9) 148.3(16.7) 16.2(–45.6) [   ZHANG X, LI S F, PAN B, et al. Regulation of interface between carbon nanotubes–aluminum and its strengthening effect in CNTs reinforced aluminum matrix nanocomposites[J]. Carbon, 2019, 155: 686–696.
38
]
1.0%* CNT+SiC层 161.1(51.7) 198.8(56.4) 19(–36.2)
1.5%* CNT 真空烧结(500 ℃/1 h)+440 ℃挤压 260(26.8) 326(30.4) 12.6(–27.2) [   LI Z, FAN G L, GUO Q, et al. Synergistic strengthening effect of graphene–carbon nanotube hybrid structure in aluminum matrix composites[J]. Carbon, 2015, 95: 419–427.
75
]
1.5%* RGO 270(31.7) 331(32.4) 5.9(–65.9)
1.5%* CNT–rGO混合 358(74.6) 415(66) 8.2(–52.6)
1% CNT–0.3% GO混合 冷压烧结(560 ℃/4 h)+560 ℃挤压 156(31.1) 249(42.3) 23.1(0) [   XU Z Y, LI C J, WANG Z, et al. Balancing the strength and ductility of graphene oxide–carbon nanotube hybrid reinforced aluminum matrix composites with bimodal grain distribution[J]. Materials Science and Engineering: A, 2020, 796: 140067.
79
]
1%* SiC SPS(600 ℃/30 MPa/0.33 h)+450 ℃轧制 少量 171 218 11.8 [   GUO B S, ZHANG X M, CEN X, et al. Ameliorated mechanical and thermal properties of SiC reinforced Al matrix composites through hybridizing carbon nanotubes[J]. Materials Characterization, 2018, 136: 272–280.
88
]
1%* CNT–1%* SiC混合 少量 213.7 291.9 15.8
1.5% CNT 真空烧结(620 ℃/1 h)+520 ℃挤压 160(97.5) 241(59.6) 12.6(–49.2) [   RONG X D, CHEN X F, ZHAO D D, et al. High mechanical strengthened CNTs/Al composite concepts with robust interface and intragranular reinforcement achieved via interfacial tHermite reaction[J]. Composites Part A: Applied Science and Manufacturing, 2023, 173: 107630.
91
]
1.5% CNT+Cu层 185(128.3) 336(122.5) 13.3(–46.3)
1.5% CNT+Al2O3 236(191.3) 415(174.8) 11.6(–53.2)
0.5%* GNP 500 ℃/600 MPa/2 h热压+400 ℃挤压 207(5.6) 257(2.8) 9.2 [   JIANG Y Y, TAN Z Q, FAN G L, et al. Reaction-free interface promoting strength-ductility balance in graphene nanosheet/Al composites[J]. Carbon, 2020, 158: 449–455.
92
]
540 ℃/600 MPa/2 h热压+400 ℃挤压 232(19.6) 296(19.4) 14.0
580 ℃/600 MPa/2 h热压+400 ℃挤压 220(14.0) 269(9.3) 11.3
2.0% CNT SPS(500 ℃/30 MPa/0.5 h)+500 ℃挤压 少量 378 430 6 [   CHEN B, IMAI H, UMEDA J, et al. Effect of spark-plasma-sintering conditions on tensile properties of aluminum matrix composites reinforced with multiwalled carbon nanotubes (MWCNTs)[J]. JOM, 2017, 69(4): 669–675.
93
]
SPS(600 ℃/30 MPa/1 h)+500 ℃挤压 393 11
SPS(630 ℃/30 MPa/5 h)+500 ℃挤压 大量 367 13
AlMg合金 1%* GNP 热压(550 ℃/570 MPa/1.5 h) 200(53.8) 556(113.8) 10(–0.6) [   KWON H, MONDAL J, ALOGAB K A, et al. Graphene oxide-reinforced aluminum alloy matrix composite materials fabricated by powder metallurgy[J]. Journal of Alloys and Compounds, 2017, 698: 807–813.
60
]

注:“*”指体积分数,未标注的百分含量为质量分数;括号内所列数据为复合材料与Al基体相比的性能提升率(%)。

4     结论

(1)纳米碳/铝界面机械结合依赖于机械互锁,扩散结合利用纳米碳/铝的扩散层提升界面强度,反应结合界面通过反应生成的Al4C3形成强结合。纳米碳/铝界面调控主要有纳米碳表面涂层及复合工艺优化等。表面涂层可改善纳米碳分散性及与铝的润湿性,并抑制Al4C3生成,借助紧密的机械互锁和扩散层可提升界面结合及强化效率,但涂层形貌、质量、厚度等的控制与制备涂层时对纳米碳的损伤等是研究面临的挑战。纳米碳/铝复合材料制备方法有液相法和固相法,可通过优化分散方式、降低纳米碳损伤、控制制备温度与时间等减轻界面反应。在复合工艺优化基础上,设计涂层成分、厚度、结构及采取基体合金化等,是进一步控制界面反应与结构、提升纳米碳/铝复合材料强韧性的有效途径。

(2)单一CNT或GNP及二者混合构成的增强网络通过改善分散性、界面结合强度及载荷的连续、高效传递等,提升纳米碳/铝复合材料的强韧性。但多维网络的制备过程复杂、构型设计控制较难,网络结构强度低且易引入杂质,因此纳米碳网络构型工艺简单化及其结构设计与调控是当前研究的重要方向。

(3)纳米碳与陶瓷颗粒的混合可促使二者在Al基体中分散,借助多相强化机制及二者的优势可改善复合材料的强韧性与耐磨性。基于性能机制的揭示,有效设计纳米碳网络构型及其与陶瓷颗粒的比例等,并采取纳米碳表面改性及复合工艺优化、新技术开发等措施,有望发挥纳米碳及与陶瓷颗粒的协同效应,促进铝基复合材料结构与功能性能的新发展。

作者介绍



邓海亮 教授,博士生导师,研究方向为先进复合材料。

参考文献

[1]

SUNIL KUMAR REDDY K, KANNAN M, KARTHIKEYAN R, et al. A review on mechanical and thermal properties of aluminum metal matrix composites[J]. E3S Web of Conferences, 2020, 184: 01033.

[2]

KUMAR SHARMA A, BHANDARI R, AHERWAR A, et al. A study of advancement in application opportunities of aluminum metal matrix composites[J]. Materials Today: Proceedings, 2020, 26: 24192424.

[3]

UJAH C O, VON KALLON D V. Trends in aluminium matrix composite development[J]. Crystals, 2022, 12(10): 1357.

[4]

ZHANG H J, ZHANG B X, GAO Q Z, et al. A review on microstructures and properties of graphene-reinforced aluminum matrix composites fabricated by friction stir processing[J]. Journal of Manufacturing Processes, 2021, 68: 126135.

[5]

ZARE H, JAHEDI M, TOROGHINEJAD M R, et al. Microstructure and mechanical properties of carbon nanotubes reinforced aluminum matrix composites synthesized via equal-channel angular pressing[J]. Materials Science and Engineering: A, 2016, 670: 205216.

[6]

ALAM F, CHOOSRI M, GUPTA T K, et al. Electrical, mechanical and thermal properties of graphene nanoplatelets reinforced UHMWPE nanocomposites[J]. Materials Science and Engineering: B, 2019, 241: 8291.

[7]

YANG L Z, ZHOU B Z, MA L S, et al. Architectured interfacial interlocking structure for enhancing mechanical properties of Al matrix composites reinforced with graphene nanosheets[J]. Carbon, 2021, 183: 685701.

[8]

赵乃勤, 刘兴海, 蒲博闻. 多维度碳纳米相增强铝基复合材料研究进展[J]. 金属学报, 2019, 55(1): 115.
ZHAO Naiqin, LIU Xinghai, PU Bowen. Progress on multi-dimensional carbon nanomaterials reinforced aluminum matrix composites: A review[J]. Acta Metallurgica Sinica, 2019, 55(1): 115.

[9]

施展, 马凤仓, 谭占秋, . 碳纳米管增强铝基复合材料界面与晶粒调控研究进展[J]. 粉末冶金技术, 2024, 42(1): 1428.
SHI Zhan, MA Fengcang, TAN Zhanqiu, et al. Research progress on the interface and grain control in carbon nanotube reinforced aluminum matrix composites[J]. Powder Metallurgy Technology, 2024, 42(1): 1428.

[10]

薛婷婷, 王庆平, 卢春阳, . 改善石墨烯增强铝基复合材料分散性的研究进展[J]. 热加工工艺, 2021, 50(18): 69, 14.
XUE Tingting, WANG Qingping, LU Chunyang, et al. Research progress on improving dispersion of graphene reinforced aluminum matrix composites[J]. Hot Working Technology, 2021, 50(18): 69, 14.

[11]

鄢来朋, 谭占秋, 熊定邦, . 碳纳米管/铝复合材料界面调控研究进展[J]. 中国材料进展, 2016, 35(12): 943949.
YAN Laipeng, TAN Zhanqiu, XIONG Dingbang, et al. Research progress on the interface control in CNT/Al composites[J]. Materials China, 2016, 35(12): 943949.

[12]

李肖亮, 李昱桦, 董正学, . 碳/铝复合材料界面Al4C3相的形成与调控研究进展[J]. 中国有色金属学报, 2024, 34(5): 14531474.
LI Xiaoliang, LI Yuhua, DONG Zhengxue, et al. Reviews on formation and tailoring of interfacial Al4C3 phase in carbon/aluminum composites[J]. The Chinese Journal of Nonferrous Metals, 2024, 34(5): 14531474.

[13]

DHANDAPANI S, RAJMOHAN T, PALANIKUMAR K, et al. Synthesis and characterization of dual particle (MWCT+B4C) reinforced sintered hybrid aluminum matrix composites[J]. Particulate Science and Technology, 2016, 34(3): 255262.

[14]

YU Z Y, TAN Z Q, XU R, et al. Enhanced load transfer by designing mechanical interfacial bonding in carbon nanotube reinforced aluminum composites[J]. Carbon, 2019, 146: 155161.

[15]

LI J C, ZHANG X X, GENG L. Effect of heat treatment on interfacial bonding and strengthening efficiency of graphene in GNP/Al composites[J]. Composites Part A: Applied Science and Manufacturing, 2019, 121: 487498.

[16]

KURITA H, ESTILI M, KWON H, et al. Load-bearing contribution of multi-walled carbon nanotubes on tensile response of aluminum[J]. Composites Part A: Applied Science and Manufacturing, 2015, 68: 133139.

[17]

CHEN B, KONDOH K, IMAI H, et al. Simultaneously enhancing strength and ductility of carbon nanotube/aluminum composites by improving bonding conditions[J]. Scripta Materialia, 2016, 113: 158162.

[18]

CHEN B, LI S F, IMAI H, et al. Load transfer strengthening in carbon nanotubes reinforced metal matrix composites via in situ tensile tests[J]. Composites Science and Technology, 2015, 113: 18.

[19]

HUANG Z W, YAN H. Improved mechanical properties of GNPs/Al composites by eliminating alumina and obtaining a strong bonded GNPs–Al direct contact interface and Mg-rich phases[J]. Journal of Alloys and Compounds, 2024, 984: 173982.

[20]

KHANNA V, KUMAR V, BANSAL S A. Mechanical properties of aluminium–graphene/carbon nanotubes (CNTs) metal matrix composites: Advancement, opportunities and perspective[J]. Materials Research Bulletin, 2021, 138: 111224.

[21]

ZHOU W W, YAMAGUCHI T, KIKUCHI K, et al. Effectively enhanced load transfer by interfacial reactions in multi-walled carbon nanotube reinforced Al matrix composites[J]. Acta Materialia, 2017, 125: 369376.

[22]

CI L J, RYU Z, JIN-PHILLIPP N Y, et al. Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum[J]. Acta Materialia, 2006, 54(20): 53675375.

[23]

CHEN B, SHEN J, YE X, et al. Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)-reinforced aluminum matrix composites[J]. Carbon, 2017, 114: 198208.

[24]

JIANG Y Y, TAN Z Q, FAN G L, et al. Nucleation and growth mechanisms of interfacial carbide in graphene nanosheet/Al composites[J]. Carbon, 2020, 161: 1724.

[25]

KIM D, HIRAYAMA Y, LIU Z, et al. Fabrication of Al–CNT composite with high hardness and electrical conductivity by controlling Al4C3 formation[J]. Journal of Alloys and Compounds, 2023, 942: 169102.

[26]

XIONG B W, LIU K, XIONG W, et al. Strengthening effect induced by interfacial reaction in graphene nanoplatelets reinforced aluminum matrix composites[J]. Journal of Alloys and Compounds, 2020, 845: 156282.

[27]

YAN L P, TAN Z Q, JI G, et al. A quantitative method to characterize the Al4C3-formed interfacial reaction: The case study of MWCNT/Al composites[J]. Materials Characterization, 2016, 112: 213218.

[28]

ZHOU W W, YAMAMOTO G, FAN Y C, et al. In-situ characterization of interfacial shear strength in multi-walled carbon nanotube reinforced aluminum matrix composites[J]. Carbon, 2016, 106: 3747.

[29]

JOSHI D J, KODURU J R, MALEK N I, et al. Surface modifications and analytical applications of graphene oxide: A review[J]. TrAC Trends in Analytical Chemistry, 2021, 144: 116448.

[30]

GUO B S, CHEN Y Q, WANG Z W, et al. Enhancement of strength and ductility by interfacial nano-decoration in carbon nanotube/aluminum matrix composites[J]. Carbon, 2020, 159: 201212.

[31]

ODIWO H, BELLO K A, ABDULWAHAB M, et al. Properties of aluminium/electroless Ni-coated SiC composites— A review[J]. Fudma Journal of Sciences, 2021, 5(1): 381391.

[32]

GUAN C, ZHAO Y T, CHEN G, et al. Synergistic strengthening and toughening of copper coated graphene nanoplates and in situ nanoparticles reinforced AA6111 composites[J]. Materials Science and Engineering: A, 2021, 822: 141661.

[33]

ZENG M, DONG X J, ZHANG P X, et al. Remarkable improvement of wettability of Cu-coated carbon nanotubes by molten aluminum[J]. Diamond and Related Materials, 2023, 137: 110155.

[34]

GUAN R, WANG Y, ZHENG S, et al. Fabrication of aluminum matrix composites reinforced with Ni-coated graphene nanosheets[J]. Materials Science and Engineering: A, 2019, 754: 437446.

[35]

WANG X, XIAO W, WANG J W, et al. Enhanced interfacial strength of graphene reinforced aluminum composites via X (Cu, Ni, Ti)-coating: Molecular-dynamics insights[J]. Advanced Powder Technology, 2021, 32(7): 25852590.

[36]

SO K P, LEE I H, DUONG D L, et al. Improving the wettability of aluminum on carbon nanotubes[J]. Acta Materialia, 2011, 59(9): 33133320.

[37]

ZHANG X, LI S F, PAN D, et al. Microstructure and synergistic-strengthening efficiency of CNTs–SiCp dual-nano reinforcements in aluminum matrix composites[J]. Composites Part A: Applied Science and Manufacturing, 2018, 105: 8796.

[38]

ZHANG X, LI S F, PAN B, et al. Regulation of interface between carbon nanotubes–aluminum and its strengthening effect in CNTs reinforced aluminum matrix nanocomposites[J]. Carbon, 2019, 155: 686696.

[39]

LIU L, LI S F, ZHANG X, et al. Syntheses, microstructure evolution and performance of strength-ductility matched aluminum matrix composites reinforced by nano SiC–cladded CNTs[J]. Materials Science and Engineering: A, 2021, 824: 141784.

[40]

ABORKIN A, BABIN D, ZALESNOV A, et al. Effect of ceramic coating on carbon nanotubes interaction with matrix material and mechanical properties of aluminum matrix nanocomposite[J]. Ceramics International, 2020, 46(11): 1925619263.

[41]

RONG X D, ZHANG X, ZHAO D D, et al. In-situ Al2O3–Al interface contribution towards the strength-ductility synergy of Al–CuO composite fabricated by solid-state reactive sintering[J]. Scripta Materialia, 2021, 198: 113825.

[42]

JU B Y, YANG W S, SHAO P Z, et al. Effect of interfacial microstructure on the mechanical properties of GNPs/Al composites[J]. Carbon, 2020, 162: 346355.

[43]

SHAN Y C, PU B W, LIU E Z, et al. In-situ synthesis of CNTs@Al2O3 wrapped structure in aluminum matrix composites with balanced strength and toughness[J]. Materials Science and Engineering: A, 2020, 797: 140058.

[44]

ZHOU W W, YANG P, FAN Y C, et al. Simultaneous enhancement of dispersion and interfacial adhesion in Al matrix composites reinforced with nanoceramic-decorated carbon nanotubes[J]. Materials Science and Engineering: A, 2021, 804: 140784.

[45]

ZIAEI H, FAN G L, TAN Z Q, et al. SiO2 coating on CNTs to fabricate the Al4O4C–Al composite with superior Young’s modulus[J]. Materials Characterization, 2024, 207: 113597.

[46]

邓海亮, 万梓涵, 任可聪, . 纳米碳/铝复合材料的制备、界面改性与增强机制研究进展[J]. 固体火箭技术, 2023, 46(2): 231252.
DENG Hailiang, WAN Zihan, REN Kecong, et al. Reviews on fabrication, interface modification and reinforcing mechanism of nanocarbon/aluminum composites[J]. Journal of Solid Rocket Technology, 2023, 46(2): 231252.

[47]

SUN W, ZHAN K, YANG Z, et al. Facile fabrication of GO/Al composites with improved dispersion of graphene and enhanced mechanical properties by Cu doping and powder metallurgy[J]. Journal of Alloys and Compounds, 2020, 815: 152465.

[48]

HAN T L, LIU E Z, LI J J, et al. A bottom-up strategy toward metal nano-particles modified graphene nanoplates for fabricating aluminum matrix composites and interface study[J]. Journal of Materials Science & Technology, 2020, 46: 2132.

[49]

GARG P, JAMWAL A, KUMAR D, et al. Advance research progresses in aluminium matrix composites: Manufacturing & applications[J]. Journal of Materials Research and Technology, 2019, 8(5): 49244939.

[50]

MUSSATTO A, AHAD I U, MOUSAVIAN R T, et al. Advanced production routes for metal matrix composites[J]. Engineering Reports, 2021, 3(5): e12330.

[51]

SHIRVANIMOGHADDAM K, HAMIM S U, KARBALAEI AKBARI M, et al. Carbon fiber reinforced metal matrix composites: Fabrication processes and properties[J]. Composites Part A: Applied Science and Manufacturing, 2017, 92: 7096.

[52]

HANIZAM H, SALLEH M S, OMAR M Z, et al. Effects of hybrid processing on microstructural and mechanical properties of thixoformed aluminum matrix composite[J]. Journal of Alloys and Compounds, 2020, 836: 155378.

[53]

SEYED POURMAND N, ASGHARZADEH H. Aluminum matrix composites reinforced with graphene: A review on production, microstructure, and properties[J]. Critical Reviews in Solid State and Materials Sciences, 2020, 45(4): 289337.

[54]

VENKATESAN S, ANTHONY XAVIOR M. Tensile behavior of aluminum alloy (AA7050) metal matrix composite reinforced with graphene fabricated by stir and squeeze cast processes[J]. Science and Technology of Materials, 2018, 30(2): 7485.

[55]

PARK J G, KEUM D H, LEE Y H. Strengthening mechanisms in carbon nanotube-reinforced aluminum composites[J]. Carbon, 2015, 95: 690698.

[56]

YAN H, HUANG Z X, QIU H X. Microstructure and mechanical properties of CNTs/A356 nanocomposites fabricated by high-intensity ultrasonic processing[J]. Metallurgical and Materials Transactions A, 2017, 48(2): 910918.

[57]

YANG W S, ZHAO Q Q, XIN L, et al. Microstructure and mechanical properties of graphene nanoplates reinforced pure Al matrix composites prepared by pressure infiltration method[J]. Journal of Alloys and Compounds, 2018, 732: 748758.

[58]

ZHANG P X, XU W M, ZENG M, et al. Regulating microstructure, mechanical properties and electrochemical characteristic of 2024–CNTs aluminum composites via decorating nano Ni on the surface of CNTs[J]. Diamond and Related Materials, 2022, 126: 109132.

[59]

ZHANG Z L, XIAO Y, XU J, et al. Understanding the influencing mechanism of CNTs on the microstructure and mechanical properties of semi-solid stir casting Al–Cu–Mg alloys[J]. Journal of Materials Research and Technology, 2022, 18: 39493960.

[60]

KWON H, MONDAL J, ALOGAB K A, et al. Graphene oxide-reinforced aluminum alloy matrix composite materials fabricated by powder metallurgy[J]. Journal of Alloys and Compounds, 2017, 698: 807813.

[61]

ZAN Y N, ZHANG Q, ZHOU Y T, et al. Introducing graphene (reduced graphene oxide) into Al matrix composites for enhanced high-temperature strength[J]. Composites Part B: Engineering, 2020, 195: 108095.

[62]

HAN T L, WANG F C, LI J J, et al. Simultaneously enhanced strength and ductility of Al matrix composites through the introduction of intragranular nano-sized graphene nanoplates[J]. Composites Part B: Engineering, 2021, 212: 108700.

[63]

GUO B S, SONG M, ZHANG X M, et al. Exploiting the synergic strengthening effects of stacking faults in carbon nanotubes reinforced aluminum matrix composites for enhanced mechanical properties[J]. Composites Part B: Engineering, 2021, 211: 108646.

[64]

HEYDARI S, SAJJADI S A, BABAKHANI A, et al. An investigation on the effect of Al4C3 on microstructure and mechanical properties of carbon nanotube reinforced aluminum composite[J]. Ceramics International, 2023, 49(9): 1402414034.

[65]

ZHANG S, WANG T, JIANG Z P. Carbon nanotubes/aluminum interface structure and its effects on the strength and electrical conductivity of aluminum[J]. Journal of Materials Research and Technology, 2023, 27: 70377046.

[66]

SHARMA A, MORISADA Y, FUJII H. Interfacial microstructure and strengthening mechanisms of SPSed Al/GNP nanocomposite subjected to multi-pass friction stir processing[J]. Materials Characterization, 2023, 197: 112652.

[67]

GHADAR S, MOMENI A, KHADEMI E, et al. Effect of rotation and traverse speeds on the microstructure and mechanical properties of friction stir processed 2205 duplex stainless steel[J]. Materials Science and Engineering: B, 2021, 263: 114813.

[68]

DINESH KUMAR D, BALAMURUGAN A, SURESH K C, et al. Study of microstructure and wear resistance of AA5052/B4C nanocomposites as a function of volume fraction reinforcement to particle size ratio by ANN[J]. Journal of Chemistry, 2023, 2023: 2554098.

[69]

TENG H Y, TAN Z Q, ZHENG Q, et al. Preparation of heterogeneous nanolaminated graphene nanosheet/Al–Cu–Mg composites by powder assembly & alloying[J]. Journal of Alloys and Compounds, 2023, 967: 171648.

[70]

SADEGHI B, CAVALIERE P, PRUNCU C I. Architecture dependent strengthening mechanisms in graphene/Al heterogeneous lamellar composites[J]. Materials Characterization, 2022, 188: 111913.

[71]

ZAKARIA M R, OMAR M F, ZAINOL ABIDIN M S, et al. Recent progress in the three-dimensional structure of graphene-carbon nanotubes hybrid and their supercapacitor and high-performance battery applications[J]. Composites Part A: Applied Science and Manufacturing, 2022, 154: 106756.

[72]

ALI Z, YAQOOB S, YU J H, et al. Critical review on the characterization, preparation, and enhanced mechanical, thermal, and electrical properties of carbon nanotubes and their hybrid filler polymer composites for various applications[J]. Composites Part C: Open Access, 2024, 13: 100434.

[73]

KIM J W, SAUTI G, JENSEN B D, et al. Modifying carbon nanotube fibers: A study relating apparent interfacial shear strength and failure mode[J]. Carbon, 2021, 173: 857869.

[74]

WANG Y T, MENG Z X. Mechanical and viscoelastic properties of wrinkled graphene reinforced polymer nanocomposites—Effect of interlayer sliding within graphene sheets[J]. Carbon, 2021, 177: 128137.

[75]

LI Z, FAN G L, GUO Q, et al. Synergistic strengthening effect of graphene–carbon nanotube hybrid structure in aluminum matrix composites[J]. Carbon, 2015, 95: 419427.

[76]

ZHANG X, SHI C S, LIU E Z, et al. Achieving high strength and high ductility in metal matrix composites reinforced with a discontinuous three-dimensional graphene-like network[J]. Nanoscale, 2017, 9(33): 1192911938.

[77]

CHEN Z P, REN W C, GAO L B, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials, 2011, 10(6): 424428.

[78]

WU S Q, LIU Y C, YU J, et al. A study of the structure, mechanical and corrosion properties of the copper matrix composites with CNTs/Cu foams as 3-dimensional skeleton reinforcements[J]. Journal of Materials Research and Technology, 2023, 23: 50665081.

[79]

XU Z Y, LI C J, WANG Z, et al. Balancing the strength and ductility of graphene oxide–carbon nanotube hybrid reinforced aluminum matrix composites with bimodal grain distribution[J]. Materials Science and Engineering: A, 2020, 796: 140067.

[80]

ZHANG X, SHI C S, LIU E Z, et al. In-situ space-confined synthesis of well-dispersed three-dimensional graphene/carbon nanotube hybrid reinforced copper nanocomposites with balanced strength and ductility[J]. Composites Part A: Applied Science and Manufacturing, 2017, 103: 178187.

[81]

WANG X, JIANG X S, SUN H L, et al. Microstructures and mechanical properties of Al nanocomposites hybrid-reinforced with B4C, carbon nanotubes and graphene nanoplatelets[J]. Materials Science and Engineering: B, 2023, 293: 116457.

[82]

YANG H B, GAO T, WU Y Y, et al. Microstructure and mechanical properties at both room and high temperature of in situ TiC reinforced Al–4.5Cu matrix nanocomposite[J]. Journal of Alloys and Compounds, 2018, 767: 606616.

[83]

LIN F, JIA F H, REN M Y, et al. Microstructure, mechanical and thermal properties of ultrafine-grained Al2024–TiC–GNPs nanocomposite[J]. Materials Science and Engineering: A, 2022, 841: 142855.

[84]

AKBARPOUR M R, SADEGHI N, AGHAJANI H. Nano TiC–graphene–Cu composites fabrication by a modified ball-milling method followed by reactive sintering: Effects of reinforcements content on microstructure, consolidation, and mechanical properties[J]. Ceramics International, 2022, 48(1): 130136.

[85]

LIN F, REN M Y, JIA F H, et al. Achieving balanced strength-ductility of heterostructured TiC/graphene nanoplatelets (GNPs) reinforced Al matrix composites by tuning TiC–to–GNPs ratio[J]. Composites Communications, 2023, 38: 101529.

[86]

LIN F, REN M Y, WU H, et al. Fabrication of TiC–graphene dual-reinforced self-lubricating Al matrix hybrid nanocomposites with superior mechanical and tribological properties[J]. Tribology International, 2022, 171: 107535.

[87]

LI S S, SU Y S, OUYANG Q B, et al. In-situ carbon nanotube-covered silicon carbide particle reinforced aluminum matrix composites fabricated by powder metallurgy[J]. Materials Letters, 2016, 167: 118121.

[88]

GUO B S, ZHANG X M, CEN X, et al. Ameliorated mechanical and thermal properties of SiC reinforced Al matrix composites through hybridizing carbon nanotubes[J]. Materials Characterization, 2018, 136: 272280.

[89]

ŞENEL M C, GÜRBÜZ M, KOÇ E. Fabrication and characterization of synergistic Al–SiC–GNPs hybrid composites[J]. Composites Part B: Engineering, 2018, 154: 19.

[90]

SHARMA A, NARSIMHACHARY D, SHARMA V M, et al. Surface modification of Al6061–SiC surface composite through impregnation of graphene, graphite & carbon nanotubes via FSP: A tribological study[J]. Surface and Coatings Technology, 2019, 368: 175191.

[91]

RONG X D, CHEN X F, ZHAO D D, et al. High mechanical strengthened CNTs/Al composite concepts with robust interface and intragranular reinforcement achieved via interfacial tHermite reaction[J]. Composites Part A: Applied Science and Manufacturing, 2023, 173: 107630.

[92]

JIANG Y Y, TAN Z Q, FAN G L, et al. Reaction-free interface promoting strength-ductility balance in graphene nanosheet/Al composites[J]. Carbon, 2020, 158: 449455.

[93]

CHEN B, IMAI H, UMEDA J, et al. Effect of spark-plasma-sintering conditions on tensile properties of aluminum matrix composites reinforced with multiwalled carbon nanotubes (MWCNTs)[J]. JOM, 2017, 69(4): 669675.

目录